Information and Context

J. Acacio de Barros

School of Humanities and Liberal Studies San Francisco State University

IMBS, UC Irvine, 2019

4 0 8

④ 骨 → ④ 手

э

∍

Why work with information?

• Information is a fundamental concept in Engineering

- **•** Data science
- Communication theory
- Signal processing
- Compression algorithms

4 m k

Why work with information?

Information is also an important concept in

- Physics
	- **Statistical mechanics**
	- In certain interpretations of quantum mechanics
	- Quantum computation
	- Considered by some physicists as part of the underlying fabric of reality:
		- Wheeler's it-from-bit
		- D'Arianno's derivation of QFT
- **•** Philosophy
	- Language
	- Mind (IIT)
- Social sciences?

What is information?

- Information is a difficult to define concept.
- In physics and in engineering:
	- Claude Shannon's definition from theory of communications.
	- Requires a probability space (Ω, \mathcal{F}, p)

Information and context

- **•** Kolmogorov's axioms for $(Ω, F, ρ)$
	- $p : \mathcal{F} \rightarrow [0,1]$

$$
\bullet\;\; p\left(\Omega\right)=1
$$

- $p(A \cup B) = p(A) + p(B)$, $A \cap B = \emptyset$.
- For some random variables, ¬∃ (Ω*,* F*,* p)
	- **•** Contextuality
- **How do we extend Shannon to those situations?**

2 [Contextuality in Physics and Psychology](#page-15-0)

3 [Measuring Information](#page-22-0)

- [Measuring Contextual Information](#page-29-0)
- [Information and Negative Probabilities](#page-40-0)

[Final Remarks](#page-45-0)

2 [Contextuality in Physics and Psychology](#page-15-0)

[Measuring Information](#page-22-0)

- [Measuring Contextual Information](#page-29-0)
- **•** [Information and Negative Probabilities](#page-40-0)

[Final Remarks](#page-45-0)

 \sim \sim

From linguistics

- A text or speech is considered contextual if the parts which are related to it are connected to its meaning.
- **Consider the statement:**
	- "Cheap dates are great" True or False?

4日)

From linguistics

- A text or speech is considered contextual if the parts which are related to it are connected to its meaning.
- Consider the statement:
	- "Cheap dates are great" True or False?
	- Context 1: conversation about social engagements
	- Context 2: discussion about the *Phoenix dactylifera* fruits.

Contextuality is about truth values

- A system of propositions is contextual (or exhibit contextuality) if truth values change with context.
- Seems ok in linguistics
	- But what about physics or psychology?
- We need a more measurable definition of contextuality.

Underpinnings for contextuality

- **•** Start with probability space, $(Ω, F, ρ)$
	- Ω is a sample space
	- \bullet *F* is a σ -algebra over Ω
	- p a function $p : \mathcal{F} \to [0, 1]$
- Kolmogorov's Axioms
	- K1. $p(\Omega) = 1$
	- K2. $p(A \cup B) = p(A) + p(B)$ for $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$.

Representations as RV

- Outcomes of measurements can be modeled with RV.
- **•** Random variable $\mathbf{R} : \Omega \to \mathcal{O}$
	- O is the set of outcomes (e.g. {1*,* 2*,* 3*,* 4*,* 5*,* 6}, {−1*,* 1}, R, etc)
	- **R** is measurable
- Example: $\Omega = \{(1,1), (1,2), \ldots, (5,6), (6,6)\}, \mathcal{F} = 2^{\Omega},$ $p(\omega_i) = 1/36$

4 17 18

Not all observations can be modeled with RV? Or not all RV have a joint?

- Let **X**, **Y**, and **Z** be ± 1 -valued RV (e.g. $O = \{-1, 1\}$)
- o Let

$$
E(XY) = E(XZ) = E(YZ) = -1.
$$

ο Νο (Ω, *F*, *p*) exists. • If it existed, we would reach a contradiction: $X = 1 \rightarrow Y = -1 \rightarrow Z = 1 \rightarrow X = -1$

Contradiction comes context-independency!

$E (XY) = E (XZ) = E (YZ) = -1.$

- Contradiction: **X** = 1 → **Y** = −1 → **Z** = 1 → **X** = −1
- Observations cannot be contradictory: our model is the problem!
	- Assumption: **X** in experiment measuring E (**XY**) is the same as E (**XZ**)
- **·** Consider:
- Context 1: X and Y
- Context 2: X and Z
- Context 3: Y and Z
- \bullet If we index variables (e.g. X_1 , X_2 , Y_1 , Y_3 , Z_2 , and Z_3), no contradiction.

