Information and Context

J. Acacio de Barros

School of Humanities and Liberal Studies San Francisco State University

IMBS, UC Irvine, 2019

▶ ∢ ≣

Information is a fundamental concept in Engineering

- Data science
- Communication theory
- Signal processing
- Compression algorithms

Why work with information?

Information is also an important concept in

- Physics
 - Statistical mechanics
 - In certain interpretations of quantum mechanics
 - Quantum computation
 - Considered by some physicists as part of the underlying fabric of reality:
 - Wheeler's it-from-bit
 - D'Arianno's derivation of QFT
- Philosophy
 - Language
 - Mind (IIT)
- Social sciences?

What is information?

- Information is a difficult to define concept.
- In physics and in engineering:
 - Claude Shannon's definition from theory of communications.
 - Requires a probability space (Ω, \mathcal{F}, p)

Information and context

- Kolmogorov's axioms for (Ω, \mathcal{F}, p)
 - $p: \mathcal{F} \rightarrow [0, 1]$

•
$$p(\Omega) = 1$$

- $p(A \cup B) = p(A) + p(B), A \cap B = \emptyset.$
- For some random variables, $\neg \exists (\Omega, \mathcal{F}, p)$
 - Contextuality
- How do we extend Shannon to those situations?

2 Contextuality in Physics and Psychology

3 Measuring Information

- Measuring Contextual Information
- Information and Negative Probabilities

4 Final Remarks

2 Contextuality in Physics and Psychology

3 Measuring Information

- Measuring Contextual Information
- Information and Negative Probabilities

4 Final Remarks

From linguistics

- A text or speech is considered contextual if the parts which are related to it are connected to its meaning.
- Consider the statement:
 - "Cheap dates are great" True or False?

From linguistics

- A text or speech is considered contextual if the parts which are related to it are connected to its meaning.
- Consider the statement:
 - "Cheap dates are great" True or False?
 - Context 1: conversation about social engagements
 - Context 2: discussion about the Phoenix dactylifera fruits.

Contextuality is about truth values

- A system of propositions is contextual (or exhibit contextuality) if truth values change with context.
- Seems ok in linguistics
 - But what about physics or psychology?
- We need a more measurable definition of contextuality.

Underpinnings for contextuality

- Start with probability space, (Ω, \mathcal{F}, p)
 - $\bullet \ \Omega \ \text{is a sample space}$
 - \mathcal{F} is a σ -algebra over Ω
 - p a function $p:\mathcal{F} \to [0,1]$
- Kolmogorov's Axioms
 - K1. $p(\Omega) = 1$
 - K2. $p(A \cup B) = p(A) + p(B)$ for $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$.

Representations as RV

- Outcomes of measurements can be modeled with RV.
- Random variable $\mathbf{R}: \Omega \rightarrow O$
 - *O* is the set of outcomes (e.g. $\{1, 2, 3, 4, 5, 6\}$, $\{-1, 1\}$, \mathbb{R} , etc)
 - R is measurable
- Example: $\Omega = \{(1, 1), (1, 2), \dots, (5, 6), (6, 6)\}, \mathcal{F} = 2^{\Omega}, p(\omega_i) = 1/36$

Not all observations can be modeled with RV? Or not all RV have a joint?

Let X, Y, and Z be ±1-valued RV (e.g. *O* = {−1, 1})
 Let

$$E(\mathbf{XY}) = E(\mathbf{XZ}) = E(\mathbf{YZ}) = -1.$$

• If it existed, we would reach a contradiction:

 $\mathbf{X} = 1 \rightarrow \mathbf{Y} = -1 \rightarrow \mathbf{Z} = 1 \rightarrow \mathbf{X} = -1$

Contradiction comes context-independency!

$E(\mathbf{XY}) = E(\mathbf{XZ}) = E(\mathbf{YZ}) = -1.$

- \bullet Contradiction: $\textbf{X}=1\rightarrow \textbf{Y}=-1\rightarrow \textbf{Z}=1\rightarrow \textbf{X}=-1$
- Observations cannot be contradictory: our model is the problem!
 - Assumption: X in experiment measuring E (XY) is the same as E (XZ)
- Consider:
- Context 1: X and Y
- Context 2: X and Z
- Context 3: Y and Z
- If we index variables (e.g. X₁, X₂, Y₁, Y₃, Z₂, and Z₃), no contradiction.

