Joint probabilities and quantum cognition

J. Acacio de Barros

Quantum Interactions Conference

June 14, 2012

J. Acacio de Barros (SFSU) [Probability and quantum cognition](#page-36-0) June 14, 2012 1 / 32

4 17 18

э

 $2Q$

- Many authors discuss quantum-like effects in the social sciences 1 , but where do those effects come from?
- We'll try to approach this question by focusing on the brain.

378–388, Khrennikov, A. (2009) Biosystems 95(3), 179–187, Khrennikov, A. (2011) Biosystems 105(3),

250–262.

 200

イロメ イ押メ イラメ イラメ

 1 E.g. Haven, E. December 2004 *Physica A: Statistical Mechanics and its Applications* 344(1–2),

^{142–145,} Khrennikov, A. and Haven, E. October 2009 Journal of Mathematical Psychology 53(5),

3 [Joint probabilities and oscillators](#page-30-0)

 \leftarrow \Box

э

 $2Q$

Outline

[Quantum-like behavior](#page-16-0)

[Joint probabilities and oscillators](#page-30-0)

 \leftarrow

 QQ

Size matters!

- What scale should we use?
	- Down to the synapse level?
	- **Neurons?**
	- **Collective behavior of neurons?**
- For language processing, robustness and measurable macroscopic effects suggest a *large* number of neurons.
- Even for a large collection of neurons, we still have several options with respect to modeling.
	- Do we need detailed interactions between neurons? Are the shapes of the action potential relevant? Timing?
- • Our goal is to reduce the number of features, yet retain a physical meaning.

Stimulus and response neurons

² Suppes, P., deBarros, J. A., and Oas, G. April 2012 *Journal of Mathematical Psychology* 56(2),

一番

 QQ

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

K ロ ▶ K 伊 ▶ K

The intuition

 \leftarrow \Box

つへへ

Kuramoto Equations

• If no interaction,

$$
O_i(t) = A_i \cos \varphi_i(t) = A_s \cos (\omega t),
$$

$$
\varphi_i = \omega_i t + \delta_i,
$$

and

$$
\dot{\varphi}_i = \omega_i.
$$

4日)

B

 $2Q$

How to represent responses with few oscillators?

• Each neural oscillator's dynamics can be described by the phase, φ .

$$
s(t) = A_s \cos \varphi_s(t) = A_s \cos (\omega t),
$$

\n
$$
r_1(t) = A_1 \cos \varphi_{r_1}(t) = A \cos (\omega t + \delta \varphi),
$$

\n
$$
r_2(t) = A_2 \cos \varphi_{r_2}(t) = A \cos (\omega t + \delta \varphi - \pi).
$$

\n
$$
I_1 \equiv \left\langle (s(t) + r_1(t))^2 \right\rangle_t = A^2 (1 + \cos (\delta \varphi)).
$$

\n
$$
I_2 \equiv \left\langle (s(t) + r_2(t))^2 \right\rangle_t = A^2 (1 - \cos (\delta \varphi)).
$$

• A response is the balance between the strengths I_1 and I_2 ,

$$
b = \frac{l_1 - l_2}{l_1 + l_2} = \cos(\delta \varphi)
$$

Encoding responses

• To encode responses, we need to modify

$$
\dot{\varphi}_i = \omega_i - \sum_{j \neq i} A_{ij} \sin (\varphi_i - \varphi_j)
$$

to include angles, i.e.,

$$
\dot{\phi}_i = \omega_i + \sum A_{ij} \sin (\phi_j - \phi_i + \delta \varphi_{ij}).
$$

 $\dot{\phi}_i = \omega_i + \sum \left[A_{ij} \sin \left(\phi_j - \phi_i \right) + B_{ij} \cos \left(\phi_j - \phi_i \right) \right] .$

4 0 8

B

 $2Q$

 \rightarrow \equiv \rightarrow

Encoding responses

• To encode responses, we need to modify

$$
\dot{\varphi}_i = \omega_i - \sum_{j \neq i} A_{ij} \sin (\varphi_i - \varphi_j)
$$

to include angles, i.e.,

$$
\dot{\phi}_i = \omega_i + \sum A_{ij} \sin (\phi_j - \phi_i + \delta \varphi_{ij}).
$$

$$
\dot{\phi}_i = \omega_i + \sum \left[A_{ij} \sin \left(\phi_j - \phi_i \right) + B_{ij} \cos \left(\phi_j - \phi_i \right) \right].
$$

 \leftarrow \Box

э

 $2Q$

Reinforcing oscillators

• During reinforcement:

$$
\dot{\phi}_i = \omega_i + \sum [A_{ij} \sin (\phi_j - \phi_i) + B_{ij} \cos (\phi_j - \phi_i)]
$$

$$
+ K_0 \sin (\varphi_E - \varphi_i + \delta_{Ei}).
$$

$$
\frac{dk_{ij}^E}{dt} = \epsilon (K_0) [\alpha \cos (\varphi_i - \varphi_j) - k_{ij}],
$$

$$
\frac{dk_{ij}^I}{dt} = \epsilon (K_0) [\alpha \sin (\varphi_i - \varphi_j) - k_{ij}^I].
$$

4 0 8

SECTION

 \mathbf{p} э B

 QQ

Response selection

Þ ×

 \prec ∍ \mathbf{p} . p 目

(ロ) (母)

 299

Conditional probabilities

 \leftarrow \Box

 \sim

∍

 299

э

Conditional probabilities

Þ

э

 \leftarrow \Box

つへへ

Recapping Part 1

- We represent a collection of neurons by the phase of their coherent oscillations.
- The dynamics comes from inhibitory as well as excitatory neuronal connections.
- The phase difference between stimulus and response oscillators encode a continuum of responses.