No need for perfect correlations

- For three X , Y , and Z that are ± 1 -valued, $-1 < XY + XZ + YZ$.
- **o** Therefore

$$
-1 \leq E\left(\mathbf{XY}\right) + E\left(\mathbf{XZ}\right) + E\left(\mathbf{YZ}\right) \leq 3.
$$

- Necessary and sufficient conditions for the non-contextuality.
- For $E(X) = E(Y) = E(Z) = 0$, $E(XY) = E(XZ) = E(YZ) = \epsilon$, and $E(XYZ) = \beta$, non-contextual if within the bounds of a polytope on (ϵ, β) with vertices:
	- (1*,* 0), (0*,* −1), (0*,* 1), and (−1*/*3*,* 0).

2 [Contextuality in Physics and Psychology](#page-15-0)

[Measuring Information](#page-22-0)

- [Measuring Contextual Information](#page-29-0)
- **•** [Information and Negative Probabilities](#page-40-0)

[Final Remarks](#page-45-0)

 \sim \sim

Properties in physics

- Newtonian physics:
	- \bullet state of a system is a point in phase space (e.g. (\mathbf{p}, \mathbf{r}) for a single particle)

K ロ K K @ K K X B X X B X X B X

- properties are defined by subsets of the phase space
- properties are non-contextual
- Quantum physics:
	- states are vectors (or operators) in a Hilbert space
	- **•** properties are given by Hermitian operators
	- properties may be contextual
- Binary properties are projection operators
	- for a **w** and a projector \hat{P} , \hat{P} **w** = **w** means **w** is an eigenvector with eigenvalue 1
		- we say **w** has property P associated to \hat{P} .
	- \bullet For a **v** orthogonal to **w**, \hat{P} **v** $= 0$; **v** is eigenvector with eigenvalue 0
		- **v** does not have property P.
	- **Linear combinations aw** + b**v** are not an eigenvector of \hat{P}
		- We cannot tell it has property P (unless we measure it).

◆ロト → 御ト → 君ト → 君ト → 君一

 299

Once we measure P, state "collapses" to either **w** or **v**.

Four dimensional vector space \mathbb{R}^4 .

$$
\hat{P}_{0,0,0,1} + \hat{P}_{0,0,1,0} + \hat{P}_{1,1,0,0} + \hat{P}_{1,-1,0,0} = 1,
$$
\n
$$
\hat{P}_{0,0,0,1} + \hat{P}_{0,1,0,0} + \hat{P}_{1,0,1,0} + \hat{P}_{1,0,-1,0} = 1,
$$
\n
$$
\hat{P}_{1,-1,1,-1} + \hat{P}_{1,-1,-1,1} + \hat{P}_{1,1,0,0} + \hat{P}_{0,0,1,1} = 1,
$$
\n
$$
\hat{P}_{1,-1,1,-1} + \hat{P}_{1,1,1,1} + \hat{P}_{1,0,-1,0} + \hat{P}_{0,1,0,-1} = 1,
$$
\n
$$
\hat{P}_{0,0,1,0} + \hat{P}_{0,1,0,0} + \hat{P}_{1,0,0,1} + \hat{P}_{1,0,0,-1} = 1,
$$
\n
$$
\hat{P}_{1,-1,-1,1} + \hat{P}_{1,1,1,1} + \hat{P}_{1,0,0,-1} + \hat{P}_{0,1,-1,0} = 1,
$$
\n
$$
\hat{P}_{1,1,-1,1} + \hat{P}_{1,1,1,-1} + \hat{P}_{1,-1,0,0} + \hat{P}_{0,0,1,1} = 1,
$$
\n
$$
\hat{P}_{1,1,-1,1} + \hat{P}_{-1,1,1,1} + \hat{P}_{1,0,1,0} + \hat{P}_{0,1,0,-1} = 1,
$$
\n
$$
\hat{P}_{1,1,1,-1} + \hat{P}_{-1,1,1,1} + \hat{P}_{1,0,0,1} + \hat{P}_{0,1,-1,0} = 1.
$$

Another contextual example in \mathbb{C}^4

- Alice: A, A'
- Bob: B, B 0
- For non-contextuality

$$
-2 \le E(\mathbf{AB}) + E(\mathbf{AB}') + E(\mathbf{A}'\mathbf{B}) - E(\mathbf{A}'\mathbf{B}') \le 2
$$

