Decision Making for Inconsistent Expert Judgments Using Signed Probabilities

J. Acacio de Barros

Liberal Studies Program San Francisco State University

Purdue University, February 24, 2014

- Most ways to think *rationally* lead to probability measures a la Kolmogorov:
 - Pascal (motivated by Antoine Gombaud, Chevalier de Méré).
 - Cox, Jaynes, Ramsey, de Finneti.
 - Venn, von Mises.
- Originally, probabilities were meant to be normative, and not descriptive.

- $\bullet\,$ Human decision-making does not seem to satisfy the rules of classical probability theory^1
- To model such cases, many researchers have used the mathematical formalism of QM: "quantum probabilities"²
- Feynman proposed the use of negative probabilities in QM³

J. Acacio de Barros (SFSU) Decision Making with Signed Probabilities M

¹Kahneman, D. (2003) American Psychologist 58(9), 697–720

²Busemeyer, J. R. and Bruza, P. D. (2012) Quantum models of cognition and decision, Cambridge University Press, Cambridge, UK and references therein.

³Feynman, R. P. (1987) Negative probability In B. J. Hiley and F. David Peat, (ed.), Quantum implications: essays in honour of David Bohm, pp. 235–248 Routledge London and New York (CP) + (E) + (E

Inconsistent Beliefs

2 Modeling Inconsistent Beliefs

- Bayesian Model
- Quantum Model
- Signed Probability Model

3 Final remarks

Outline

Inconsistent Beliefs

Modeling Inconsistent Beliefs

- Bayesian Model
- Quantum Model
- Signed Probability Model

3 Final remarks

э

< 17 > <

- In logic, any two or more sentences are inconsistent if it is possible to derive from them a contradiction, i.e., if there exists an A such that (A ∧ ¬A) is a theorem.⁴
- If a set of sentences is inconsistent, then it is trivial.
 - Start with A ∧ ¬A as true. Then A is true. But since A is true, then, for any B, so is A ∨ B. But since ¬A is true, it follows from conjunction elimination that B is necessarily true.

⁴Suppes, P. (1999) Introduction to Logic, Dover Publications, Mineola, New York. → < ≧ → < ≧ → ○ < ⊙

6 / 36

- Take X, Y, and Z as ± 1 -valued random variables.
- The above example is equivalent to the deterministic case where

$$E(\mathbf{XY}) = E(\mathbf{XZ}) = E(\mathbf{YZ}) = -1.$$

• Clearly the correlations are too strong to allow for a joint probability distribution.

A subtler case

- Let X, Y, and Z be ± 1 random variables with zero expectation representing future trends on stocks of companies X, Y, and Z going up or down.
- Three experts, Alice, Bob, and Carlos, have beliefs about the relative behavior of pairs of stocks.
- No direct disagreement between experts: all about $E(\mathbf{X}) = E(\mathbf{Y}) = E(\mathbf{Z}) = 0$
- But there is no joint⁵ for $E_A(XY) = 0$, $E_B(XZ) = -1/2$, $E_C(YZ) = -1$, as

$$\begin{array}{rcl} -1 & \leq & E\left(\mathsf{X}\mathsf{Y}\right) + E\left(\mathsf{X}\mathsf{Z}\right) + E\left(\mathsf{Y}\mathsf{Z}\right) \leq \\ & 1 + 2\min\left\{E\left(\mathsf{X}\mathsf{Y}\right), E\left(\mathsf{X}\mathsf{Z}\right), E\left(\mathsf{Y}\mathsf{Z}\right)\right\}. \end{array}$$

⁵Suppes, P. and Zanotti, M. (1981) Synthese 48(2), 191–199

How to deal with inconsistencies?

- Question: what is the triple moment E(XYZ)?
- There are several approaches in the literature. E.g.
 - Paraconsistent logics.
 - Consensus reaching.
 - Bayesian.
- Here we will examine two possible alternatives:
 - Quantum.
 - Signed probabilities.

