Quantum Formalism Outside of Physics

J. Acacio de Barros

School of Humanities and Liberal Studies San Francisco State University, San Francisco, California

III Advanced School on Quantum Foundation and Quantum Computation

・ 同 ト ・ ヨ ト ・ ヨ

Weird quantum

- Quantum mechanics is strange:
 - No clear interpretation
 - Apparently contradictory statements (inconsistent histories)
- But is well described mathematically (Hilbert spaces or rigged Hilbert spaces)
 - Quantum probabilities

Cognitive models

• Cognitive science tries to understand how the brain processes information and how it computes complex tasks.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cognitive models

- Cognitive science tries to understand how the brain processes information and how it computes complex tasks.
- Typical problems are perception, decision making, and learning.

Cognitive models

- Cognitive science tries to understand how the brain processes information and how it computes complex tasks.
- Typical problems are perception, decision making, and learning.
- Cognitive models are mathematical models of the above problems using constraints from behavioral and cognitive sciences.
- Such models provide a more refined way to talk about features of certain cognitive processes.

Irrational behavior Behavior violates Kolmogorov's axioms.

- Most cognitive models use standard probabilities satisfying Kolmogorov's axioms:
 - (i) $P(A) \ge 0$, $A \in \mathscr{F}$,
 - (ii) $P(\Omega) = 1$,
 - (iii) $P(A \cup B) = P(A) + P(B)$ for $A \cap B = \emptyset$.
- This is the case with Markov chain or Bayesian models, for example.

• • • • •

Irrational behavior Behavior violates Kolmogorov's axioms.

- Most cognitive models use standard probabilities satisfying Kolmogorov's axioms:
 - (i) $P(A) \ge 0$, $A \in \mathscr{F}$,

• (ii)
$$P(\Omega) = 1$$
,

- (iii) $P(A \cup B) = P(A) + P(B)$ for $A \cap B = \emptyset$.
- This is the case with Markov chain or Bayesian models, for example.
- However, people do not behave according to Kolmogorov's axioms (we'll see examples later, as well as what this means).

Quantum models

- Since classical probability theory seems to be violated by human behavior, cognitive scientists looked for alternatives to it.
 - Extended probabilities
 - upper and lower probabilities
 - negative probabilities
 - quantum probabilities.
- Can we use of the mathematical apparatus of quantum mechanics to model human behavior?
 - This comes from the well-known fact that quantum mechanics violate Kolmogorov's axioms.

- Cognitive modeling, mainly probabilistic ones, helps us understand quantitatively the brain.
- However, brain processes, or at least behavior, seem to violate classical probability theory.
- Can a quantum mechanical mathematical formalism help us model such processes?

- Cognitive modeling, mainly probabilistic ones, helps us understand quantitatively the brain.
- However, brain processes, or at least behavior, seem to violate classical probability theory.
- Can a quantum mechanical mathematical formalism help us model such processes?
- To emphasize: we are not talking about quanta and mind here!

- Day 1: Basic issues on quantum mechanics (with emphases aspects relevant for cognition)
- Day 2: Quantum in psychology
- Day 3: Quantum in psychology, economics, and (perhaps) political sciences

• • • • •

Why should we care?

- Pushing quanta to outside of physics may help clarify what makes quanta different.
 - Perhaps even figure out what defines quantum theory.

Why should we care?

- Pushing quanta to outside of physics may help clarify what makes quanta different.
 - Perhaps even figure out what defines quantum theory.
- Hey, it can also lend jobs. :-)

Why should we care?

- Pushing quanta to outside of physics may help clarify what makes quanta different.
 - Perhaps even figure out what defines quantum theory.
- Hey, it can also lend jobs. :-)

"Religion without science is blind; science without religion is lame" - Albert Einstein

Why should we care?

- Pushing quanta to outside of physics may help clarify what makes quanta different.
 - Perhaps even figure out what defines quantum theory.
- Hey, it can also lend jobs. :-)

"Religion without science is blind; science without religion is lame" - Albert Einstein

Metaphysics without physics is blind; physics without metaphysics is lame.

Outline

1 What is non-classical about guantum mechanics?

- Non-determinism
- Nonlocality

2 Contextuality, quantum, and probabilities

Quantum Cognition

- Order Effect
- The conjunction paradox and the two-slit
- The prisoner's dilemma
- A neurophysiological model for quantum cognition.
- Beyond quantum cognition.

Non-determinism Nonlocality

What makes QM different from CM?

- Non-determinism.
- Contextuality.
- Non-locality.

• • = • • = •

Non-determinism

Outline

1 What is non-classical about guantum mechanics? Non-determinism Nonlocality

- Order Effect
- The conjunction paradox and the two-slit
- The prisoner's dilemma
- A neurophysiological model for quantum cognition.
- Beyond quantum cognition.

▲ □ ▶ ▲ □ ▶ ▲

Non-determinism Nonlocality

They are both deterministic

 Classical particle physics relies on Newton's equations of motion:

$$m rac{\mathrm{d}^2 \mathbf{r}(t)}{\mathrm{d}t^2} = \mathbf{F}\left(\mathbf{r}, rac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}, t
ight).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Non-determinism Nonlocality

They are both deterministic

 Classical particle physics relies on Newton's equations of motion:

$$m\frac{\mathrm{d}^{2}\mathbf{r}(t)}{\mathrm{d}t^{2}}=\mathbf{F}\left(\mathbf{r},\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t},t\right).$$

• Quantum mechanics relies on Schroedinger's equation, e.g.

$$i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r},t) + V(\mathbf{r},t) \psi(\mathbf{r},t).$$

• • = • • = •

Non-determinism Nonlocality

Both are deterministic, but quantum is not At least quantum measurement seems not to be

• But $\psi(\mathbf{r},t)$ in $i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r},t) + V(\mathbf{r},t) \psi(\mathbf{r},t).$

only tells us the probability density, $p(\mathbf{r}, t) = |\psi(\mathbf{r}, t)|^2$, if we measure its position.

• For a general vector $|\psi
angle$ and a projector P, the outcome is $c\hat{P}|\psi
angle$

with probability $p = \left| \hat{P} | \psi \rangle \right|^2$.

• A quantum measurement is apparently probabilistic (nondeterministic).

Non-determinism Nonlocality

Both are deterministic, but quantum is not At least quantum measurement seems not to be

• But $\psi(\mathbf{r},t)$ in $i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r},t) + V(\mathbf{r},t) \psi(\mathbf{r},t).$

only tells us the probability density, $p(\mathbf{r}, t) = |\psi(\mathbf{r}, t)|^2$, if we measure its position.