\n
$$
-2 \le E(\mathbf{AB}) + E(\mathbf{AB}') - E(\mathbf{A}'\mathbf{B}) + E(\mathbf{A}'\mathbf{B}') \le 2
$$

\n
$$
-2 \le E(\mathbf{AB}) - E(\mathbf{AB}') + E(\mathbf{A}'\mathbf{B}) + E(\mathbf{A}'\mathbf{B}') \le 2
$$

\n
$$
-2 \le -E(\mathbf{AB}) + E(\mathbf{AB}') + E(\mathbf{A}'\mathbf{B}) + E(\mathbf{A}'\mathbf{B}') \le 2
$$

メロト メ御 ドメ 老 トメ 老 トリ (者)

- Quantum theory predicts $E(AB) + E(AB') + E(A'B) - E(A'B') < -2$
- **•** Experimentally verified.

• Presents challenges to interpretations of theory and concept of property

세미 시세 제품 시 제품 시 제품 시 시 품 시

- It is purely quantum
	- Cannot be reproduced classically (not without cost)
- It is a resource in quantum computation

What about psychology?

• Order effect (explicit contextuality)

- Clinton is honest and trustworthy? (non-comparative: 50% ; comparative 57%)
- Gore is honest and trustworthy? (non-comparative: 68% ; comparative 60%)
- Cervantes and Dzhafarov (hidden contextuality)
	- Gerda, Troll; Beautiful, Unattractive
	- Gerda, Troll; Kind, Evil
	- Snow Queen, Old Finn Woman; Beautiful, Unattractive

K ロ K K @ K K X B X X B X X B X

- Snow Queen, Old Finn Woman; Kind, Evil
- But it is not like quantum contextuality!

[Measuring Contextual Information](#page-29-0) [Information and Negative Probabilities](#page-40-0)

4日)

つくい

Outline

[What is contextuality?](#page-6-0)

2 [Contextuality in Physics and Psychology](#page-15-0)

3 [Measuring Information](#page-22-0)

- [Measuring Contextual Information](#page-29-0)
- **•** [Information and Negative Probabilities](#page-40-0)

[Final Remarks](#page-45-0)

How to define and measure information?

Shannon's mathematical theory of communication

- Information is related to how surprising a source s is.
	- Quantified by $-\log p(s)$
	- E.g. for four equally surprising outcomes:

$$
\bullet \ \ p(s_i)=1/4
$$

$$
\bullet \ \ I=-\log_2 p\left(s_1\right)=2
$$

- Interpret as two bits of information.
- For a source represented by r.v. **X** with output ${x_1, x_2, \ldots, x_N}$, average amount of information is

$$
H = -\sum_{i=1}^{N} p(x_i) \log_2 p(x_i).
$$
 (1)

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

 \bullet H is known as Shannon's entropy.

Classical Entropy

o In

$$
H=-\sum_{i=1}^N p(x_i)\log_2 p(x_i), \qquad (2)
$$

K ロ K K @ K K X 할 K K 할 K (할 K)

 299

base 2 gives unit of information

- if 2, measure in bits.
- Shannon's coding theorem:
	- \bullet it is impossible to compress data such that the average number of bits per symbol is less than H without data loss
	- it is possible to create a code whose rate is arbitrarily close to H
- Example:
	- ASCII 8 bits
	- 26 english letters require 4.7 binary bits in simple coding (no probability)
	- Morse code allows for 4.14 bits (average)
- A property O of a system S is a Hermitian operator \hat{O} on a Hilbert space H .
	- Hermitian operators are called *observables*.
	- State is a vector in H or by a density operator (a positive semidefinite observable with trace one).
		- vectors are pure states
		- density operator are mixed states.
	- **■** E.g. the normalized vector $w \in \mathcal{H}$ is a pure state; the density operator is $\hat{\rho}_w = \mathbf{w}\omega$, where ω is the dual to **w**.

メロト メ御い メ君 トメ 君 トッ 君

 299

• Density operators are more general.