Outline

Inconsistent Beliefs

2 Modeling Inconsistent Beliefs

- Bayesian Model
- Quantum Model
- Signed Probability Model

3 Final remarks

Outline

Inconsistent Beliefs

2 Modeling Inconsistent Beliefs

- Bayesian Model
- Quantum Model
- Signed Probability Model

3 Final remarks

< 🗗 🕨

Bayesian Model: Priors

- We start with Alice, Bob, and Carlos as experts, and Deanna Troy as a decision maker.
- In the Bayesian approach, Deanna starts with a prior probability distribution.
- If we assume she knows nothing about X, Y, and Z, it is reasonable that she sets

$$p^D_{\mathrm{xyz}} = p^D_{\overline{\mathrm{xyz}}} = \cdots = p^D_{\overline{\mathrm{xyz}}} = rac{1}{8}.$$

イロト イポト イヨト イヨト

Model of experts

- In order to apply Bayes's theorem, Deanna needs to have a model of the experts (likelihood function).
- Imagine that an oracle tells Deanna that tomorrow the actual correlation E(XY) = -1.
- If Deanna thinks her expert is good, knowing that E(XY) = -1 means that she should think that p_{xy} . and $p_{\overline{xy}}$ should be highly improbable for Alice, whereas $p_{\overline{xy}}$ and $p_{x\overline{y}}$ highly probable.
- For instance, Deanna might propose that the likelihood function is given by

$$egin{aligned} p_{\mathrm{X}\mathrm{y}\cdot} &= p_{\overline{\mathrm{X}\mathrm{y}\cdot}} = 1 - rac{1}{4} \left(1 - \epsilon_{\mathcal{A}}
ight)^2, \ p_{\overline{\mathrm{X}}\mathrm{y}\cdot} &= p_{\overline{\mathrm{X}}\mathrm{y}\cdot} = rac{1}{4} \left(1 - \epsilon_{\mathcal{A}}
ight)^2, \end{aligned}$$

where $E_A(XY) = \epsilon_A$.

• Similarly for Bob and Carlos.

・ロト ・得ト ・ヨト ・ヨト - ヨ

Applying Bayes's Theorem

- Deanna can use Bayes's theorem to revise her prior belief's about *X*, *Y*, and *Z*.
- For example,

$$p_{xyz}^{D|A} = k \left[1 - rac{1}{4} \left(1 - \epsilon_A
ight)^2
ight] rac{1}{8},$$

where

$$k^{-1} = \left[1 - \frac{1}{4} (1 - \epsilon_A)^2\right] \frac{1}{8} + \left[\frac{1}{4} (1 - \epsilon_A)^2\right] \frac{1}{8} + \left[\frac{1}{4} (1 - \epsilon_A)^2\right] \frac{1}{8} \\ + \left[1 - \frac{1}{4} (1 - \epsilon_A)^2\right] \frac{1}{8} + \left[\frac{1}{4} (1 - \epsilon_A)^2\right] \frac{1}{8} + \left[\frac{1}{4} (1 - \epsilon_A)^2\right] \frac{1}{8} \\ + \left[1 - \frac{1}{4} (1 - \epsilon_A)^2\right] \frac{1}{8} + \left[1 - \frac{1}{4} (1 - \epsilon_A)^2\right] \frac{1}{8} \\ = \frac{1}{2}.$$

J. Acacio de Barros (SFSU) Decision Making with Signed Probabilities MCCS, Purdue

Incorporating Bob and Carlos's opinion

- Deanna can now revise her posterior $p_{xyz}^{D|A}$ using once again Bayes's theorem.
- She gets

$$p_{xyz}^{D|AB} = \frac{1}{32} \left[\left(\epsilon_A^2 - 2\epsilon_A - 3 \right) \epsilon_B^2 + \left(-2\epsilon_A^2 + 4\epsilon_A + 6 \right) \epsilon_B - 3\epsilon_A^2 + 6\epsilon_A + 9 \right]$$

- A third application of the theorem gives us $p_{xyz}^{D|ABC}$.
- Similar computations can be carried out for the other atoms.