No need for perfect correlations

- For three X, Y, and Z that are ± 1 -valued, $-1 \leq XY + XZ + YZ$.
- Therefore

$$-1 \leq E(\mathbf{XY}) + E(\mathbf{XZ}) + E(\mathbf{YZ}) \leq 3.$$

- Necessary and sufficient conditions for the non-contextuality.
- For $E(\mathbf{X}) = E(\mathbf{Y}) = E(\mathbf{Z}) = 0$, $E(\mathbf{XY}) = E(\mathbf{XZ}) = E(\mathbf{YZ}) = \epsilon$, and $E(\mathbf{XYZ}) = \beta$, non-contextual if within the bounds of a polytope on (ϵ, β) with vertices:
 - (1,0), (0,-1), (0,1), and (-1/3,0).

2 Contextuality in Physics and Psychology

3 Measuring Information

- Measuring Contextual Information
- Information and Negative Probabilities

4 Final Remarks

Properties in physics

- Newtonian physics:
 - state of a system is a point in phase space (e.g. (\mathbf{p}, \mathbf{r}) for a single particle)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- properties are defined by subsets of the phase space
- properties are non-contextual
- Quantum physics:
 - states are vectors (or operators) in a Hilbert space
 - properties are given by Hermitian operators
 - properties may be contextual

- Binary properties are projection operators
 - for a w and a projector P̂, P̂w = w means w is an eigenvector with eigenvalue 1
 - we say **w** has property *P* associated to \hat{P} .
 - For a **v** orthogonal to **w**, \hat{P} **v** = 0; **v** is eigenvector with eigenvalue 0
 - **v** does not have property *P*.
 - Linear combinations $a\mathbf{w} + b\mathbf{v}$ are not an eigenvector of \hat{P}
 - We cannot tell it has property *P* (unless we measure it).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Once we measure P, state "collapses" to either \mathbf{w} or \mathbf{v} .

Example of quantum contextual properties

Four dimensional vector space \mathbb{R}^4 .

$$\begin{split} \hat{P}_{0,0,0,1} + \hat{P}_{0,0,1,0} + \hat{P}_{1,1,0,0} + \hat{P}_{1,-1,0,0} &= 1, \\ \hat{P}_{0,0,0,1} + \hat{P}_{0,1,0,0} + \hat{P}_{1,0,1,0} + \hat{P}_{1,0,-1,0} &= 1, \\ \hat{P}_{1,-1,1,-1} + \hat{P}_{1,-1,-1,1} + \hat{P}_{1,1,0,0} + \hat{P}_{0,0,1,1} &= 1, \\ \hat{P}_{1,-1,1,-1} + \hat{P}_{1,1,1,1} + \hat{P}_{1,0,-1,0} + \hat{P}_{0,1,0,-1} &= 1, \\ \hat{P}_{0,0,1,0} + \hat{P}_{0,1,0,0} + \hat{P}_{1,0,0,1} + \hat{P}_{1,0,0,-1} &= 1, \\ \hat{P}_{1,-1,-1,1} + \hat{P}_{1,1,1,1} + \hat{P}_{1,0,0,-1} + \hat{P}_{0,1,-1,0} &= 1, \\ \hat{P}_{1,1,-1,1} + \hat{P}_{1,1,1,-1} + \hat{P}_{1,-1,0,0} + \hat{P}_{0,0,1,1} &= 1, \\ \hat{P}_{1,1,-1,1} + \hat{P}_{-1,1,1,1} + \hat{P}_{1,0,0,1} + \hat{P}_{0,1,0,-1} &= 1, \\ \hat{P}_{1,1,1,-1} + \hat{P}_{-1,1,1,1} + \hat{P}_{1,0,0,1} + \hat{P}_{0,1,-1,0} &= 1. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Another contextual example in \mathbb{C}^4

