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Abstract. In this paper we provide a simple random-variable exam-
ple of inconsistent information, and analyze it using a system of signed
probabilities inspired by quantum mechanics.

1 Introduction

In recent years the quantum-mechanical formalism has been used to model eco-
nomic and decision-making processes (see [1,2] and references therein). The suc-
cess of such models may originate from several related issues. First, the quantum
formalism leads to a propositional structure that does not conform to classical
logic [3]. Second, that quantum observables do not satisfy Kolmogorov’s axioms
of probability [4]. Third, that quantum mechanics describes experimental out-
comes that are highly contextual [5,6,7,8,9]. Such issues are connected because
the logic of quantum mechanics, represented by a a quantum lattice structure
[10], leads to upper probability distributions and thus to non-Kolmogorovian
measures [11,12,13], while contextuality leads the nonexistence of a joint proba-
bility distribution [14,15,16].

Both from a foundational and from a practical point of view, it is important
to ask which aspects of quantum mechanics are actually needed for social science
models. For instance, the Hilbert space formalism leads to non-standard logic
and probabilities, but the converse is not true: one cannot derive the Hilbert
space formalism solely from weaker axioms of probabilities or from quantum
lattices. Furthermore, the quantum mathematical structure yields non-trivial
results such as the impossibility of superluminal signaling with entangled states
[17]. This types of results are not necessary for a theory of social phenomena [16],
and we should ask what are the minimalistic mathematical structures suggested
by quantum mechanics that reproduce the relevant features of quantum-like
behavior.

In a previous article, we used reasonable neurophysiological assumptions to
created a neural-oscillator model of behavioral Stimulus-Response theory [18].
We then showed how to use such model to reproduce quantum-like behavior
[19]. Finally, in a subsequent article, we remarked that the same neural-oscillator
model could be used to represent a set of observables that could not correspond
to quantum mechanical observables [20]. These results suggest that one of the
main quantum features relevant to social modeling is contextuality, represented
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by a non-Kolmogorovian probability measure, and that imposing a quantum
formalism may be too limiting.

In this paper we try to provide a simple yet realizable case where quantum
decision-making models fail to properly describe. We start by showing an exam-
ple of such case, and then proving that it is not possible to model it by using
quantum interference. We than propose the use of non-standard measures to
represent certain decision-making problems as a possible move to incorporate
the main features present in the quantum formalism. We organize this paper in
the following way. First, we start with our simple model where expert judgments
lead to inconsistencies (see also [20]). Then, we approach this problem with stan-
dard Bayesian probabilistic methods. The complexity and arbirtrariness of such
methods motivate the use of non-standard statistics as an alternative. However,
instead of modifying Kolmogorov’s conjunction axiom, we suggest the use of
signed (or negative) probability distributions. We then show that the example
considered is significantly more treatable with signed probabilities than with
standard approaches. We end with some comments about signed probabilities
and their interpretations and possible uses.

2 Inconsistent Information

As mentioned, the use of the quantum formalism in the social sciences originates
from the observation that Kolmogorov’s axioms are violated in many situations
[1,2]. Such violations in decision-making seem to indicate a departure from a
rational view, and in particular to though-processes that may involve irrational
or contradictory reasoning, as is the case in non-monotonic reasoning. Thus,
when dealing with quantum-like social phenomena, we are frequently dealing
with some type of inconsistent information, usually arrived at as the end result
of some non-classical (or incorrect, to some) reasoning. In this section we examine
the case where inconsistency is present from the beginning.

Though in everyday life inconsistent information abounds, standard classical
logic has difficulties dealing with it. For instance, it is a well know fact that if
we start with two contradictory propositions, A and ¬A, then the logic becomes
trivial, in the sense that all formulas in such logic are theorems (i.e., if B is a
formula, then ¬B is also a formula, and both are theorems). To deal with such
difficulty, logicians have proposed modified logical systems, such as paraconsis-
tent logics [21]. Here, we will discuss how to deal with inconsistencies not from
a logical point of view, but instead from a probabilistic one.

Inconsistencies of expert judgments are often represented in the probability
literature by measures corresponding to the experts’ subjective beliefs [22]. It
is often argued that this subjective nature is necessary, as each expert makes
statements about outcomes that are, in principle, available to all experts, and
disagreements come not from sampling a certain probability space, but from
personal beliefs. For example, let us assume that two experts, Alice and Bob,
are examining whether to recommend the purchase of stocks in company X, and
each gives different recommendations. Such differences do not necessarily emerge
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only from the objective data available to both experts, but also from their own
interpretations of it (e.g, which information is relevant, what is the meaning of
different trends, etc). In some cases the inconsistencies are evident, as when Alice
gives advice at odds with Bob (say, Alice recommends buy, and Bob recommends
sell), and a decision maker would have to reconcile those differences1.