Outline

2 [Quantum-like behavior](#page-16-0)

[Joint probabilities and oscillators](#page-30-0)

4日)

∍

÷. \mathbf{p} $2Q$

What is quantum?

- Nondeterministic.
- Nonlocal.
- **•** Contextual.

4日)

×

Þ

 $2Q$

Determinism and predictability

- Classical systems can be completely unpredictable (e.g., three-body system, Sinai billiards).
- We cannot distinguish a deterministic from a stochastic dynamics.
- Should we care anyway?

つくい

Contextuallity

- Example: $[\hat{P}, \hat{Q}] \neq 0$.
- Not a big deal in social sciences.

4日)

 $2Q$

э

Contextuallity

- Example: $[\hat{P}, \hat{Q}] \neq 0$.
- Not a big deal in social sciences.

Example:

• Is a cheap date good or bad?

 \leftarrow

 QQ

∍

- Example: $[\hat{P}, \hat{Q}] \neq 0$.
- Not a big deal in social sciences.

Example:

- Is a cheap date good or bad?
- Rephrasing for this conference: do you think your female friends like cheap dates?

 \leftarrow

 QQ

- Example: $[\hat{P}, \hat{Q}] \neq 0$.
- Not a big deal in social sciences.

Example:

- Is a cheap date good or bad?
- Rephrasing for this conference: do you think your female friends like cheap dates?
- Did you know dates are on sale at the supermarket?

つくい

- Imagine two parallel sections: Alice and Bob.
- Alice asks supermarket question first.
- Because of Alice's choice, students at Bob's classroom answered yes to the cheap date question.
- Spooky?! Should we care?

つくい

[Quantum-like behavior](#page-24-0)

What about the brain?

- **·** Stochastic.
- **•** Contextual.
- Nonlocal?

4日)

÷ \mathbf{p} Þ

 $2Q$

What is quantum in SS? An example

- Should I buy a plot of land given the uncertainties due to the presidential elections?
- **If Republican, I decide it is better to buy.**
- **If Democrat.** I also decide it is better to buy.
- Therefore, I should prefer buying over not buying, even if I don't know who will win (Savage's Sure-thing Principle)
- Tversky and Shafir showed that people violate the Sure-thing Principle.

What is quantum in SS? An example

- Should I buy a plot of land given the uncertainties due to the presidential elections?
- **If Republican, I decide it is better to buy.**
- **If Democrat.** I also decide it is better to buy.
- Therefore, I should prefer buying over not buying, even if I don't know who will win (Savage's Sure-thing Principle)
- Tversky and Shafir showed that people violate the Sure-thing Principle.

[Quantum-like behavior](#page-27-0)

Oscillator interference

 \overline{m} \rightarrow \rightarrow

 299

- For two stimulus oscillators, s_1 and s_2 , and two response oscillators, r_1 and $r₂$.
- We select couplings between oscillators such that X is selected 60% of the time if s_1 is active, and 50% of the time if s_2 is active.
- By selecting the couplings between s_1 and s_2 , we can control the degree of synchronicity between then.
- If s₁ and s₂ are activated, we can have interference between s_1 and s₂.
- • In such cases, X is selected less than 40% of the time.

[Quantum-like behavior](#page-29-0)

What the $\# \$ *! do we know!?

- **•** Propagation of oscillations on the cortex behave like a wave.
- Neural oscillator interference may be sensitive to context.
- • Could quantum effects be simply contextual?

Outline

4日)

э

 \mathbf{p}

 QQ

The simplest example

• Let **X**, **Y**, and **Z** be ± 1 random variables with zero expectation. o Let

$$
E(XY) = E(YZ) = E(XZ) = \epsilon.
$$

- X, Y, and Z have a joint probability distribution if and only if ϵ > $-1/3$.
- This is the simplest example of a set of random variables without a joint probability.

- \bullet It is possible to give a (albeit contrived) example where **X**, **Y**, and **Z** could not have a joint.
- Let each of the correlations, $E(XY)$, $E(YZ)$, and $E(XZ)$ correspond to different expert opinions which are inconsistent.
- Since the opinions are inconsistent, we don't have a joint.

つくい

[Joint probabilities and oscillators](#page-33-0)

A not-so-simple oscillator model

But it is not quantum!

- In their quantum version, we would have observables in a Hilbert space corresponding to each random variable **X**, **Y**, and **Z**. Call them \hat{X} , \hat{Y} , and \hat{Z}
- To say that the correlations $E(XY)$, $E(YZ)$, and $E(XZ)$ have a certain value means that we can observe any pair of X , Y , and Z , i.e. $[\hat{X}, \hat{Y}] = [\hat{X}, \hat{Z}] = [\hat{Z}, \hat{Y}] = 0.$
- But the fact that they commute means we can find a basis where all operators \hat{X} . \hat{Y} , and \hat{Z} are diagonal.
- Therefore, it is possible to measure simultaneously \hat{X} , \hat{Y} , and \hat{Z} , which means that there exists a joint probability distribution for X, Y, and Z.

つのへ

Outline

[Quantum-like behavior](#page-16-0)

[Joint probabilities and oscillators](#page-30-0)

4 0 8

高 \sim ÷. \sim ∍

 $2Q$

 \rightarrow \pm

- A small number of phase oscillators may be used to model a continuum of responses (with results similar to SR theory).
- The model is simple enough such that we can easily understand physically how responses are selected via inhibitory and excitatory couplings.
- Interference may help us understand how complex neural networks have "quantum-like" dynamics.
- • Such quantum-like dynamics comes from the contextuallity of oscillators, and are not necessarily compatible with the structure of observables imposed by a quantum Hilbert space.