• For a general vector $|\psi\rangle$ and a projector P, the outcome is $c\hat{P}|\psi\rangle$

with probability $p = \left| \hat{P} | \psi \right\rangle \Big|^2$.

• A quantum measurement is apparently probabilistic (nondeterministic).

J. Acacio de Barros

• Quantum non-determinism was recognized early on by

Quantum Formalism Outside of Physics

Non-determinism Nonlocality

But do we care about determinism?

- Let us look at some classical (and therefore deterministic) examples:
 - Three-body problem.
 - Sinai billiard.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Non-determinism Nonlocality

Three bodies under gravity.

Non-determinism Nonlocality

Three bodies under gravity.

A symbolic trajectory for *m* is a set of measurements of its position every time interval Δt: S = (+, +, -, -, -, +, ...).

Non-determinism Nonlocality

Three bodies under gravity.

- A symbolic trajectory for m is a set of measurements of its position every time interval Δt: S = (+,+,-,-,-,+,...).
- Alekseev: If m ≪ M, and if ∆t is large enough, then S is isomorphic to a coin toss.

Non-determinism Nonlocality

Billiard.

æ

◆□ > ◆□ > ◆豆 > ◆豆 >

Non-determinism Nonlocality

Billiard.

• Periodic trajectories.

Non-determinism Nonlocality

Sinai's Billiard.

э

◆□ > ◆□ > ◆豆 > ◆豆 >

Non-determinism Nonlocality

Sinai's Billiard.

・ロト ・四ト ・ヨト ・ヨト

Non-determinism Nonlocality

Ornstein's partition.

э

・ロン ・聞と ・ほと ・ほど

Non-determinism Nonlocality

Ornstein's partition.

• Deterministic and probabilistic systems are ε -congruent.

(日) (同) (三) (三)

Non-determinism Nonlocality

- Determinism does not imply predictability.
- Deterministic complex systems behave in ways that are observationally equivalent to probabilistic systems.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Non-determinism Nonlocality

Summarizing.

- Determinism does not imply predictability.
- Deterministic complex systems behave in ways that are observationally equivalent to probabilistic systems.
- When observing a system that seems non-deterministic, it is possible we're observing a deterministic system with complex dynamics.

• • **=** • • **=**

Non-determinism Nonlocality

Summarizing.

- Determinism does not imply predictability.
- Deterministic complex systems behave in ways that are observationally equivalent to probabilistic systems.
- When observing a system that seems non-deterministic, it is possible we're observing a deterministic system with complex dynamics.
- Distinction between determinism and predictability was not known to founders of QM.

・吊り ・ラト ・ラ

Non-determinism Nonlocality

Outline

What is non-classical about quantum mechanics?

- Non-determinism
- Nonlocality

2 Contextuality, quantum, and probabilities

3 Quantum Cognition

- Order Effect
- The conjunction paradox and the two-slit
- The prisoner's dilemma
- A neurophysiological model for quantum cognition.
- Beyond quantum cognition.

4 🗇 🕨 4 🖻 🕨 4
Non-determinism Nonlocality

Bell-EPR experiment

• Only sixteen possibilities:

•
$$A = 1, A' = 1, B = 1, B' = 1$$

• $A = 1, A' = 1, B = 1, B' = -1$
• $A = 1, A' = 1, B = -1, B' = 1$
• $A = 1, A' = 1, B = -1, B' = -1$
• $A = 1, A' = -1, B = 1, B' = 1$
• \vdots
• $A = -1, A' = -1, B = -1, B' = -1$

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-determinism Nonlocality

Bell-EPR experiment

• Define S = AB + AB' + A'B - A'B':

• $A = 1, A' = 1, B = 1, B' = 1 \longrightarrow S = AB + AB' + A'B - A'B' = 2$ • $A = 1, A' = 1, B = 1, B' = -1 \longrightarrow S = 2$ • $A = 1, A' = 1, B = -1, B' = 1 \longrightarrow S = -2$ • $A = 1, A' = 1, B = -1, B' = -1 \longrightarrow S = -2$ • $A = 1, A' = -1, B = 1, B' = 1 \longrightarrow S = 2$ • \vdots • $A = -1, A' = -1, B = -1, B' = -1 \longrightarrow S = -2$

-

Non-determinism Nonlocality

Bell-EPR experiment

- Only sixteen possibilities.
- Define S = AB + AB' + A'B A'B'
- Since for each possibility, $-2 \le S \le 2$, it follows that $-2 \le \langle S \rangle \le 2$.
- Quantum mechanics violates this inequality.
 - This is equivalent to the non-existence of a common cause that explains the correlations (non-locality)

イロト イポト イヨト イヨト

Non-determinism Nonlocality

Homodyne detection

イロト イポト イヨト イヨト

Non-determinism Nonlocality

Interference effects

$$ho(V_1, V_2) = rac{Cov(V_1, V_2)}{\sqrt{Var(V_1)Var(V_2)}}$$

$$\rho(V_1,V_2) = -\sin(\alpha_1-\alpha_2).$$

- This correlation violates Bell's inequalities.
- However, proper violation has a thermodynamical cost.

《曰》 《聞》 《臣》 《臣》

Quantum and Classical Dynamics

• Classical:

$$\frac{dp}{dt} = \{p, H\},$$
(1)
$$\frac{dq}{dt} = \{q, H\},$$
(2)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Quantum and Classical Dynamics

• Classical:

$$\frac{dp}{dt} = \{p, H\},$$

$$(1)$$

$$\frac{dq}{dt} = \{q, H\},$$

$$(2)$$

• Quantum:

$$\frac{d\hat{P}}{dt} = i\hbar \left[\hat{P}, \hat{H}\right],$$

$$\frac{d\hat{Q}}{dt} = i\hbar \left[\hat{Q}, \hat{H}\right].$$

• To preserve the algebra, we impose $[\hat{Q}, \hat{P}] = i\hbar$.

So what if \hat{P} and \hat{Q} don't commute?

- We saw that $[\hat{Q},\hat{P}]|\psi
 angle = \left(\hat{Q}\hat{P} \hat{P}\hat{Q}\right)|\psi
 angle = i\hbar|\psi
 angle.$
- Suppose $|\psi
 angle$ is simultaneously an eigenstate of \hat{P} and $\hat{Q}.$

•
$$(\hat{Q}\hat{P} - \hat{P}\hat{Q})|\psi\rangle = (\hat{Q}p_0 - \hat{P}q_0)|\psi\rangle = (q_0p_0 - p_0q_0)|\psi\rangle = 0.$$

But this contradicts above!

So what if \hat{P} and \hat{Q} don't commute?