The above example provides a simple case of inconsistency. A more subtle
case is when the totality of experts have inconsistent beliefs but subgroups seem
to be consistent. For example, each expert, with a limited access to informa-
tion, may form, based on different contexts, fully formed and locally consistent
beliefs, without directly contradicting other experts (local level), but when we
take the totality of the information provided by all of them (global level) and
try to arrive at possible inferences we arrive at contradictions. Here we want to
create a simple random-variable model that incorporates expert judgments that
are locally consistent but globally inconsistent. This model, inspired quantum
entanglement, will be used to show the main features of signed probabilities as
applied to decision making.

Let us start with three ±1-valued random variables, X, Y, and Z, with
zero expectation. It is a well-known result that if such random variables have
correlations that are too strong then there is no joint probability distribution
[24], and therefore there can be no way to assign values to such variables that
are consistent with such correlations. To understand this, imagine the following
extreme case, representing the strongest possible negative correlations between
±1-valued random variables: E (XY) = E (YZ) = E (XZ) = −1. Imagine that
in a given trial we draw X = 1. From E (XY) = −1 it follows that Y = −1,
and from E (YZ) = −1 that Z = 1. But this is in clear contradiction with
E (XZ) = −1, which requires Z = −1. Of course, the problem is not that there
is a mathematical inconsistency, but that it is not possible to find a probabilistic
sample space for which the variables X, Y, and Z have such strong correlations.
Another way to think about this is that the the X measured together with Y is
not the same one as the X measured with Z, i.e., the values of X depend on the
context.

The above example posits a deterministic relationship between all random
variables, but the inconsistencies persist even when weaker correlations exist. In
fact, Suppes and Zanotti [24] proved that a joint probability distribution for X,
Y, and Z exists if and only if

−1 ≤ E (XY) + E (YZ) + E (XZ)

≤ 1 + 2min {E (XY) , E (YZ) , E (XZ)} . (1)

The above example violates inequality (1), and the non-deterministic correlations
E (XY) = E (YZ) = E (XZ) = −1/3 are the lowest possible values that allow
for the existence of a joint probability distribution.

1 We remark that here a quantum-like approach is impossible without additional con-
textual assumptions, as Alice and Bob’s variables (buy stocks or not) could be used
for superluminal communications [23].
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Now, letX,Y, and Z correspond to certain events, say outcomes a company’s
stocks. For example, X = 1 corresponds to an increase of the stock value of
company X in the following day, while X = −1 a decrease, and so on. Three
experts, Alice (A), Bob (B), and Carlos (C), have the following beliefs about
those stocks. Alice is an expert on companies X and Y , but knows little or
nothing about Z. Let us take the case where

EA (XY) = 0, (2)

EB (XZ) = −1

2
, (3)

EC (YZ) = −1, (4)

where the subscripts refer to the expectations for each of the experts. For such
case, the sum of the correlations is −1 1

2 , and no joint probability distribution
exists. This case is more interesting to consider that when all correlations are the
same, as no obvious symmetries exist between Alice, Bob, and Carlos. Since there
is no joint distribution, how can a rational decision-making agent decide what to
do when faced with the question of how to bet in the market? In particular, how
can she get information about the joint probability (and, in particular, about the
triple moment E (XYZ)) without having the joint? We will show below three
possible approaches: quantum, Bayesian, and signed probabilities.

3 Quantum Approach

We start with a comment about the quantum-like nature of correlations (2)-
(4). The random variables X, Y, and Z with correlations (2)-(4) cannot be
represented, in a straightforward way, by the quantum mechanical mathematical
formalism. This claim can be expressed in the form of a simple proposition.

Proposition 1. Let X̂, Ŷ , and Ẑ be three observables in a Hilbert space H with
eigenvalues ±1, and let them pairwise commute, and let the ±1-valued random
variable X, Y, and Z represent the outcomes of possible experiments performed
on a quantum system |ψ〉 ∈ H. Then, there exists a joint probability distribution
consistent with all the possible outcomes of X, Y, and Z.

Proof. Because X̂, Ŷ , and Ẑ are observables and they pairwise commute, it
follows that their combinations, X̂Ŷ , Ŷ Ẑ, X̂Ẑ, and X̂Ŷ Ẑ are also observables,
and they commute with each other. For instance,(

X̂Ŷ Ẑ
)†

= Ẑ†Ŷ †X̂† = X̂Ŷ Ẑ.