- Alice: A, A'
- Bob: *B*, *B*'
- For non-contextuality

$$-2 \le E(\mathbf{AB}) + E(\mathbf{AB}') + E(\mathbf{A'B}) - E(\mathbf{A'B'}) \le 2$$
$$-2 \le E(\mathbf{AB}) + E(\mathbf{AB'}) - E(\mathbf{A'B}) + E(\mathbf{A'B'}) \le 2$$
$$-2 \le E(\mathbf{AB}) - E(\mathbf{AB'}) + E(\mathbf{A'B}) + E(\mathbf{A'B'}) \le 2$$
$$-2 \le -E(\mathbf{AB}) + E(\mathbf{AB'}) + E(\mathbf{A'B}) + E(\mathbf{A'B'}) \le 2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Quantum theory predicts $E(\mathbf{AB}) + E(\mathbf{AB'}) + E(\mathbf{A'B}) - E(\mathbf{A'B'}) < -2$
- Experimentally verified.

 Presents challenges to interpretations of theory and concept of property

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- It is purely quantum
 - Cannot be reproduced classically (not without cost)
- It is a resource in quantum computation

What about psychology?

- Order effect (explicit contextuality)
 - Clinton is honest and trustworthy? (non-comparative: 50%; comparative 57%)
 - Gore is honest and trustworthy? (non-comparative: 68%; comparative 60%)
- Cervantes and Dzhafarov (hidden contextuality)
 - Gerda, Troll; Beautiful, Unattractive
 - Gerda, Troll; Kind, Evil
 - Snow Queen, Old Finn Woman; Beautiful, Unattractive

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Snow Queen, Old Finn Woman; Kind, Evil
- But it is not like quantum contextuality!

Measuring Contextual Information nformation and Negative Probabilities

Outline

2 Contextuality in Physics and Psychology

3 Measuring Information

- Measuring Contextual Information
- Information and Negative Probabilities

4 Final Remarks

How to define and measure information?

Shannon's mathematical theory of communication

- Information is related to how surprising a source *s* is.
 - Quantified by $-\log p(s)$
 - E.g. for four equally surprising outcomes:

•
$$p(s_i) = 1/4$$

•
$$I = -\log_2 p(s_1) = 2$$

- Interpret as two bits of information.
- For a source represented by r.v. **X** with output $\{x_1, x_2, \ldots, x_N\}$, average amount of information is

$$H = -\sum_{i=1}^{N} p(x_i) \log_2 p(x_i).$$
 (1)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• *H* is known as Shannon's *entropy*.

Classical Entropy

In

$$H = -\sum_{i=1}^{N} p(x_i) \log_2 p(x_i), \qquad (2)$$

base 2 gives unit of information

- if 2, measure in bits.
- Shannon's coding theorem:
 - it is impossible to compress data such that the average number of bits per symbol is less than *H* without data loss
 - it is possible to create a code whose rate is arbitrarily close to ${\cal H}$
- Example:
 - ASCII 8 bits
 - 26 english letters require 4.7 binary bits in simple coding (no probability)
 - Morse code allows for 4.14 bits (average)

- A property *O* of a system *S* is a Hermitian operator \hat{O} on a Hilbert space \mathcal{H} .
 - Hermitian operators are called *observables*.
 - State is a vector in \mathcal{H} or by a density operator (a positive semidefinite observable with trace one).
 - vectors are pure states
 - density operator are mixed states.
 - E.g. the normalized vector w ∈ H is a pure state; the density operator is p̂_w = wω, where ω is the dual to w.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Density operators are more general.

Expectations from $\hat{\rho}$

- Three dimensional Hilbert space, basis \mathbf{e}_i , i = 1, 2, 3.
- In vector formalism, the expectation $\left\langle \hat{P}_i \right\rangle = \left| \hat{P}_i \mathbf{w} \right|^2$.
- For $\hat{\rho} = \mathbf{w}\underline{\omega}, \left\langle \hat{P}_i \right\rangle = \left| \hat{P}_i \mathbf{w} \right|^2 = \operatorname{Tr} \left(\hat{\rho} \hat{P}_i \right)$
- If we write $\hat{\rho}_M = c_1 \hat{\rho}_1 + c_2 \hat{\rho}_2$, the linearity of the trace gives us that $\langle \hat{P}_i \rangle = \text{Tr} \left(\hat{\rho}_M \hat{P}_i \right) = c_1 \text{Tr} \left(\hat{\rho}_1 \hat{P}_i \right) + c_2 \text{Tr} \left(\hat{\rho}_2 \hat{P}_i \right)$, or