Expectations from *ρ*ˆ

- Three dimensional Hilbert space, basis \mathbf{e}_i , $i = 1, 2, 3$.
- In vector formalism, the expectation $\left\langle \hat{P}_{i}\right\rangle =\left\vert \hat{P}_{i}\mathbf{w}\right\vert$ 2 .
- For $\hat{\rho} = \mathbf{w}\underline{\omega}$, $\left\langle \hat{P}_i \right\rangle = \left| \hat{P}_i \mathbf{w} \right|$ $\hat{P}^2 = \text{Tr} \left(\hat{\rho} \hat{P}_i \right)$
- **If** we write $\hat{\rho}_M = c_1 \hat{\rho}_1 + c_2 \hat{\rho}_2$, the linearity of the trace gives us that $\left<\hat{P}_i\right> = \text{Tr}\left(\hat{\rho}_M\hat{P}_i\right) = c_1\text{Tr}\left(\hat{\rho}_1\hat{P}_i\right) + c_2\text{Tr}\left(\hat{\rho}_2\hat{P}_i\right)$, or

$$
\left\langle \hat{P}_{i}\right\rangle =c_{1}\left\langle \hat{P}_{i}\right\rangle _{1}+c_{2}\left\langle \hat{P}_{i}\right\rangle _{2}
$$

K ロ K K 御 K K W B K W B K W B B

 $2Q$

For any observable \hat{O} it follows that $\big\langle \hat{O} \big\rangle = \text{Tr} \big(\hat{\rho} \hat{O} \big)$.

- The quantum system itself is a source, equivalent to **X** in classical communications theory.
- For a state *ρ*ˆ, its von Neumann entropy [**?**] is defined as

$$
S = -\text{Tr}\left(\hat{\rho}\log\hat{\rho}\right). \tag{3}
$$

K ロ ▶ 《 리 》 《 코 》 《 코 》 《 코 》 《 코 》 ◇ 9.0

- E.g. for three binary properties, represented by basis **e**ⁱ , $i = 1, \ldots, N$.
	- Observables $\hat{P}_i = \mathbf{e}_{i} \underline{\epsilon}_i$ have binary outcomes 0 or 1.
	- If the state is $\hat{\rho} = \sum_i c_i \mathbf{w}_i \underline{\omega}_i$, it follows that $S = -\sum c_i \log c_i$.
- Despite similarities, Shannon is not the same as von Neumann
	- \bullet If $\hat{\rho}$ was not a proper mixture of non-orthogonal projectors, Shannon would not follow.
- However, there exists a quantum coding theorem.
- For a general orthomodular lattice, natural measure of informational content is von Neumann's entropy
	- Shannon's entropy emerges as the measure for classical-like situations.

[Measuring Contextual Information](#page-29-0) [Information and Negative Probabilities](#page-40-0)

 \leftarrow

つくい

2 [Contextuality in Physics and Psychology](#page-15-0)

3 [Measuring Information](#page-22-0)

- [Measuring Contextual Information](#page-29-0)
- **•** [Information and Negative Probabilities](#page-40-0)

[Final Remarks](#page-45-0)

Two sources

- Consider **X** and **Y**, valued +1 or −1 with zero expectations.
- Shannon's entropy yields for each, separately,

$$
H(\mathbf{X}) = -p_x \log p_x - p_{\overline{x}} \log p_{\overline{x}}
$$

= $-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} =$

$$
H(\mathbf{Y}) = 1.
$$
 (4)

X and **Y** seem to have have, combined, two bits of information.

Two sources

- Consider **X** and **Y**, valued +1 or −1 with zero expectations.
- Shannon's entropy yields for each, separately,

$$
H(\mathbf{X}) = -p_x \log p_x - p_{\overline{x}} \log p_{\overline{x}}
$$

= $-\frac{1}{2} \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{2} =$

$$
H(\mathbf{Y}) = 1.
$$
 (4)

- **X** and **Y** seem to have have, combined, two bits of information.
- True only if uncorrelated.
	- **•** E.g. $E(XY) = 1$ or $E(XY) = -1$ would reduce information.

How to compute information for two sources?

- Consider **X** and **Y** as a pair: outcomes are all pairs, namely *xy*, $x\overline{y}$, $\overline{x}y$, and \overline{xy} .
- Setting $E(XY) = \alpha$, it follows that

$$
p_{xy}+p_{x\overline{y}}+p_{\overline{x}y}+p_{\overline{x}\overline{y}}=1, \qquad (5)
$$

$$
\rho_{xy}+\rho_{x\overline{y}}-\rho_{\overline{x}y}-\rho_{\overline{x}\overline{y}}=0, \qquad (6)
$$

$$
p_{xy}-p_{x\overline{y}}+p_{\overline{x}y}-p_{\overline{x}\overline{y}}=0, \hspace{1.5cm} (7)
$$

$$
\rho_{xy} - \rho_{x\overline{y}} - \rho_{\overline{x}y} + \rho_{\overline{x}\overline{y}} = \alpha.
$$
 (8)