- We saw that $[\hat{Q}, \hat{P}] |\psi\rangle = \left(\hat{Q}\hat{P} \hat{P}\hat{Q}\right) |\psi\rangle = i\hbar |\psi\rangle.$
- Suppose $|\psi
 angle$ is simultaneously an eigenstate of \hat{P} and \hat{Q} .

•
$$(\hat{Q}\hat{P} - \hat{P}\hat{Q})|\psi\rangle = (\hat{Q}p_0 - \hat{P}q_0)|\psi\rangle = (q_0p_0 - p_0q_0)|\psi\rangle = 0.$$

But this contradicts above!

- If two observables do not commute, they are not simultaneously measurable.
- Complimentary observables are not simultaneously measurable.

Example: measuring the magnetic moment of an electron

Big problem?

• Classically, a measurement reveals the value of the quantity being measured.

Let $\boldsymbol{\mu}$ be the a random variable representing spin. The experiment is measuring $\mu_z = \boldsymbol{\mu} \cdot \hat{\boldsymbol{z}} = \pm 1$ (in units where $\hbar = h/2\pi = 1$).

Big problem?

• Classically, a measurement reveals the value of the quantity being measured.

Let $\boldsymbol{\mu}$ be the a random variable representing spin. The experiment is measuring $\mu_z = \boldsymbol{\mu} \cdot \hat{z} = \pm 1$ (in units where $\hbar = h/2\pi = 1$).

- But our choice of direction is arbitrary for the experiment! So, it must also be true for any other directions that its spin component is either 1 or -1.
- Let us chose two new directions, \hat{x}_1 and \hat{x}_2 such that $\hat{x}_1 + \hat{x}_2 + \hat{z} = 0$. It follows that $\boldsymbol{\mu} \cdot (\hat{x}_1 + \hat{x}_2 + \hat{z}) = \pm 1 \pm 1 \pm 1 = 0$, a contradiction!

・ロト ・ 同ト ・ ヨト ・ ヨト

What is going on?

- There are a assumptions for the contradiction:
 - **µ** represents spin before measurement;
 - measurements "reveal" what $\pmb{\mu}$ is.
- Spin cannot be independent of measurement.

3 A .

What is going on?

- There are a assumptions for the contradiction:
 - **µ** represents spin before measurement;
 - measurements "reveal" what $\pmb{\mu}$ is.
- Spin cannot be independent of measurement.
- To avoid the inconsistency, we need to assume that μ depends on the choice of measurement direction. The value of μ depends on the experiment, i.e. it changes with the "context".

What is going on?

- There are a assumptions for the contradiction:
 - **µ** represents spin before measurement;
 - measurements "reveal" what $\pmb{\mu}$ is.
- Spin cannot be independent of measurement.
- To avoid the inconsistency, we need to assume that µ depends on the choice of measurement direction. The value of µ depends on the experiment, i.e. it changes with the "context".
- Contextuality is at the heart of Heisenberg's uncertainty principle: the measuring of a quantity affects the state of a system.

- Founders of QM were puzzled by the fundamental nature of non-commutativity.
- Bohr created (or borrowed) the concept of complementarity.
- We saw that this was the essence of contextuality: we cannot assign values to spin before measure, as measurement itself affects it.
- But contextuality can also be classical (we will see examples later).

Why probabilities?

- Let $\{P_i\}$ be a collection of propositions.
- How do we express a *rational* belief about such propositions if we are not sure about them?
 - Divisibility and comparability: the belief in a proposition is represented by a real number; this belief depends on what we know about this proposition
 - Logicality: beliefs should vary sensibly with the assessment of plausibilities, i.e. it should be consistent with logic (if P_1 is believed to be true, then $\neg P_1$ should be believed to be false).
 - Consistency: If a belief about a proposition can have different derivations, the outcomes must all be the same.

A (1) < A (1) < A (1) < A (1) </p>

Cox's theorem

• If the rationality assumptions are true, then belief can be measured with a "belief" function *p* (probability) with the following properties:

1 ≥
$$p(P_1) \ge 0$$

 $p(A \cup B) = p(A) + p(B)$, if $A \cap B = \emptyset$.

→ < Ξ → <</p>

Cox's theorem

• If the rationality assumptions are true, then belief can be measured with a "belief" function *p* (probability) with the following properties:

1
$$\geq p(P_1) \geq 0$$

p(A $\cup B$) $= p(A) + p(B)$, if $A \cap B = \emptyset$.

Cox's theorem is (finite) equivalent to Kolmogorov's axioms.
 (Ω, ℱ, p) with p: ℱ → [0,1] and

 $p(A \cup B) = p(A) + p(B)$, for $A, B \in \mathscr{F}$ and $A \cap B = \emptyset$

4 日 2 4 周 2 4 月 2 4 月

Properties

- A very powerful tool in probability theory are random variables.
- A random variable R : Ω → O is a measurable function in (Ω, ℱ, p) from the sample space into a (measurable) set of outcomes.
- Simple examples:
 - $\Omega = \{h, t\}, \ p(h) = p(t) = 1/2; \ \mathbf{R} : \Omega \to \{0, 1\}$
 - $A = \{1, 2, 3, 4, 5, 6\}, \ \Omega = A \times A, \ \mathbf{R} : \Omega \to \{2, 3, 4, \dots, 12\}, \ \mathbf{R}((a_1, a_2)) = a_1 + a_2, \ \text{where} \ (a_1, a_2) \in \Omega.$
- Random variables can be used to describe properties or experimental outcomes.
 - Their stochastic properties should match the properties of the experiment.

・ロト ・同ト ・ヨト ・ヨ

Contextuality comes from linguistics

- Consider *P* = "Aristotle knew very little philosophy."
 - Alice: *P* is true.
 - Bob: *P* is false.

→ < Ξ → <</p>

A different example

- P = "Aristotle knew very little philosophy."
- Alice: *P* is true.
 - Bob: P is false.

What is contextuality in physics?

- The most famous example of contextuality in physics was given by Kochen and Specker.
 - For a Hilbert space of dimension 3:
 - a set of projection operators, *P_i*, corresponding to true or false propositions about the physical system
 - sets of contexts where some of those P_i 's are compatible
 - no context-independent truth-values can be assigned to the outcomes of such measurements in all contexts
- In other words, we cannot assign a truth value to a P_i that is the same in one context as in another; the property P_i depends on the context.

A non-physical example of KS-type contextuality

- Let Alice, Carol, and Bob be three undergrads.
 - They are very competitive: whenever they are in the same room, they *always* disagree.
 - They are also very unpredictable: you never know whether they will repeat an answer to the same question.
- Let:
 - P₁ be the proposition "Alice answered yes to question Q."
 - P₂ be the proposition "Bob answered yes to question Q."
 - P₃ be the proposition "Carol answered yes to question Q."