Furthermore,

[X̂Ŷ Ẑ, X̂] = [X̂Ŷ Ẑ, Ŷ ] = · · · = [X̂Ŷ Ẑ, X̂Ẑ] = 0.

Therefore, quantum mechanics implies that all three observables X̂, Ŷ , and Ẑ
can be simultaneously measured. Since this is true, for the same state |ψ〉 we
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can create a full data table with all three values of X, Y, and Z (i.e., no missing
values), which implies the existence of a joint.2

So, how would a quantum-like model of the triple be like? The above result de-
pends on the use of the same quantum state |ψ〉 throughout the many runs of
the experiment, and to circumvent it we would need to use different states for
the system. In other words, if we want to use a quantum formalism to describe
the correlations (2)-(4), |ψ〉 would have to be selected for each run, such that a
different state would be used when we measure X̂Ŷ , e.g. |ψ〉xy, than when we
measure X̂Ẑ, e.g. |ψ〉xz. Such changes in state could include additional correla-
tions between the variables. However, this quantum mechanical approach is not
only ad hoc, but does not address the question about the triple moment, as it is
not clear how to get it from the formalism.

In fact, the quantum approach above could be similarly implemented using
a contextual theory. For instance, Dzhafarov [25,26,27] proposes the use of an
extended probability space where different random variables (say, Xz and Xy)
are used, and where we then ask how similar they are to each other (for instance,
what is the value of P (Xz 6= Xy)). However, as with the quantum case, the
meaning given to P (X = 1) in our example does not fit with this model, as it
corresponds to the expectation of an increase in the stock value of company X
in the future, and the X that Alice is talking about is exactly the same one
for Bob and Carlos, as it corresponds to the increase in the objective value (in
the future) of a stock in the same company. Furthermore, as expected due to
its similar features, this approach has the same problem as the quantum one in
terms of dealing with the triple moment, but it has the advantage of making it
clearer what the problem is: the triple moment does not exist because we have
nine random variables instead of three, as we have three different contexts.

4 Bayesian Approach

In the example from Section 2 all correlations and expectations are given, but
we do not have the triple moment E (XYZ). Furthermore, since we do not
have a joint probability distribution, we cannot compute the range of values for
such moment based on the expert’s beliefs. But the question still remains as to
what would be our best bet given what we know, i.e., what is our best guess
for E (XYZ). There are many different ways to approach this problem, such
as paraconsistent logics, consensus reaching, or information revision to restore
consistency. Common to all those approaches is the complexity of how to resolve
the inconsistencies, often with the aid of ad hoc assumptions [22]. Here we briefly
sketch how one could have a Bayesian approach for this issue [28,29].

2 An attentive reader might be puzzled by our result above, as it seems to contradict
Bell’s use of three settings of detection apparatuses to prove his inequalities [5].
Though Bell used three settings, four observables were necessary, and they do not
all pairwise commute (for example, for the standard A, A′, B, and B′, [A,A′] 6= 0).
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In the Bayesian approach, the decision maker, Deanna (D), needs to access
what is the joint probability distribution from a set of expectations that are
conflicting. To set the notation, let us first look at the case when there is only
one expert. Let PA(x) = PA(X = x|δA) be the probability assigned to event x by
Alice conditioned on Alice’s knowledge δA, and let PD(x) = PD(X = x|δD) be
Deanna’s prior distribution, also conditioned on her knowledge δD. Furthermore,
let PA = PA (x) be a continuous random variable, PA ∈ [0, 1], such that its
outcome is PA (x). The idea behind PA is that consulting an expert is similar
to conducting an experiment where we sample the experts opinion by observing
a distribution function, and therefore we can talk about the probability that an
expert will give an answer for a specific sample point. Then, for this case, Bayes’s
theorem can be written as

P ′D (x|PA = PA (x)) =
PD (PA = PA (x))PD (x)

PD (PA = PA (x))
,

where P ′D (x|PA = PA (x)) is Deanna’s posterior distribution revised to take into
account the expert’s opinion. As is the case with Bayes’s theorem, the difficulty
lies on determining the likelihood function PD (PA). To do so, Deanna first needs
to assume what is the distributions for Alice. Notice that when we talk about
the likelihood function PD (PA), we are talking about Deanna’s probabilities
for a given function PA. For the simple case where x are the values of a ±1-
valued random variable X, an example could be a PA that can take the values
PA(X = 1) = 1/2 or PA (X = 1) = 1/4, and Deanna then assigns probabilities to
each one of those distributions. So, this likelihood function is, in a certain sense,
Deanna’s model of Alice, as it is what Deanna believes are the likelihoods of each
of Alice’s beliefs. For example, she can assume that Alice herself is Bayesian, and
a Bernoulli distribution would be adequate. In other words, she should have a
model of the experts. Such model of experts is akin to giving each expert a
certain measure of credibility, since an expert whose model doesn’t fit Deanna’s
would be assigned lower probability than an expert whose model fits.

