Neural-oscillator models of quantum-decision making

J. Acacio de Barros

Liberal Studies Program San Francisco State University

Ubiquitous Quanta, Università del Salento Lecce, Italy, 2013

J. Acacio de Barros (SFSU)

Neural models of q-cognition

Ubiquitous Quanta 1 / 35

Neurons all the way down?

- What scale should we use?
 - Down to the synapse level?
 - Neurons?
 - Collective behavior of neurons?
- For language processing, robustness and measurable macroscopic effects suggest a *large* number of neurons.
- Even for a large collection of neurons, we still have several options with respect to modeling.
 - Do we need detailed interactions between neurons? Are the shapes of the action potential relevant? Timing?
- Our goal is to reduce the number of features, yet retain a physical meaning.

- The oscillator model 2
- 3 SR theory with neural oscillators
- Quantum-like behavior

э

< 口 > < 同

Outline

- 2 The oscillator model
- 3 SR theory with neural oscillators
 - 4 Quantum-like behavior

э

< ロ > < 同 > < 回 > < 回 >

- (Ω, \mathcal{F}, P) is a probability space
- Z, S, R, and E are random variables:
 - $\mathbf{Z}: \Omega \rightarrow E^{|S|}$
 - $\mathbf{S}: \Omega \rightarrow S$,
 - $\mathbf{R}: \Omega \rightarrow R$,
 - $\mathbf{E}: \Omega \rightarrow E$
- SR theory has the following structure:

$$Z_n \to S_n \to R_n \to E_n \to Z_{n+1}.$$
 (1)

Image: Image:

→ ∃ → ∃

SR Theory

Conditioning Axioms

- C1. For each stimulus *s* there is on every trial a unique conditioning distribution, called the smearing distribution, which is a probability distribution on the set of possible responses.
- C2. If a stimulus is sampled on a trial, the mode of its smearing distribution becomes, with probability θ , the point (if any) which is reinforced on that trial; with probability 1θ the mode remains unchanged.
- C3. If no reinforcement occurs on a trial, there is no change in the smearing distribution of the sampled stimulus.
- C4. Stimuli which are not sampled on a given trial do not change their smearing distributions on that trial.
- C5. The probability θ that the mode of the smearing distribution of a sampled stimulus will become the point of the reinforced response is independent of the trial number and the preceding pattern of occurrence of events.

SR Theory

General comments on SR theory - I

- (i) Z_n sums up previous conditioning and does not represent a computation on trial n;
- (ii) S_n (experimentally unobserved sampling of stimuli) uses an assumption about the number of stimuli being sampled in an experiment (usually uniform);
- (iii) X_n represents the first brain computation in the temporal sequence on a trial for the stochastic model; this computation selects the actual response on the trial from the conditioning distribution $k_s(x|z_{s,n})$, where s is the sampled stimulus on this trial ($S_n = s$);

General comments on SR theory - II

- (*iv*) \mathbf{Y}_n is the reinforcement random variable whose distribution is part of the experimental design;
- (v) Z_{n+1} summarizes the assumed brain computations that often change at the end of a trial the state of conditioning of the stimulus *s* sampled on trial *n*; in our stochastic model, this change in conditioning is represented by a change in the mode $z_{s,n}$ of the distribution $K_s(x|z_{s,n})$.

- S1. Exactly one stimulus is sampled on each trial.
- S2. Given the set of stimuli available for sampling on a given trial, the probability of sampling a given element is independent of the trial number and the preceding pattern of occurrence of events.

R1. The probability of the response on a trial is solely determined by the smearing distribution of the sampled stimulus.

< 口 > < 同

Outline

SR Theory

2 The oscillator model

- 3 SR theory with neural oscillators
 - 4 Quantum-like behavior

э

The oscillator model

Stimulus and response neurons

../../Desktop/Work/Research/Archive/Suppes90thBir

J. Acacio de Barros (SFSU)

Neural models of q-cognition

프 🖌 🔺 프 🕨 👘 **Ubiguitous Quanta**

3

12 / 35

< □ > < 同 >

The intuition

/Users/barros/Dropbox/Suppes90thFests

э

イロト イポト イヨト イヨト

Kuramoto Equations

• If no interaction,

$$O_i(t) = A_i \cos \varphi_i(t) = A_s \cos(\omega t),$$

 $\varphi_i = \omega_i t + \delta_i,$

and

$$\dot{\varphi}_i = \omega_i.$$

э

イロト イポト イヨト イヨト

How to represent responses with few oscillators?