A non-physical example of KS-type contextuality

- Let Alice, Carol, and Bob be three undergrads.
 - They are very competitive and unpredictable
- The corresponding r.v. for P_1 , P_2 , and P_3 are two-valued variables, either 1 (true) or 0 (false).
- Daniel goes to three classes, and observes $C_1 = (P_1, P_2)$, $C_2 = (P_1, P_3)$, and $C_3 = (P_2, P_3)$.
 - Let the following be true for each context:

$$\label{eq:P1+P2} \begin{split} {\bf P}_1 + {\bf P}_2 &= 1, \\ {\bf P}_1 + {\bf P}_3 &= 1, \\ {\bf P}_2 + {\bf P}_3 &= 1. \end{split}$$

• However, we can see that there is an inconsistency: even on the left, odd on the right.

Inconsistency comes from assuming non-contextuality

- Contradiction comes from assuming that truth-values are the same in each context.
 - Say $P_1 = 1$ and $P_2 = 0$ in the context C_1 , and $P_1 = 1$ and $P_3 = 0$ in context C_2 .
 - But we know that in C_3 either $P_2 = 0$ and $P_3 = 1$ or $P_2 = 1$ and $P_3 = 0$, i.e. one of them is not the same as in the other contexts.
- That is why we say that the random variables in this example are contextual: they cannot be the same.

Kochen-Specker

$$\begin{split} & \mathsf{V}_{0,0,0,1} + \mathsf{V}_{0,0,1,0} + \mathsf{V}_{1,1,0,0} + \mathsf{V}_{1,-1,0,0} = 1, \\ & \mathsf{V}_{0,0,0,1} + \mathsf{V}_{0,1,0,0} + \mathsf{V}_{1,0,1,0} + \mathsf{V}_{1,0,-1,0} = 1, \\ & \mathsf{V}_{1,-1,1,-1} + \mathsf{V}_{1,-1,-1,1} + \mathsf{V}_{1,1,0,0} + \mathsf{V}_{0,0,1,1} = 1, \\ & \mathsf{V}_{1,-1,1,-1} + \mathsf{V}_{1,1,1,1} + \mathsf{V}_{1,0,-1,0} + \mathsf{V}_{0,1,0,-1} = 1, \\ & \mathsf{V}_{0,0,1,0} + \mathsf{V}_{0,1,0,0} + \mathsf{V}_{1,0,0,1} + \mathsf{V}_{1,0,0,-1} = 1, \\ & \mathsf{V}_{1,-1,-1,1} + \mathsf{V}_{1,1,1,1} + \mathsf{V}_{1,0,0,-1} + \mathsf{V}_{0,1,-1,0} = 1, \\ & \mathsf{V}_{1,1,-1,1} + \mathsf{V}_{1,1,1,-1} + \mathsf{V}_{1,-1,0,0} + \mathsf{V}_{0,0,1,1} = 1, \\ & \mathsf{V}_{1,1,-1,1} + \mathsf{V}_{-1,1,1,1} + \mathsf{V}_{1,0,0,1} + \mathsf{V}_{0,1,0,-1} = 1, \\ & \mathsf{V}_{1,1,-1,1} + \mathsf{V}_{-1,1,1,1} + \mathsf{V}_{1,0,0,1} + \mathsf{V}_{0,1,0,-1} = 1. \end{split}$$

・日・ ・ヨ・ ・ヨ・

Another example: GHZ

< E

Entangled three-particle state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|+++\rangle - |---\rangle)$$

This state is the eigenvector of many different operators. E.g.

$$\begin{aligned} \hat{\sigma}_{x,A}\hat{\sigma}_{y,B}\hat{\sigma}_{y,C}|\psi\rangle &= \frac{1}{\sqrt{2}}\hat{\sigma}_{x,A}\hat{\sigma}_{y,B}\hat{\sigma}_{y,C}|+++\rangle - \frac{1}{\sqrt{2}}\hat{\sigma}_{x,A}\hat{\sigma}_{y,B}\hat{\sigma}_{y,C}|---\rangle \\ &= \frac{1}{\sqrt{2}}\hat{\sigma}_{x,A}\hat{\sigma}_{y,B}(i)|++-\rangle - \frac{1}{\sqrt{2}}\hat{\sigma}_{x,A}\hat{\sigma}_{y,B}(-i)|--+\rangle \\ &= \frac{1}{\sqrt{2}}\hat{\sigma}_{x,A}(i)(i)|+--\rangle - \frac{1}{\sqrt{2}}\hat{\sigma}_{x,A}(-i)(-i)|-++\rangle \\ &= \frac{1}{\sqrt{2}}(i)(i)|---\rangle - \frac{1}{\sqrt{2}}(-i)(-i)|+++\rangle \\ &= -\frac{1}{\sqrt{2}}|---\rangle + \frac{1}{\sqrt{2}}|+++\rangle = |\psi\rangle \end{aligned}$$

J. Acacio de Barros Quan

Quantum Formalism Outside of Physics

Entangled three-particle state.

In addition to

$$\hat{\sigma}_{x,A}\hat{\sigma}_{y,B}\hat{\sigma}_{y,C}|\psi\rangle = |\psi\rangle,$$

above, we have

$$\hat{\sigma}_{y,A}\hat{\sigma}_{x,B}\hat{\sigma}_{y,C}|\psi\rangle = |\psi\rangle,$$

$$\hat{\sigma}_{y,A}\hat{\sigma}_{y,B}\hat{\sigma}_{x,C}|\psi\rangle = |\psi\rangle.$$

But also

$$\begin{split} \hat{\sigma}_{x,A}\hat{\sigma}_{x,B}\hat{\sigma}_{x,C}|\psi\rangle &= \frac{1}{\sqrt{2}}\hat{\sigma}_{x,A}\hat{\sigma}_{x,B}\hat{\sigma}_{x,C}\left(|+++\rangle-|---\rangle\right)\\ &= -\frac{1}{\sqrt{2}}|+++\rangle+\frac{1}{\sqrt{2}}|---\rangle = -|\psi\rangle. \end{split}$$

What does it mean?

$$\hat{\sigma}_{x,A}\hat{\sigma}_{y,B}\hat{\sigma}_{y,C}|\psi\rangle = |\psi\rangle.$$

$\mathbf{X}_{A}(\omega)\mathbf{Y}_{B}(\omega)\mathbf{Y}_{C}(\omega) = 1$

• • = • • = •

For the examples shown.