The extension for our case of three experts and three random variables is
cumbersome but straightforward. For Alice, Bob, and Carlos, Deanna needs to
have a model for each one of them, based on her prior knowledge about X, Y,
and Z, as well as Alice, Bob, and Carlos. Following Morris [28], we construct a
set E consisting of our three experts joint priors:

E = {PA (x, y) , PB (y, z) , PC (x, z)} .

Deanna’s is now faced with the problem of determining the posterior P ′D (x|E) ,
using Bayes’s theorem, given her new knowledge of the expert’s priors.

In a Bayesian approach, the decision maker should start with a prior belief
on the stocks of X, Y , and Z, based on her knowledge. Suppose Deanna has no
knowledge about X, Y , and Z, and therefore assigns no correlations between
their stocks as her prior distribution. Let us use the following notation for the
probabilities of each atom: pxyz = P (X = +1,Y = +1,Z = +1),
pxyz = P (X = +1,Y = +1,Z = −1),pxyz = P (X = −1,Y = +1,Z = −1), and
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so on. Then Deanna’s prior probabilities for the atoms are

pDxyz = pDxyz = · · · = pDxyz =
1

16
,

where the superscript D refers to Deanna. Furthermore, when reasoning about
the likelihood function, Deanna asks what would be the probable distribution
of responses of Alice if somehow she (Deanna) could see the future and find
out that E (XY ) = −1. For such case, it would be reasonable for Alice to find
it more probable to have, say, xy than xy. So, in terms of the correlation εA,
Deanna could assign the following likelihood function:

PD (εA|xy) = PD (εA|xy) =
1

4
(1− εA)2 , (5)

PD (εA|xy) = PD (εA|xy) = 1− 1

4
(1− εA)2 , (6)

where the minus sign represents the negative, i.e. pAxy· = pxy· =
1
4 (1 + εA) and

pxy· = pxy· =
1
4 (1− εA). So, Deanna’s posterior, once she knows that Alice

thought the correlation to be zero (cf. (2)), constitutes, as we mentioned above,
an experiment. To illustrate the computation, we compute below the value of
p′xyz. From Bayes’s theorem

pD|Axyz = k

[
1− 1

4 (1− εA)
2
]

1
8[

1− 1
4 (1− εA)

2
]

1
8 +

[
1
4 (1− εA)

2
]

1
8

= k

[
1− 1

4
(1− εA)2

]
=

3

16
,

where the normalization constant k is given by

k−1 =

[
1− 1

4
(1− εA)2

]
1

8
+

[
1

4
(1− εA)2

]
1

8
+

[
1

4
(1− εA)2

]
1

8

+

[
1− 1

4
(1− εA)2

]
1

8
+

[
1

4
(1− εA)2

]
1

8
+

[
1

4
(1− εA)2

]
1

8

+

[
1− 1

4
(1− εA)2

]
1

8
+

[
1− 1

4
(1− εA)2

]
1

8
,

and we use the notation pD|A to explicitly indicate that this is Deanna’s posterior
probability informed by Alice’s expectation. Similarly, we have

p
D|A
xyz = p

D|A
xyz = p

D|A
xyz = p

D|A
xyz =

1

16
,

and
pD|Axyz = p

D|A
xyz = p

D|A
xyz = p

D|A
xyz =

3

16
.
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If we apply Bayes’s theorem twice more, to take into account Bob’s and Carlos’s
expert opinions from (3) and (4), using likelihood functions similar to the one
above, we compute the following posterior

pD|ABCxyz = p
D|ABC
xyz = p

D|ABC
xyz = p

D|ABC
xyz = 0,

p
D|ABC
xyz = p

D|ABC
xyz =

7

68
,

and
p
D|ABC
xyz = p

D|ABC
xyz =

27

68
.

Finally, from the joint, we can compute all the moments, including the triple
moment E (XYZ) = 0. In fact, if we compute Deanna’s posterior distribution
for any values of the correlations εA, εB , and εC , we obtain the same triple
moment, as it was encoded in Deanna’s prior distribution.