Example

۲

• If
$$\epsilon_A = 0$$
, $\epsilon_B = -\frac{1}{2}$, $\epsilon_C = -1$, we have

$$p_{xyz}^{D|ABC} = p_{x\overline{y}\overline{z}}^{D|ABC} = p_{\overline{x}y\overline{z}}^{D|ABC} = p_{\overline{x}y\overline{z}}^{D|ABC} = 0,$$

$$p_{\overline{x}yz}^{D|ABC} = p_{x\overline{y}\overline{z}}^{D|ABC} = \frac{7}{68},$$
and

$$p_{xy\overline{z}}^{D|ABC} = p_{\overline{x}\overline{y}\overline{z}}^{D|ABC} = \frac{27}{68}.$$

 $E(\mathbf{XYZ}) = 0.$

J. Acacio de Barros (SFSU) Decision Making with Signed Probabilities

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ の Q @

Summary: Bayesian

- The Bayesian approach is the standard probabilistic approach for decision making.
- It is extremely dependent on the prior distribution.
- Depends on the model of experts (likelihood function).
- Allows to compute a proper joint probability distribution.

17 / 36

Outline

1 Inconsistent Beliefs

2 Modeling Inconsistent Beliefs

Bayesian Model

Quantum Model

Signed Probability Model

3 Final remarks

< /₽ > <

Quantum model

- In quantum models, random variables are replaced with observables in a Hilbert space \mathcal{H} .
 - **X**, **Y**, and **Z** are modeled by the linear Hermitian operators \hat{X} , \hat{Y} , and \hat{Z} on \mathcal{H} .
 - A state vector $|\psi\rangle\in\mathcal{H}$ codes the state of the system.
 - Expectations are given by

 $\langle \psi | \hat{A} | \psi \rangle$,

where \hat{A} is an observable (Hermitian operator).

- E.g. $E(\mathbf{X}) = \langle \psi | \hat{X} | \psi \rangle$, $E(\mathbf{XY}) = \langle \psi | \hat{X} \hat{Y} | \psi \rangle$, etc.
- Note that $\hat{X}\hat{Y}$ is Hermitian if $\left[\hat{X},\hat{Y}\right]=0.$

・ロト ・得ト ・ヨト ・ヨト

Theorem

Let \hat{X} , \hat{Y} , and \hat{Z} be three observables in a Hilbert space \mathcal{H} with eigenvalues ± 1 and that pairwise commute, and let the ± 1 -valued random variables X, Y, and Z represent the outcomes of possible experiments performed on a quantum system $|\psi\rangle \in \mathcal{H}$. Then, there exists a joint probability distribution consistent with all the possible outcomes of X, Y, and Z.

イロト イポト イヨト イヨト

20 / 36

Theorem

Let \hat{X} , \hat{Y} , and \hat{Z} be three observables in a Hilbert space \mathcal{H} with eigenvalues ± 1 and that pairwise commute, and let the ± 1 -valued random variables X, Y, and Z represent the outcomes of possible experiments performed on a quantum system $|\psi\rangle \in \mathcal{H}$. Then, there exists a joint probability distribution consistent with all the possible outcomes of X, Y, and Z.

 "The only thing proved by impossibility proofs is the author's lack of imagination." J. S. Bell

How to have different contexts? Include explicitly!

- If we want to model the Alice, Bob, and Carlos's correlations, we need to explicitly include the context.
- E.g.

$$E_{A}(\mathbf{XY}) = \langle \psi_{xy} | \hat{X} \hat{Y} | \psi_{xy} \rangle,$$

where $|\psi\rangle_{xy} \neq |\psi\rangle_{yz} \neq |\psi\rangle_{xz}$.

• For instance, consider the three orthonormal states $|A\rangle,~|B\rangle,$ and $|C\rangle,$ and let

$$|\psi\rangle = c_{xy}|\psi_{xy}\rangle \otimes |A\rangle + c_{xz}|\psi_{xz}\rangle \otimes |B\rangle + c_{yz}|\psi_{yz}\rangle \otimes |C\rangle.$$

- We can compute a joint, and therefore E(XYZ), from $|\psi\rangle$.
- There are infinite number of $|\psi\rangle$ satisfying the correlations, and $-1 \le E(\mathbf{XYZ}) \le 1$.