$$\hat{\sigma}_{x,A}\hat{\sigma}_{y,B}\hat{\sigma}_{y,C}|\psi\rangle = |\psi\rangle,$$

$$\hat{\sigma}_{y,A}\hat{\sigma}_{x,B}\hat{\sigma}_{y,C}|\psi\rangle = |\psi\rangle,$$

$$\mathbf{X}_{A}(\omega)\mathbf{Y}_{B}(\omega)\mathbf{Y}_{C}(\omega) = 1$$

$$\mathbf{Y}_{A}(\omega)\mathbf{X}_{B}(\omega)\mathbf{Y}_{C}(\omega) = 1$$

$$\hat{\sigma}_{y,A}\hat{\sigma}_{y,B}\hat{\sigma}_{x,C}|\psi
angle=|\psi
angle,$$

$$\mathbf{Y}_{A}(\boldsymbol{\omega})\mathbf{Y}_{B}(\boldsymbol{\omega})\mathbf{X}_{C}(\boldsymbol{\omega})=1,$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\hat{\sigma}_{x,A}\hat{\sigma}_{x,B}\hat{\sigma}_{x,C}|\psi\rangle = -|\psi\rangle, \qquad \mathsf{X}_{A}(\omega)\mathsf{X}_{B}(\omega)\mathsf{X}_{C}(\omega) = -1.$

Again, big problem!

$$\mathbf{X}_{A}\mathbf{Y}_{B}\mathbf{Y}_{C} = 1$$
$$\mathbf{Y}_{A}\mathbf{X}_{B}\mathbf{Y}_{C} = 1$$
$$\mathbf{Y}_{A}\mathbf{Y}_{B}\mathbf{X}_{C} = 1$$

$$\begin{aligned} (\mathbf{X}_{A}\mathbf{Y}_{B}\mathbf{Y}_{C})(\mathbf{Y}_{A}\mathbf{X}_{B}\mathbf{Y}_{C})(\mathbf{Y}_{A}\mathbf{Y}_{B}\mathbf{X}_{C}) &= 1. \\ (\mathbf{X}_{A}\mathbf{X}_{B}\mathbf{X}_{C})(\mathbf{Y}_{A}^{2}\mathbf{Y}_{B}^{2}\mathbf{Y}_{C}^{2}) &= 1. \\ \mathbf{X}_{A}\mathbf{X}_{B}\mathbf{X}_{C} &= 1. \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Again, big problem!

 $\mathbf{X}_{A}\mathbf{Y}_{B}\mathbf{Y}_{C} = 1$ $\mathbf{Y}_{A}\mathbf{X}_{B}\mathbf{Y}_{C} = 1$ $\mathbf{Y}_{A}\mathbf{Y}_{B}\mathbf{X}_{C} = 1$

$$\begin{aligned} (\mathsf{X}_{A}\mathsf{Y}_{B}\mathsf{Y}_{C})(\mathsf{Y}_{A}\mathsf{X}_{B}\mathsf{Y}_{C})(\mathsf{Y}_{A}\mathsf{Y}_{B}\mathsf{X}_{C}) &= 1. \\ (\mathsf{X}_{A}\mathsf{X}_{B}\mathsf{X}_{C})(\mathsf{Y}_{A}^{2}\mathsf{Y}_{B}^{2}\mathsf{Y}_{C}^{2}) &= 1. \\ \mathsf{X}_{A}\mathsf{X}_{B}\mathsf{X}_{C} &= 1. \end{aligned}$$

But before

$$\mathbf{X}_{A}\mathbf{X}_{B}\mathbf{X}_{C} = -1!$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

How is it possible?

- The assumption that $\mathbf{Y}_{A}^{2} = 1$ is based on the idea that the random variable is the same in both experiments (i.e., there is a joint probability space for both experimental conditions).
- But **Y**_A, the outcome of a spin measurement by Alice, must depend on the choice of experimental setup, i.e., whether Bob and Carlos decide to measure $\hat{\mathbf{x}}$ -spin or $\hat{\mathbf{y}}$ -spin.
- But all experimenters, Alice, Bob, or Carlos, may decide at the last second whether they want to measure \hat{x} -spin or \hat{y} -spin.

Extension to non-perfect correlation

- Cases above were for perfect correlations: not a realistic assumption.
- For imperfect correlations, we need to use probabilities.
- But for non-contextual variables, logical entailments lead to probabilities satisfying certain inequalities.

An example with imperfect correlation

• Suppes-Zanotti inequality

 $-1 \leq \langle \textbf{A}\textbf{B} \rangle + \langle \textbf{A}\textbf{C} \rangle + \langle \textbf{B}\textbf{C} \rangle \leq 1 + 2\min\{\langle \textbf{A}\textbf{B} \rangle, \langle \textbf{A}\textbf{C} \rangle, \langle \textbf{B}\textbf{C} \rangle\},$

where A, B, and C are ± 1 -valued random variables.

• To see that this must be the case, we can examine all logical possibilities for each product:

$$(AB = 1\&AC = 1) \rightarrow BC = 1$$

 $(AB = 1\&AC = -1) \rightarrow BC = -1$
 $(AB = -1\&AC = 1) \rightarrow BC = -1$
 $(AB = -1\&AC = -1) \rightarrow BC = 1.$

• Since each line above add to numbers that are either -1 or 3, their convex combination must be greater than -1.

Imperfect correlation for GHZ

- For the GHZ example above, we have A, B, C, and D = ABC as our simplified set of random variables.
- Let us examine the following logical possibilities:

$$(A = 1\&B = 1\&C = 1) \rightarrow D = 1$$

 $(A = 1\&B = 1\&C = -1) \rightarrow D = -1$
 \vdots
 $(A = -1\&B = -1\&C = -1) \rightarrow D = -1.$

- $(A \equiv -1\&B \equiv -1\&C \equiv -1) \rightarrow D \equiv -1$
- A convex sum of all those possibilities imply that

$$-2 \le E(A) + E(B) + E(C) - E(D) \le 2$$

(and permutations of the - sign).

Those are necessary and sufficient conditions for existence of a joint.

Contextuallity in social sciences

• Common:

- semantics and pragmatics
- order effect in psychology
- perception

< ∃ >

Contextuallity in social sciences

• Common:

- semantics and pragmatics
- order effect in psychology
- perception
- Does quantum bring something new?

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・同ト ・ヨト ・ヨ

Outline

- What is non-classical about quantum mechanics?
 - Non-determinism
 - Nonlocality

2 Contextuality, quantum, and probabilities

Quantum Cognition

- Order Effect
- The conjunction paradox and the two-slit
- The prisoner's dilemma
- A neurophysiological model for quantum cognition.
- Beyond quantum cognition.