• Each neural oscillator's dynamics can be described by the phase, φ .

$$\begin{split} s\left(t\right) &= A_{s}\cos\varphi_{s}\left(t\right) = A_{s}\cos\left(\omega t\right),\\ r_{1}\left(t\right) &= A_{1}\cos\varphi_{r_{1}}\left(t\right) = A\cos\left(\omega t + \delta\varphi\right),\\ r_{2}\left(t\right) &= A_{2}\cos\varphi_{r_{2}}\left(t\right) = A\cos\left(\omega t + \delta\varphi - \pi\right).\\ l_{1} &\equiv \left\langle \left(s\left(t\right) + r_{1}\left(t\right)\right)^{2}\right\rangle_{t} = A^{2}\left(1 + \cos\left(\delta\varphi\right)\right).\\ l_{2} &\equiv \left\langle \left(s\left(t\right) + r_{2}\left(t\right)\right)^{2}\right\rangle_{t} = A^{2}\left(1 - \cos\left(\delta\varphi\right)\right). \end{split}$$

• A response is the balance between the strengths I_1 and I_2 ,

$$b = \frac{l_1 - l_2}{l_1 + l_2} = \cos(\delta\varphi)$$

J. Acacio de Barros (SFSU)

Kuramoto Equations

• If no interaction, $\varphi_i = \omega_i t + \delta_i$, and

 $\dot{\varphi}_i = \omega_i.$

• If we have a weak interaction, then

$$\dot{\varphi}_i = \omega_i - \sum_{j \neq i} A_{ij} \sin (\varphi_i - \varphi_j).$$

J. Acacio de Barros (SFSU)

イロト 不得 トイヨト イヨト 三日

Encoding responses

• To encode responses, we need to modify

$$\dot{\varphi_i} = \omega_i - \sum_{j \neq i} A_{ij} \sin (\varphi_i - \varphi_j)$$

to include angles, i.e.,

$$\dot{\phi}_i = \omega_i + \sum A_{ij} \sin (\phi_j - \phi_i + \delta \varphi_{ij}).$$

 $\dot{\phi}_i = \omega_i + \sum \left[A_{ij} \sin \left(\phi_j - \phi_i
ight) + B_{ij} \cos \left(\phi_j - \phi_i
ight)
ight].$

J. Acacio de Barros (SFSU)

Ubiquitous Quanta 17 / 35

Encoding responses

• To encode responses, we need to modify

$$\dot{\varphi_i} = \omega_i - \sum_{j \neq i} A_{ij} \sin (\varphi_i - \varphi_j)$$

to include angles, i.e.,

$$\dot{\phi}_i = \omega_i + \sum A_{ij} \sin (\phi_j - \phi_i + \delta \varphi_{ij}).$$

$$\dot{\phi}_i = \omega_i + \sum \left[A_{ij} \sin \left(\phi_j - \phi_i \right) + B_{ij} \cos \left(\phi_j - \phi_i \right)
ight].$$

J. Acacio de Barros (SFSU)

э

< 口 > < 同

Reinforcing oscillators

• During reinforcement:

$$\begin{split} \dot{\phi}_i &= \omega_i + \sum \left[A_{ij} \sin \left(\phi_j - \phi_i \right) + B_{ij} \cos \left(\phi_j - \phi_i \right) \right] \\ &+ K_0 \sin \left(\varphi_E - \varphi_i + \delta_{Ei} \right) . \\ &\frac{dk_{ij}^E}{dt} = \epsilon \left(K_0 \right) \left[\alpha \cos \left(\varphi_i - \varphi_j \right) - k_{ij} \right] , \\ &\frac{dk_{ij}^l}{dt} = \epsilon \left(K_0 \right) \left[\alpha \sin \left(\varphi_i - \varphi_j \right) - k_{ij}^l \right] . \end{split}$$

< ロ > < 同 > < 回 > .

э

- We represent a collection of neurons by the phase of their coherent oscillations.
- The phase difference between stimulus and response oscillators encode a continuum of responses.
- The dynamics comes from inhibitory as well as excitatory neuronal connections.