$$\left\langle \hat{P}_{i} \right\rangle = c_{1} \left\langle \hat{P}_{i} \right\rangle_{1} + c_{2} \left\langle \hat{P}_{i} \right\rangle_{2}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• For any observable \hat{O} it follows that $\left\langle \hat{O} \right\rangle = \mathsf{Tr}\left(\hat{
ho} \hat{O}
ight).$

- The quantum system itself is a source, equivalent to **X** in classical communications theory.
- For a state $\hat{\rho}$, its von Neumann entropy [?] is defined as

$$S = -\mathrm{Tr}\left(\hat{\rho}\log\hat{\rho}\right). \tag{3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- E.g. for three binary properties, represented by basis \mathbf{e}_i , $i = 1, \dots, N$.
 - Observables $\hat{P}_i = \mathbf{e}_i \underline{\epsilon}_i$ have binary outcomes 0 or 1.
 - If the state is $\hat{\rho} = \sum_{i} c_i \mathbf{w}_i \underline{\omega}_i$, it follows that $S = -\sum c_i \log c_i$.

- Despite similarities, Shannon is not the same as von Neumann
 - If $\hat{\rho}$ was not a proper mixture of non-orthogonal projectors, Shannon would not follow.
- However, there exists a quantum coding theorem.
- For a general orthomodular lattice, natural measure of informational content is von Neumann's entropy
 - Shannon's entropy emerges as the measure for classical-like situations.

(日) (문) (문) (문) (문)

Measuring Contextual Information Information and Negative Probabilities

Outline

2 Contextuality in Physics and Psychology

3 Measuring Information

- Measuring Contextual Information
- Information and Negative Probabilities

4 Final Remarks

Two sources

- Consider **X** and **Y**, valued +1 or -1 with zero expectations.
- Shannon's entropy yields for each, separately,

$$H(\mathbf{X}) = -p_{X} \log p_{X} - p_{\overline{X}} \log p_{\overline{X}}$$
(4)
$$= -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} =$$

$$H(\mathbf{Y}) = 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• X and Y seem to have have, combined, two bits of information.

Two sources

- Consider X and Y, valued +1 or -1 with zero expectations.
- Shannon's entropy yields for each, separately,

$$H(\mathbf{X}) = -p_{X} \log p_{X} - p_{\overline{X}} \log p_{\overline{X}}$$
(4)
$$= -\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} =$$

$$H(\mathbf{Y}) = 1.$$

- X and Y seem to have have, combined, two bits of information.
- True only if uncorrelated.
 - E.g. E(XY) = 1 or E(XY) = -1 would reduce information.

How to compute information for two sources?

- Consider **X** and **Y** as a pair: outcomes are all pairs, namely xy, $x\overline{y}$, $\overline{x}y$, and \overline{xy} .
- Setting $E(XY) = \alpha$, it follows that

$$p_{xy} + p_{x\overline{y}} + p_{\overline{x}y} + p_{\overline{x}\overline{y}} = 1, \qquad (5)$$

$$p_{xy} + p_{x\overline{y}} - p_{\overline{x}y} - p_{\overline{x}\overline{y}} = 0, \qquad (6)$$

$$p_{xy} - p_{x\overline{y}} + p_{\overline{x}y} - p_{\overline{x}\overline{y}} = 0, \qquad (7)$$

$$p_{xy} - p_{x\overline{y}} - p_{\overline{x}y} + p_{\overline{x}\overline{y}} = \alpha.$$
(8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Solution is

$$p_{xy} = p_{\overline{xy}} = \frac{1}{4} (1 + \alpha), \qquad (9)$$
$$p_{\overline{x}y} = p_{\overline{x}y} = \frac{1}{4} (1 - \alpha), \qquad (10)$$