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

イロト イポト イヨト イヨト

What is order effect?

- It is well known in social sciences that order matter:
 - Two questions, A and B, cannot be asked simultaneously
 - We need to choose order: AB or BA?
 - Order matters

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

A (a) > (b)

Example of order effect: Clinton/Gore

- Consider the two questions:
 - A: Do you think Clinton is honest and trustworthy?
 - B: Do you think Gore is honest and trustworthy?
- Context 1: A first, then B in the context of A (Gore is in the comparative context)
 - A: 53% yes; B: 65% yes.
- Context 2: B first, then A in the context of B (Clinton is in the comparative context)
 - A: 59% yes; B: 76% yes

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition.

A quantum model for order effect

- From Busemeyer and Wang:
- Postulate 1: A person's belief about an object in question is represented by a state vector in a multidimensional feature space (a vector space)
- Postulate 2: A potential response to a question is represented by a subspace of the multidimensional feature space.
- Postulate 3: The probability of responding to an opinion question equals the squared length of the projection of the state vector onto the response subspace.
- Postulate 4: The updated belief state after deciding an answer to a question equals the normalized projection on the subspace representing the answer.

・ロト ・ 同ト ・ ヨト ・ ヨ

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Quantum model for Clinton/Gore

Feature space of 2-dim S is the mental state C_y and C_n are basis for Clinton G_y and G_n are basis for Gore

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Quantum model for Clinton/Gore

 C_y and C_n are basis for Clinton G_y and G_n are basis for Gore To satisfy the empirical data, we can have S (the respondent's belief concerning "whether Clinton is honest and trustworthy") as (.8367, .5477) in the Clinton Basis. S in the Gore basis (respondent's belief about "whether Gore is

honest and trustworthy'') is (.9789, .2043).

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Quantum model for Clinton/Gore

 C_y and C_n are basis for Clinton G_y and G_n are basis for Gore S = (.8367, .5477) in the Clinton Basis.

If we first ask Clinton, $p(C_y) = .7$ If we first ask Gore, $p(G_y) = .96$. In the comparative context, $p(C_y) = p(G_y) = .5$

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・同ト ・ヨト ・ヨ

The QQ equality

- The example above showed order effect
- But what does this mean quantum formalism is a good description of this?
- QQ (quantum question order model) equality is an interesting result.
- p(AyBn) + p(AnBy) = p(ByAn) + p(BnAy)
 - Not satisfied by most order effect models, but predicted by quantum
 - Can be tested experimentally.

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Test of QQ equality

For the Clinton Gore discussed before:

	Clinton–Gore	
	Gy	Gn
Су	0.4899	0.0447
Cn	0.1767	0.2886
	Gore-Clinton	
	Gy	Gn
Су	0.5625	0.0255
Cn	0.1991	0.2130
	Context effects	
	Gy	Gn
Су	-0.0726	0.0192
Cn	-0.0224	0.0756

 χ^2 (3) = 10.14, p < 0.05

$$q = -0.003$$
, χ^2 (1) = 0.01, $p = 0.91$

< ロ > (同 > (回 > (回 >))

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Comprehensive study of QQ equality

70 national representative surveys, most containing more than 1,000 participants per survey (similar to Clinton-Gore), and 2 laboratory studies that manipulated question order.

Order Effect

The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

Analysis of data

- Distributions of χ^2 statistics were analyzed for order effects and q values
- χ^2 distribution test for order effects produced a significant deviation from the null hypothesis (p = 0.0004)
- χ^2 distribution test for the *q* values indicates no significant deviation from the null hypothesis (p = 0.4625)
- Across all 66 datasets, there are significant question order effects, and the QQ equality holds

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

Outline

- What is non-classical about quantum mechanics?
 - Non-determinism
 - Nonlocality

2 Contextuality, quantum, and probabilities

Quantum Cognition

- Order Effect
- The conjunction paradox and the two-slit
- The prisoner's dilemma
- A neurophysiological model for quantum cognition.
- Beyond quantum cognition.

Order Effect **The conjunction paradox and the two-slit** The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

What is quantum in SS? An example

- Should I buy a plot of land given the uncertainties due to the presidential elections?
- If Republican, I decide it is better to buy.
- If Democrat, I also decide it is better to buy.
- Therefore, I should prefer buying over not buying, even if I don't know who will win (Savage's Sure-thing Principle)

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ 同 ト ・ ヨ ト ・ ヨ

More formally.

- Consider the following to be true:
 - If A, then X is preferred over Y.
 - If $\neg A$, then X is preferred over Y.

Order Effect **The conjunction paradox and the two-slit** The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

→ < Ξ → <</p>

- Consider the following to be true:
 - If A, then X is preferred over Y.
 - If $\neg A$, then X is preferred over Y.
- Savage's Sure Thing Principle: X should be preferred over Y if we don't know whether A or ¬A.

Order Effect **The conjunction paradox and the two-slit** The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Tversky and Shaffir. Choice under risk. Won/Lost version.

- Imagine that you have just played a game of chance that gave you a 50% chance to win \$200 and a 50% chance to lose \$100. The coin was tossed and you have [won \$200/lost \$100]. You are now offered a second identical gamble
 - 50% chance to win \$200 and
 - 50% chance to lose \$100.
- Would you?
 - X: accept the second gamble? (69% if won (A), 59% if lost (¬A)).
 - Y: reject the second gamble? (31% if won (A), 41% if lost $(\neg A)$).
- Clearly, X is preferred over Y regardless of condition A (won/lost).

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

Tversky and Shaffir. Choice under risk. Disjunctive version.

- Imagine that you have just played a game of chance that gave you a 50% chance to win \$200 and a 50% chance to lose \$100.
 Imagine that the coin has already been tossed but that you will not know whether you have won \$200 or lost \$100 until you make your decision concerning a second, identical gamble
 - 50% chance to win \$200 and
 - 50% chance to lose \$100.
- Would you?
 - X: accept the second gamble? (36%).
 - Y: reject the second gamble? (64%).

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

How to model with quantum?

Measurement of D_A or D_B affects D_1 and D_2 .

3.5

 $p(D_1|D_A) p(D_A) + p(D_1|D_B) p(D_B) < p(D_1)$

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ 同 ト ・ ヨ ト ・ ヨ

A possible model

Consider the state

$$|\psi
angle=c_{G}| ext{gamble}
angle+c_{NG}| ext{no gamble}
angle$$

as representing the

$$\psi_+ \approx 0.28 + e^{2.06i} 0.12; \quad \psi_- \approx 0.65 + e^{1.89i} 0.7.$$

- This fits the data.
- Problem: it only gives correct outcomes for "gamble" no "gamble" because it adds new parameters.