Outline

SR Theory

2 The oscillator model

- 3 SR theory with neural oscillators
 - 4 Quantum-like behavior

5 Summary

э

→ ∃ → < ∃ →</p>

Image: Image:

SR theory with neural oscillators

Response selection

/Users/barros/Desktop/Work/Research/Archive/SROscillatorMo

イロト 不得 トイヨト イヨト 三日

SR theory with neural oscillators

Conditional probabilities

/Users/barros/Desktop/Work/Research/Archive/SROscillat

э

Image: Image:

Conditional probabilities

/Users/barros/Desktop/W	o∕ills/Arss/domrato/sl/iDelsktæ/fS/R	lðarðai/Reæster
-------------------------	--------------------------------------	-----------------

/Users/barros/Desktop/W	o/ils/ftes/danalo/s4/iDelskte/fs/R	lðarðri/Ræster
-------------------------	------------------------------------	----------------

J. Acacio de Barros (SFSU)

э

イロト イポト イヨト イヨト

Outline

- SR Theory
- 2 The oscillator model
- 3 SR theory with neural oscillators
- Quantum-like behavior

э

(4) E > (4) E >

Image: Image:

What is quantum?

- Nondeterministic.
- Nonlocal.
- Contextual.

э

Determinism and predictability

- Classical systems can be completely unpredictable (e.g., three-body system, Sinai billiards).
- We cannot distinguish a deterministic from a stochastic dynamics.
- Should we care anyway?

- Example: $[\hat{P}, \hat{Q}] \neq 0$.
- Not a big deal in social sciences.

э

- Example: $[\hat{P}, \hat{Q}] \neq 0$.
- Not a big deal in social sciences.

Example:

Is a cheap date good or bad?

< 口 > < 同

э

- Example: $[\hat{P}, \hat{Q}] \neq 0$.
- Not a big deal in social sciences.

Example:

- Is a cheap date good or bad?
- Rephrasing for this conference: do you think your female friends like cheap dates?

< 口 > < 同

- Example: $[\hat{P}, \hat{Q}] \neq 0$.
- Not a big deal in social sciences.

Example:

- Is a cheap date good or bad?
- Rephrasing for this conference: do you think your female friends like cheap dates?
- Did you know dates are on sale at the supermarket?

- Imagine two parallel sections: Alice and Bob.
- Alice asks supermarket question first.
- Because of Alice's choice, students at Bob's classroom answered yes to the cheap date question.
- Spooky?! Should we care?

Quantum-like behavior

What about the brain?

- Stochastic.
- Contextual.
- Nonlocal?

J. Acacio de Barros (SFSU)

э

(日) (四) (日)

What is quantum in SS? An example

- Should I buy a plot of land given the uncertainties due to the presidential elections?
- If Republican, I decide it is better to buy.
- If Democrat, I also decide it is better to buy.
- Therefore, I should prefer buying over not buying, even if I don't know who will win (Savage's Sure-thing Principle)
- Tversky and Shafir showed that people violate the Sure-thing Principle.

What is quantum in SS? An example

- Should I buy a plot of land given the uncertainties due to the presidential elections?
- If Republican, I decide it is better to buy.
- If Democrat, I also decide it is better to buy.
- Therefore, I should prefer buying over not buying, even if I don't know who will win (Savage's Sure-thing Principle)
- Tversky and Shafir showed that people violate the Sure-thing Principle.

Oscillator interference

J. Acacio de Barros (SFSU)

Ubiquitous Quanta 31 / 35

イロト イポト イヨト イヨト

э

- For two stimulus oscillators, s_1 and s_2 , and two response oscillators, r_1 and r_2 .
- We select couplings between oscillators such that X is selected 60% of the time if s_1 is active, and 50% of the time if s_2 is active.
- By selecting the couplings between s_1 and s_2 , we can control the degree of synchronicity between then.
- If s_1 and s_2 are activated, we can have interference between s_1 and s_2 .
- In such cases, X is selected less than 40% of the time.

What the # *! do we know!?

- Propagation of oscillations on the cortex behave like a wave.
- Neural oscillator interference may be sensitive to context.
- Could quantum effects be simply contextual?

Outline

SR Theory

- 2 The oscillator model
- 3 SR theory with neural oscillators
 - 4 Quantum-like behavior

э

- A small number of phase oscillators may be used to model a continuum of responses (with results similar to SR theory).
- The model is simple enough such that we can easily understand physically how responses are selected via inhibitory and excitatory couplings.
- Interference may help us understand how complex neural networks have "quantum-like" dynamics.