• Entropy:

$$\begin{split} H\left(\mathbf{X},\mathbf{Y}\right) &= -\frac{1}{4}\left(1+\alpha\right)\log\left(\frac{1}{4}\left(1+\alpha\right)\right) \\ &- \frac{1}{4}\left(1-\alpha\right)\log\left(\frac{1}{4}\left(1-\alpha\right)\right). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Information for two sources

Figure: Joint entropy of **X** and **Y** as a function of the correlation α .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 ○

Three variables

Consider ±1-valued random variables X, Y, and Z, zero expectation, correlations E (XY) = E (XZ) = E (YZ) = ε, E (XYZ) = β.

$$p_{xyz} + p_{xy\overline{z}} + p_{x\overline{y}z} + p_{\overline{x}yz} + p_{\overline{x}yz} + p_{\overline{x}y\overline{z}} + p_{\overline{x}y\overline{z}} + p_{\overline{x}y\overline{z}} = 1, \quad (11)$$

$$p_{xyz} + p_{xy\overline{z}} + p_{x\overline{y}z} - p_{\overline{x}yz} - p_{\overline{x}yz} - p_{\overline{x}y\overline{z}} + p_{x\overline{y}\overline{z}} - p_{\overline{x}y\overline{z}} = 0, \quad (12)$$

$$p_{xyz} + p_{xy\overline{z}} - p_{x\overline{y}z} + p_{\overline{x}yz} - p_{\overline{x}yz} + p_{\overline{x}y\overline{z}} - p_{\overline{x}y\overline{z}} - p_{\overline{x}y\overline{z}} = 0, \quad (13)$$

$$p_{xyz} - p_{xy\overline{z}} + p_{x\overline{y}z} + p_{\overline{x}yz} + p_{\overline{x}yz} - p_{\overline{x}y\overline{z}} - p_{\overline{x}y\overline{z}} - p_{\overline{x}y\overline{z}} = 0, \quad (14)$$

$$p_{xyz} + p_{xy\overline{z}} - p_{x\overline{y}z} - p_{\overline{x}yz} + p_{\overline{x}yz} - p_{\overline{x}y\overline{z}} - p_{\overline{x}y\overline{z}} + p_{\overline{x}y\overline{z}} = \epsilon, \quad (15)$$

$$p_{xyz} - p_{xy\overline{z}} + p_{\overline{x}\overline{y}z} - p_{\overline{x}yz} - p_{\overline{x}y\overline{z}} - p_{\overline{x}\overline{y}\overline{z}} + p_{\overline{x}\overline{y}\overline{z}} = \epsilon, \quad (16)$$

$$p_{xyz} - p_{xy\overline{z}} - p_{x\overline{y}\overline{z}} + p_{\overline{x}yz} - p_{\overline{x}y\overline{z}} + p_{\overline{x}\overline{y}\overline{z}} + p_{\overline{x}\overline{y}\overline{z}} = \epsilon, \quad (17)$$

$$p_{xyz} - p_{xy\overline{z}} - p_{x\overline{y}\overline{z}} - p_{\overline{x}yz} + p_{\overline{x}\overline{y}\overline{z}} + p_{\overline{x}\overline{y}\overline{z}} - p_{\overline{x}\overline{y}\overline{z}} = \epsilon, \quad (17)$$

Solution

Solution is

$$p_{xyz} = \frac{1}{8} (1 + \beta + 3\epsilon), \quad p_{xy\overline{z}} = p_{\overline{x}\overline{y}\overline{z}} = p_{\overline{x}yz} = \frac{1}{8} (1 - \beta - 3\epsilon)$$
(19)
$$p_{\overline{x}\overline{y}\overline{z}} = p_{\overline{x}\overline{y}\overline{z}} = p_{\overline{x}\overline{y}\overline{z}} = \frac{1}{8} (1 + \beta - 3\epsilon), \quad p_{\overline{x}\overline{y}\overline{z}} = \frac{1}{8} (1 - \beta + 3\epsilon).$$
(20)

- Some p's may be negative for certain values of ϵ and β .
 - Non-negative solutions correspond to non-contextual cases

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

• Negative solutions are contextual.