(日) (得) (目) (日) []

Summary: quantum

- Makes context explicit.
- Imposes no constraint on the relative weights or triple moment.
- Doesn't tell us what is our best bet.

22 / 36

Outline

1 Inconsistent Beliefs

2 Modeling Inconsistent Beliefs

- Bayesian Model
- Quantum Model
- Signed Probability Model

3 Final remarks

Kolmogorov model

• Kolmogorov axiomatized probability in a set-theoretic way, with the following simple axioms.

K1. $1 \ge P(A) \ge 0$ K2. $P(\Omega) = 1$ K3. $P(A \cup B) = P(A) + P(B)$

J. Acacio de Barros (SFSU) Decision Making with Signed Probabilities

・ロト ・得ト ・ヨト ・ヨト - ヨ

Upper and lower probabilities

- How do we deal with inconsistencies?
- de Finetti: relax Kolmogorov's axiom A2:

$$P^{*}\left(A\cup B
ight) \geq P^{*}\left(A
ight) +P^{*}\left(B
ight)$$

or

$$P_*(A \cup B) \leq P_*(A) + P_*(B)$$
.

• Subjective meaning: bounds of best measures for inconsistent beliefs (imprecise probabilities).

26 / 36

Upper and lower probabilities

• Consequence:

$$egin{aligned} \mathcal{M}^* &= \sum_i \mathcal{P}^*\left(\{\omega_i\}
ight) > 1, \ \mathcal{M}_* &= \sum_i \mathcal{P}_*\left(\{\omega_i\}
ight) < 1. \end{aligned}$$

- M^* and M_* should be as close to one as possible.
- Inequalities and nonmonotonicity make it hard to compute upper and lowers for practical problems.

Workaround?

- Define $M^T = \sum_i |p(\{\omega_i\})|, \omega_i \in \Omega$.
- Instead of violating K3, relax K1:

N1. p_i are such that M^T is minimum.

N2.
$$\sum_{i} p(\{\omega_i\}) = 1,$$

N3. $p(\{\omega_i\} \cup \{\omega_j\}) = p(\{\omega_i\}) + p(\{\omega_j\}), i \neq j.$

• $p(\{\omega_i\})$ (probability of atom *i*) can now be *negative*.

(ロト (雪) (ヨ) (ヨ) (ヨ)

Why negative probabilities?

- May be helpful to think about certain contextual problems (e.g. non-signaling conditions, counterfactual reasoning in physics).
- May have a meaning in terms of subjective probability.
 - p can define an upper probability distribution by simply setting $P^*(\omega_i) = p(\omega_i) + |p_{\min}|.$
- If nothing else, it is a good computational device.
 - We can compute them easily (compared to uppers/lowers).

(日) (四) (日) (日)

Example: Marginals from Alice, Bob, and Carlos

$$p_{xyz} + p_{\overline{x}yz} + p_{x\overline{y}z} + p_{xy\overline{z}} + p_{x\overline{y}\overline{z}} + p_{\overline{x}\overline{y}\overline{z}} + p_{\overline{x}\overline{y}\overline{z}} + p_{\overline{x}\overline{y}\overline{z}} = 1, \qquad (1)$$

$$p_{xyz} + p_{\overline{x}yz} + p_{x\overline{y}z} + p_{xy\overline{z}} - p_{x\overline{y}\overline{z}} - p_{\overline{x}y\overline{z}} - p_{\overline{x}y\overline{z}} - p_{\overline{x}y\overline{z}} = 0, \qquad (2)$$

$$p_{xyz} + p_{\overline{x}yz} - p_{x\overline{y}z} + p_{xy\overline{z}} - p_{x\overline{y}\overline{z}} + p_{\overline{x}y\overline{z}} - p_{\overline{x}\overline{y}z} - p_{\overline{x}\overline{y}\overline{z}} = 0, \qquad (3)$$

$$p_{xyz} + p_{\overline{x}yz} + p_{x\overline{y}z} - p_{xy\overline{z}} - p_{x\overline{y}\overline{z}} - p_{\overline{x}y\overline{z}} + p_{\overline{x}\overline{y}z} - p_{\overline{x}y\overline{z}} = 0, \qquad (4)$$