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

Outline

What is non-classical about quantum mechanics?

- Non-determinism
- Nonlocality

2 Contextuality, quantum, and probabilities

Quantum Cognition

- Order Effect
- The conjunction paradox and the two-slit
- The prisoner's dilemma
- A neurophysiological model for quantum cognition.
- Beyond quantum cognition.

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

◆□ > ◆□ > ◆豆 > ◆豆 >

Pay-off matrix for PD

You defect	You cooperate	
other defects		
other: 10	other: 25	
you:10	you: 5	
other cooperate		
other: 5	other: 20	
you: 25	you: 20	

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

イロト イポト イヨト イヨト

Empirical observation

Shafir-Tversky (1992): 97 (know to defect); 84 (known cooperate); 63 (unknown) Croson (1999): 67 (defect); 32 (cooperate); 30 (unknown) Li & Taplan (2002): 83(defect); 66(cooperate); 60 (unknown); Busemeyer et al. (2006): 91(defect); 84(cooperate); 66 (unknown); Average: 84(defect); 66(cooperate); 55 (unknown)

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

Beliefs and actions

• $\Omega = \{B_D A_D, B_D A_C, B_C A_D, B_C A_C\}$, where A refers to your action and B to your belief of what the other person will do, and D and C are defect and cooperate.

$$|\psi\rangle = \begin{bmatrix} \psi_{DD} \\ \psi_{DC} \\ \psi_{CD} \\ \psi_{CC} \end{bmatrix}$$

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

Beliefs and actions

$$|\psi
angle = \left[egin{array}{c} \psi_{DD} \ \psi_{DC} \ \psi_{CD} \ \psi_{CC} \ \psi_{CC} \end{array}
ight].$$

• The terms for the Hamiltonian are (μ_D is a parameter for defection and μ_C for collaboration)

$$H_D = \frac{1}{\sqrt{1 + \mu_D^2}} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \otimes \begin{bmatrix} \mu_D & 1 \\ 1 & -\mu_D \end{bmatrix}$$
$$H_C = \frac{1}{\sqrt{1 + \mu_C^2}} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} \mu_C & 1 \\ 1 & -\mu_C \end{bmatrix}$$

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

Meaning of parameters

- $H_D + H_C$ rotates the state to favor either defection or cooperation, depending on the parameters μ_D or μ_C , corresponding to gain if defect
- $\mu_D = u(x_{DD}x_{DC})$ and $\mu_C = u(x_{CD}x_{CC})$, where x_{ij} is the payoff you receive if your opponent takes action *i* and you take action *j*
- *u* is a monotonic utility function

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

(日) (同) (三) (三)

First term for the Hamiltonian

• The Hamiltonian is given by

$$H_{0} = H_{C} + H_{D} = \begin{bmatrix} \frac{\mu_{D}}{\sqrt{1+\mu_{D}^{2}}} & \frac{1}{\sqrt{1+\mu_{D}^{2}}} & 0 & 0\\ \frac{1}{\sqrt{1+\mu_{D}^{2}}} & -\frac{\mu_{D}}{\sqrt{1+\mu_{D}^{2}}} & 0 & 0\\ 0 & 0 & \frac{\mu_{C}}{\sqrt{1+\mu_{C}^{2}}} & \frac{1}{\sqrt{1+\mu_{C}^{2}}}\\ 0 & 0 & \frac{1}{\sqrt{1+\mu_{C}^{2}}} & -\frac{\mu_{C}}{\sqrt{1+\mu_{C}^{2}}} \end{bmatrix}$$

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ 同 ト ・ ヨ ト ・ ヨ ト

Dissonance

- H_0 is monotonic, and therefore does not violate STP
 - It is the "rational" part of the model
- Sometimes participants get new information that disagrees with their belief (when participants had to decide). So, *H* gets a correction

$$H_{NI} = \begin{bmatrix} -\frac{\gamma}{\sqrt{2}} & 0 & -\frac{\gamma}{\sqrt{2}} & 0\\ 0 & \frac{\gamma}{\sqrt{2}} & 0 & -\frac{\gamma}{\sqrt{2}}\\ -\frac{\gamma}{\sqrt{2}} & 0 & \frac{\gamma}{\sqrt{2}} & 0\\ 0 & -\frac{\gamma}{\sqrt{2}} & 0 & -\frac{\gamma}{\sqrt{2}} \end{bmatrix}$$

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・同ト ・ヨト ・ヨ

Final Hamiltonian

The final Hamiltonian is then

Order Effect The conjunction paradox and the two-slit **The prisoner's dilemma** A neurophysiological model for quantum cognition. Beyond quantum cognition.

Evolution

• Evolution is given by

$$U(t)=e^{-iHt},$$

and t is chosen to be $\pi/2$ (roughly the average time participants make a decision).

Initial state is

$$|\psi_0
angle = rac{1}{2} \left[egin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}
ight].$$

- Choosing parameters $\mu_D = \mu_C = 0.59$, $\gamma = 1.74$ produces (.68, .58, .37) whereas Tversky and Shaffir observed (.69, .59, .36), a good fit.
- Other parameter values match well the other experiments.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

Outline

1) What is non-classical about quantum mechanics?

- Non-determinism
- Nonlocality

2 Contextuality, quantum, and probabilities

Quantum Cognition

- Order Effect
- The conjunction paradox and the two-slit
- The prisoner's dilemma
- A neurophysiological model for quantum cognition.
- Beyond quantum cognition.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

4 日 2 4 周 2 4 月 2 4 月

Neurons all the way down?

- What scale should we use?
 - Down to the synapse level?
 - Neurons?
 - Collective behavior of neurons?
- For language processing, robustness and measurable macroscopic effects suggest a *large* number of neurons.
- Even for a large collection of neurons, we still have several options with respect to modeling.
 - Do we need detailed interactions between neurons? Are the shapes of the action potential relevant? Timing?
- Our goal is to reduce the number of features, yet retain a physical meaning.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Stimulus and response neurons

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

< ロ > < 同 > < 回 > < 回 >

Kuramoto Equations

• If no interaction,

$$O_i(t) = A_i \cos \varphi_i(t) = A_s \cos(\omega t),$$

$$\varphi_i=\omega_it+\delta_i,$$

and

$$\dot{\varphi}_i = \omega_i$$
.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Kuramoto Equations

• If no interaction,

$$O_i(t) = A_i \cos \varphi_i(t) = A_s \cos(\omega t),$$

$$\varphi_i=\omega_it+\delta_i,$$

and

$$\dot{\varphi}_i = \omega_i$$
.