(ロ) (御) (君) (君) (君) 君 のぬの

• Solution is

$$
\rho_{xy} = \rho_{\overline{xy}} = \frac{1}{4} (1 + \alpha),
$$
\n(9)
\n
$$
\rho_{\overline{x}y} = \rho_{\overline{x}y} = \frac{1}{4} (1 - \alpha),
$$
\n(10)

• Entropy:

$$
H(\mathbf{X}, \mathbf{Y}) = -\frac{1}{4} (1 + \alpha) \log \left(\frac{1}{4} (1 + \alpha) \right)
$$

$$
-\frac{1}{4} (1 - \alpha) \log \left(\frac{1}{4} (1 - \alpha) \right).
$$

K ロ X 《 汉 X X X X X X X X X X X X X X $2Q$

Information for two sources

Figure: Joint entropy of **X** and **Y** as a function of the correlation *α*.

★ ロ ▶ → 御 ▶ → 결 ▶ → 결 ▶ │ 결

Three variables

Consider ±1-valued random variables **X**, **Y**, and **Z**, zero expectation, correlations $E(XY) = E(XZ) = E(YZ) = \epsilon$, E (**XYZ**) = β .

$$
p_{xyz} + p_{xy\bar{z}} + p_{x\bar{y}z} + p_{\bar{x}yz} + p_{\bar{x}yz} + p_{\bar{x}yz} + p_{xy\bar{z}} + p_{xy\bar{z}} = 1, (11)
$$
\n
$$
p_{xyz} + p_{xy\bar{z}} + p_{x\bar{y}z} - p_{\bar{x}yz} - p_{\bar{x}yz} - p_{\bar{x}yz} + p_{xy\bar{z}} - p_{\bar{x}yz} = 0, (12)
$$
\n
$$
p_{xyz} + p_{xy\bar{z}} - p_{x\bar{y}z} + p_{\bar{x}yz} - p_{\bar{x}yz} + p_{\bar{x}yz} - p_{\bar{x}yz} - p_{\bar{x}yz} = 0, (13)
$$
\n
$$
p_{xyz} - p_{xy\bar{z}} + p_{x\bar{y}z} + p_{\bar{x}yz} + p_{\bar{x}yz} - p_{\bar{x}yz} - p_{\bar{x}yz} - p_{\bar{x}yz} = 0, (14)
$$
\n
$$
p_{xyz} + p_{xy\bar{z}} - p_{x\bar{y}z} - p_{\bar{x}yz} + p_{\bar{x}yz} - p_{\bar{x}yz} + p_{\bar{x}yz} = \epsilon, (15)
$$
\n
$$
p_{xyz} - p_{xy\bar{z}} + p_{x\bar{y}z} - p_{\bar{x}yz} + p_{\bar{x}yz} - p_{\bar{x}yz} + p_{\bar{x}yz} = \epsilon, (16)
$$
\n
$$
p_{xyz} - p_{xy\bar{z}} - p_{x\bar{y}z} + p_{\bar{x}yz} - p_{\bar{x}yz} + p_{\bar{x}yz} + p_{\bar{x}yz} = \epsilon, (17)
$$
\n
$$
p_{xyz} - p_{xy\bar{z}} - p_{\bar{x}yz} - p_{\bar{x}yz} + p_{\bar{x}yz} + p_{\bar{x}yz} - p_{\bar{x}yz} = \beta. (18)
$$

Solution

• Solution is

$$
\rho_{xyz} = \frac{1}{8} (1 + \beta + 3\epsilon), \ \rho_{xyz} = \rho_{xyz} = \rho_{\overline{xyz}} = \frac{1}{8} (1 - \beta - 3\epsilon)
$$
\n(19)
\n
$$
\rho_{\overline{xyz}} = \rho_{\overline{xyz}} = \rho_{x\overline{yz}} = \frac{1}{8} (1 + \beta - 3\epsilon), \ \rho_{\overline{xyz}} = \frac{1}{8} (1 - \beta + 3\epsilon).
$$
\n(20)

- **•** Some p's may be negative for certain values of ϵ and β .
	- Non-negative solutions correspond to non-contextual cases

メロト メ御い メ君 トメ 君 トッ 君

 $2Q$

• Negative solutions are contextual.

Non-contextual entropy

Figure: Entropy $H(X, Y, Z)$ for $E(XY) = E(XZ) = E(YZ) = \epsilon$ and $E (XYZ) = 0$ as a function of ϵ . The maximum of 3 bits occurs when $\epsilon = 0.$

メロト メタト メミト メミト

つくい

准

What about contextual sources?