$$p_{xyz} - p_{\overline{x}yz} - p_{x\overline{y}z} + p_{xy\overline{z}} - p_{x\overline{y}\overline{z}} - p_{\overline{x}y\overline{z}} + p_{\overline{x}y\overline{z}} + p_{\overline{x}y\overline{z}} = 0, \qquad (5)$$

$$p_{xyz} - p_{\overline{x}yz} + p_{x\overline{y}z} - p_{xy\overline{z}} - p_{x\overline{y}\overline{z}} + p_{\overline{x}y\overline{z}} - p_{\overline{x}\overline{y}z} + p_{\overline{x}y\overline{z}} = -\frac{1}{2}, \quad (6)$$

$$p_{xyz} + p_{\overline{x}yz} - p_{x\overline{y}z} - p_{xy\overline{z}} + p_{x\overline{y}\overline{z}} - p_{\overline{x}y\overline{z}} - p_{\overline{x}y\overline{z}} + p_{\overline{x}\overline{y}\overline{z}} = -1.$$
(7)

MCCS, Purdue 29 / 36

1

Signed Probabilities

The general solution for the system of equations is

$$p_{xyz} = -p_{\overline{x}yz} = -\frac{1}{8} - \delta,$$

$$p_{x\overline{y}z} = p_{\overline{x}y\overline{z}} = \frac{3}{16},$$

$$p_{xy\overline{z}} = p_{\overline{x}\overline{y}z} = \frac{5}{16},$$

$$p_{x\overline{y}\overline{z}} = -p_{\overline{x}\overline{y}\overline{z}} = -\delta,$$

which gives

$$E(\mathbf{XYZ}) = -\frac{1}{4} - 4\delta.$$

B b

A ID > A (P) > A

Minimizing total probability mass

- But not all values of δ satisfy N1, i.e., minimize $M^{-} = \sum |p(\omega_i)|$.
- If we impose this, we we have

$$-\frac{1}{8} \le \delta \le 0$$

and

$$-rac{1}{4} \leq E\left(\mathbf{XYZ}
ight) \leq rac{1}{2}.$$

・ロト ・ 一日 ・ ・ 日 ・

32 / 36

Summary: signed probabilities

- Signed probabilities have a possible interpretation in terms of (subjective) upper probabilities.
- Minimization of *M*⁻ requires the improper distributions to approach as best as possible the rational proper jpd.
- This has a normative constraint on the choices of triple moment.

Outline

Inconsistent Beliefs

Modeling Inconsistent Beliefs

- Bayesian Model
- Quantum Model
- Signed Probability Model

3 Final remarks

< /₽ > <

• Standard Bayesian approach is sensitive to choices of prior and likelihood function (well-known issue).

ヨート

A ID > A (P) > A

Bayesian approach

- Standard Bayesian approach is sensitive to choices of prior and likelihood function (well-known issue).
- "It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so." -Mark Twain

34 / 36

- Standard Bayesian approach is sensitive to choices of prior and likelihood function (well-known issue).
- "It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so." -Mark Twain
- Say that Deanna starts with $E(XYZ) = \epsilon$ as her prior.
 - The posterior will be $E(XYZ) = \epsilon$ regardless of Alice, Bob, and Carlos's opinions.
 - Triple moment is unchanged by lower moment revisions.

(日) (得) (王) (王)

Quantum approach

- The quantum-like approach, using vectors on a Hilbert space, seems to be too permissive.
 - No normative power.
- But at least it is explicit!
- Perhaps additional principles could be used.

Negative probability approach

- Negative probabilities (with the minimization of the negative mass) offer a lower and upper bound for values of triple moment (normative).
- They are not as constrained as QM mathematical structures.
- Offer a unifying framework for "rationality" and "irrationality."

Negative probability approach

- Negative probabilities (with the minimization of the negative mass) offer a lower and upper bound for values of triple moment (normative).
- They are not as constrained as QM mathematical structures.
- Offer a unifying framework for "rationality" and "irrationality."

Thank you!