• If we have a weak interaction, then

$$\dot{\varphi}_i = \omega_i - \sum_{j \neq i} A_{ij} \sin(\varphi_i - \varphi_j).$$

< A

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

SF STAT

The intuition

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

How to represent responses with few oscillators?

• Each neural oscillator's dynamics can be described by the phase, φ .

$$s(t) = A_s \cos \varphi_s(t) = A_s \cos(\omega t),$$

$$r_1(t) = A_1 \cos \varphi_{r_1}(t) = A \cos(\omega t + \delta \varphi),$$

$$r_2(t) = A_2 \cos \varphi_{r_2}(t) = A \cos(\omega t + \delta \varphi - \pi).$$

$$l_1 \equiv \left\langle (s(t) + r_1(t))^2 \right\rangle_t = A^2 (1 + \cos(\delta \varphi)).$$

$$l_2 \equiv \left\langle (s(t) + r_2(t))^2 \right\rangle_t = A^2 (1 - \cos(\delta \varphi)).$$

• A response is the balance between the strengths I_1 and I_2 ,

$$b = \frac{l_1 - l_2}{l_1 + l_2} = \cos(\delta \varphi)$$

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Encoding responses

• To encode responses, we need to modify

$$\dot{\varphi}_i = \omega_i - \sum_{j \neq i} A_{ij} \sin{(\varphi_i - \varphi_j)}$$

to include angles, i.e.,

$$\dot{\phi}_i = \omega_i + \sum A_{ij} \sin \left(\phi_j - \phi_i + \delta \varphi_{ij} \right).$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Encoding responses

• To encode responses, we need to modify

$$\dot{\varphi}_i = \omega_i - \sum_{j \neq i} A_{ij} \sin{(\varphi_i - \varphi_j)}$$

to include angles, i.e.,

$$\dot{\phi}_i = \omega_i + \sum A_{ij} \sin \left(\phi_j - \phi_i + \delta \varphi_{ij} \right).$$

$$\dot{\phi}_i = \omega_i + \sum \left[A_{ij}\sin\left(\phi_j - \phi_i\right) + B_{ij}\cos\left(\phi_j - \phi_i\right)
ight].$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reinforcing oscillators

• During reinforcement:

$$egin{aligned} \dot{\phi}_i &= & \omega_i + \sum \left[A_{ij} \sin \left(\phi_j - \phi_i
ight) + B_{ij} \cos \left(\phi_j - \phi_i
ight)
ight] \ &+ \mathcal{K}_0 \sin \left(\varphi_E - \varphi_i + \delta_{Ei}
ight). \ &rac{dk_{ij}^E}{dt} = arepsilon \left(\mathcal{K}_0
ight) \left[lpha \cos \left(\varphi_i - \varphi_j
ight) - k_{ij}
ight], \ &rac{dk_{ij}^l}{dt} = arepsilon \left(\mathcal{K}_0
ight) \left[lpha \sin \left(\varphi_i - \varphi_j
ight) - k_{ij}
ight]. \end{aligned}$$

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

- We represent a collection of neurons by the phase of their coherent oscillations.
- The phase difference between stimulus and response oscillators encode a continuum of responses.
- The dynamics comes from inhibitory as well as excitatory neuronal connections.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Response selection

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Conditional probabilities

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

STAT

Conditional probabilities

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

Oscillator interference

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

Some data

- For two stimulus oscillators, s_1 and s_2 , and two response oscillators, r_1 and r_2 .
- We select couplings between oscillators such that X is selected 60% of the time if s_1 is active, and 50% of the time if s_2 is active.
- By selecting the couplings between s_1 and s_2 , we can control the degree of synchronicity between then.
- If s₁ and s₂ are activated, we can have interference between s₁ and s₂.
- In such cases, X is selected less than 40% of the time.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ 同 ト ・ ヨ ト ・ ヨ

What the # *! do we know!?

- Propagation of oscillations on the cortex behave like a wave.
- Neural oscillator interference may be sensitive to context.
- Could quantum effects be simply contextual?

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

Outline

1) What is non-classical about quantum mechanics?

- Non-determinism
- Nonlocality

2 Contextuality, quantum, and probabilities

Quantum Cognition

- Order Effect
- The conjunction paradox and the two-slit
- The prisoner's dilemma
- A neurophysiological model for quantum cognition.
- Beyond quantum cognition.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

マロト マヨト マヨ

The simplest example

- Let X, Y, and Z be ± 1 random variables with zero expectation.
- Let

$$E(\mathbf{XY}) = E(\mathbf{YZ}) = E(\mathbf{XZ}) = \varepsilon.$$

- X, Y, and Z have a joint probability distribution if and only if $\varepsilon > -1/3$.
- This is the simplest example of a set of random variables without a joint probability.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

4 A > 4 > 4 - 4

Can it make sense?

- It is possible to give a (albeit contrived)example where X, Y, and Z could not have a joint.
- Let each of the correlations, E(XY), E(YZ), and E(XZ) correspond to different expert opinions which are inconsistent.
- Since the opinions are inconsistent, we don't have a joint.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

A not-so-simple oscillator model

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

But it is not quantum!

- In their quantum version, we would have observables in a Hilbert space corresponding to each random variable X, Y, and Z. Call them X̂, Ŷ, and Ẑ.
- To say that the correlations E(XY), E(YZ), and E(XZ) have a certain value means that we can observe any pair of X, Y, and Z, i.e. $[\hat{X}, \hat{Y}] = [\hat{X}, \hat{Z}] = [\hat{Z}, \hat{Y}] = 0$.
- But the fact that they commute means we can find a basis where all operators \hat{X} , \hat{Y} , and \hat{Z} are diagonal.
- Therefore, it is possible to measure simultaneously \hat{X} , \hat{Y} , and \hat{Z} , which means that there exists a joint probability distribution for X, Y, and Z.

Order Effect The conjunction paradox and the two-slit The prisoner's dilemma A neurophysiological model for quantum cognition. Beyond quantum cognition.

・ロト ・ 同ト ・ ヨト ・ ヨ

Overall Summary.

- People behave in ways that are not rational, violating Kolmogorov's axioms of probability.
- The quantum mechanical formalism has been proposed as a tool in cognitive modeling (quantum cognition).
- Such formalism brings with it lots of baggage not present in brain processes (most notably non-locality as well as no signaling).
- If we relax the formalism, and allow simpler quantum-like interference (without the Hilbert space) with oscillators, we obtain systems that are not quantum.