Non-contextual entropy

Figure: Entropy $H(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ for $E(\mathbf{XY}) = E(\mathbf{XZ}) = E(\mathbf{YZ}) = \epsilon$ and $E(\mathbf{XYZ}) = 0$ as a function of ϵ . The maximum of 3 bits occurs when $\epsilon = 0$.

(日) (월) (분) (분)

æ

What about contextual sources?

- Outside of $-1/3 \le \epsilon \le 1$, Shannon's entropy is not defined.
- But **X**, **Y**, and **Z** have informational content outside of the probability polytope.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• How do we measure information outside of the polytope?

What about contextual sources?

- Outside of $-1/3 \le \epsilon \le 1$, Shannon's entropy is not defined.
- But X, Y, and Z have informational content outside of the probability polytope.
- How do we measure information outside of the polytope?
- Going back to $\epsilon = -1$.
 - If we know X we know Y and Z, so 1 bit?
 - No. X in the context of Y cannot be the same as in the context of Z, so information content is more than one bit.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Variables are X_Y , X_Z , Y_X , Y_Z , Z_X , and Z_Y

Measuring Contextual Information Information and Negative Probabilities

Outline

2 Contextuality in Physics and Psychology

3 Measuring Information

- Measuring Contextual Information
- Information and Negative Probabilities

4 Final Remarks

- "Negative probabilities" were introduced by Dirac.
- Name *negative probabilities* may be misleading:
 - some probabilities of atomic events may be negative, but not all

- observable probabilities may not be negative.
- Perhaps better term is "signed probability".

Extending Shannon

- Let $(\Omega, \mathcal{F}, p^*)$ be a negative probability space.
- The extended entropy S_{NP} for p^* is

$$S_{NP} = -\sum_{\omega_i \in \Omega} |p^*(\omega_i)| \log_2 |p^*(\omega_i)|.$$
(21)

- The absolute value comes from using the expression $A = \sum_{\omega_i \in \Omega} |p^*(\omega_i)|$ as a measure of how contextual a probabilistic system is [?].
 - If A = 1, no contextuality, since $A = \sum_{\omega_i \in \Omega} p^*(\omega_i)$, which implies that p^* 's are non-negative.
 - If A > 1, then the system is contextual.
- S_{NP} is Shannon when p^{*} is non-negative.

S_{NP} for symmetric case

Figure: Surface plot of S_{NP} as a function of ϵ (horizontal axis) and β (vertical axis). Lighter regions correspond to less entropy, whereas darker regions to more entropy.

Cross section of S_{NP}

Figure: Cross section of S_{NP} as a function of ϵ and for $\beta = 0$. We see a local maxima at $\epsilon = 0$ and a global maxima at $\epsilon = -1$, where $S_{NP} = 4$.

・ロト ・四ト ・ヨト ・ヨト

æ

2 Contextuality in Physics and Psychology

3 Measuring Information

- Measuring Contextual Information
- Information and Negative Probabilities

4 Final Remarks

• Contextual informational in key in

- physics
- engineering
- Shannon and von Neumann provide measures
 - $\bullet\,$ von Neumann deals with contextual information, but requires ${\cal H}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- S_{NP} generalizes Shannon for some non-quantum contextual states
 - consistent with von Neumann's quantum inequalities

"I not only use all the brains I have, but all I can borrow" - Woodrow Wilson

 Patrick Suppes (Stanford); Gary Oas (Stanford); Pawel Kurzynski (Adam Mickiewicz); Federico Holik (La Plata); Carlos Montemayor (SFSU); John Perry (Stanford); Stephan Hartmann (LMU); Francisco Doria (UFRJ); Gregory Chaitin (UFRJ)

"I not only use all the brains I have, but all I can borrow" - Woodrow Wilson

 Patrick Suppes (Stanford); Gary Oas (Stanford); Pawel Kurzynski (Adam Mickiewicz); Federico Holik (La Plata); Carlos Montemayor (SFSU); John Perry (Stanford); Stephan Hartmann (LMU); Francisco Doria (UFRJ); Gregory Chaitin (UFRJ)

Thank you!!

<ロト <四ト <注入 <注下 <注下 <