- Outside of −1*/*3 ≤ ≤ 1, Shannon's entropy is not defined.
- But **X**, **Y**, and **Z** have informational content outside of the probability polytope.

• How do we measure information outside of the polytope?

What about contextual sources?

- Outside of −1*/*3 ≤ ≤ 1, Shannon's entropy is not defined.
- But **X**, **Y**, and **Z** have informational content outside of the probability polytope.
- How do we measure information outside of the polytope?
- Going back to $\epsilon = -1$.
	- If we know **X** we know **Y** and **Z**, so 1 bit?
	- No. **X** in the context of **Y** cannot be the same as in the context of **Z**, so information content is more than one bit.

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Variables are **XY**, **XZ**, **YX**, **YZ**, **ZX**, and **Z^Y**

[Measuring Contextual Information](#page-29-0) [Information and Negative Probabilities](#page-40-0)

4 17 18

つくい

Outline

[Contextuality in Physics and Psychology](#page-15-0)

3 [Measuring Information](#page-22-0)

- [Measuring Contextual Information](#page-29-0)
- [Information and Negative Probabilities](#page-40-0)

[Final Remarks](#page-45-0)

- "Negative probabilities" were introduced by Dirac.
- Name *negative probabilities* may be misleading:
	- some probabilities of atomic events may be negative, but not all

K ロ K K 優 K K 활 K K 활 K … 활

- observable probabilities may not be negative.
- Perhaps better term is "signed probability".

Extending Shannon

- Let $(\Omega, \mathcal{F}, p^*)$ be a negative probability space.
- The extended entropy S_{NP} for p^* is

$$
S_{NP} = -\sum_{\omega_i \in \Omega} |p^*(\omega_i)| \log_2 |p^*(\omega_i)|. \tag{21}
$$

K ロ K K @ K K X B X K B X X B .

- The absolute value comes from using the expression $A=\sum_{\omega_i\in\Omega}|{\pmb\rho}^*\left(\omega_i\right)|$ as a measure of how contextual a probabilistic system is [**?**].
	- If $A = 1$, no contextuality, since $A = \sum_{\omega_i \in \Omega} p^*(\omega_i)$, which implies that p^* 's are non-negative.
	- If $A > 1$, then the system is contextual.
- S_{NP} is Shannon when p^* is non-negative.

S_{NP} for symmetric case

Figure: Surface plot of S_{NP} as a function of ϵ (horizontal axis) and β (vertical axis). Lighter regions correspond to less entropy, whereas darker regions to more entropy.

Cross section of S_{NP}

Figure: Cross section of S_{NP} as a function of ϵ and for $\beta = 0$. We see a local maxima at $\epsilon = 0$ and a global maxima at $\epsilon = -1$, where $S_{NP} = 4$.

メロト メタト メミト メミト

つくい

准

2 [Contextuality in Physics and Psychology](#page-15-0)

[Measuring Information](#page-22-0)

- [Measuring Contextual Information](#page-29-0)
- **•** [Information and Negative Probabilities](#page-40-0)

4 [Final Remarks](#page-45-0)

 \leftarrow

Contextual informational in key in

- physics
- **e** engineering
- **•** Shannon and von Neumann provide measures
	- von Neumann deals with contextual information, but requires $\mathcal H$

(ロ) (御) (君) (君) (君) 君 のぬの

- \bullet S_{NP} generalizes Shannon for some non-quantum contextual states
	- consistent with von Neumann's quantum inequalities

"I not only use all the brains I have, but all I can borrow" - Woodrow Wilson

Patrick Suppes (Stanford); Gary Oas (Stanford); Pawel Kurzynski (Adam Mickiewicz); Federico Holik (La Plata); Carlos Montemayor (SFSU); John Perry (Stanford); Stephan Hartmann (LMU); Francisco Doria (UFRJ); Gregory Chaitin (UFRJ)

K ロ K K 御 K K W B K W B K W B B

"I not only use all the brains I have, but all I can borrow" - Woodrow Wilson

Patrick Suppes (Stanford); Gary Oas (Stanford); Pawel Kurzynski (Adam Mickiewicz); Federico Holik (La Plata); Carlos Montemayor (SFSU); John Perry (Stanford); Stephan Hartmann (LMU); Francisco Doria (UFRJ); Gregory Chaitin (UFRJ)

Thank you!!

K ロ K K d K K K X X R X X R X R R