We emphasize at this point that the value for the triple moment comes out
of not only of Deanna’s prior distribution, but also from her model of what an
expert behavior is. For instance, the zero probabilities of pD|ABCxyz , . . . , p

D|ABC
xyz

are a consequence of (5) and (6). So, the Bayesian approach, though providing
a proper distribution for the atoms, does not in any way reflect the uncertainty
of the inference.

5 Signed Probabilities

We now want to see how we can use signed probabilities to approach the same
problem as before. It seems that the first person to seriously consider using
signed probabilities was Dirac in his Bakerian Lectures on the physical inter-
pretation of relativistic quantum mechanics [30]. Ever since, many physicists,
most notably Feynman [31], tried to use them, with limited success, to describe
physical processes (see [32] or [33] and references therein). The main problem
with signed (or negative) probabilities is its lack of a clear interpretation, which
limits its use as a purely computational tool. But, concluded Feynman, even as a
computation tool, signed probabilities seem to have no use. It is the goal of this
section to show that, at least for some social phenomena, signed probabilities
can be useful.

Assuming the existence of a joint probability distribution, we can determine
the probability for each atom. Then, we have the following equations for the
atoms.

pxyz + pxyz + pxyz + pxyz + pxyz + pxyz + pxyz + pxyz = 1, (7)

pxyz + pxyz + pxyz + pxyz − pxyz − pxyz − pxyz − pxyz = 0, (8)

pxyz + pxyz − pxyz + pxyz − pxyz + pxyz − pxyz − pxyz = 0, (9)

pxyz + pxyz + pxyz − pxyz − pxyz − pxyz + pxyz − pxyz = 0, (10)

8



5. SIGNED PROBABILITIES

pxyz − pxyz − pxyz + pxyz − pxyz − pxyz + pxyz + pxyz = 0, (11)

pxyz − pxyz + pxyz − pxyz − pxyz + pxyz − pxyz + pxyz = −
1

2
, (12)

pxyz + pxyz − pxyz − pxyz + pxyz − pxyz − pxyz + pxyz = −1, (13)

where equation (7) comes from the fact that all probabilities must sum to one,
equations (8)-(10) from the zero expectations, and equations (11)-(13) from the
pairwise correlations. Of course, this problem is underdetermined, as we have
seven equations and eight unknowns. A general solution to it is

pxyz = −pxyz = −1

8
− δ,

pxyz = pxyz =
3

16
,

pxyz = pxyz =
5

16
,

pxyz = −pxyz = −δ,

where δ is a real number. It is is immediate from the above equations that for
any value of δ the probabilities are negative, as expected. First, we notice that
we can use the joint probability distribution to compute the expectation of the
triple moment, which is

E(XYZ) = pxyz − pxyz − pxyz − pxyz + pxyz + pxyz + pxyz − pxyz

= −1

8
− δ − 1

8
− δ − 3

16
− 5

16
− δ + 3

16
+

5

16
− δ

= −1

4
− 4δ.

Since −1 ≤ E (XYZ) ≤ −1, it follows that −1 1
4 ≤ δ ≤ 3

4 . Of course, δ is
not determined by the lower moments, as we should expect, but we can impose
further constraints. For instance, let us now define the total negative mass as

M− = −1

2

∑
i

(pi − |pi|) ,

where pi, i ∈ {xyx, xyz, · · · , xyz}, is the probability for the atoms. Intuitively,
M− is a measure of how a given negative joint probability distribution departs
from a Kolmogorovian distribution. Therefore, if we want our distribution to be
as close as a classical one, we should minimize the negative mass M− . In the
context of our problem, we could think of minimizing M− as trying to get as
close as possible to a hypothetical consistent measure of beliefs based on the
conclusions that experts would reach if they were able to analyze all possible
information (including the opinion of other experts).

So, to minimize M−, we focus only on the terms that contribute to it: the
negative ones. To do so, let us split the problem into several different sections.
Let us start with δ ≥ 0, which gives

M−δ≥0 = −1

8
− 2δ,
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having a minimum of − 1
8 when δ = 0. For −1/8 ≤ δ < 0,

M−− 1
8≤δ<0

= δ − 1

8
+ δ = −1

8
,

which is a constant value. Finally, for δ < −1/8, the mass for the negative terms
is given by

M−
δ<− 1

8

=
1

8
− 2δ.

Therefore, negative mass is minimized when δ is in the following range

−1

8
≤ δ ≤ 0.

Now, going back to the triple correlation, we see that by imposing a minimization
of the negative mass we restrict its values to the following range:

−1

4
≤ E (XYZ) ≤ 1

2
.

But equations (7)-(13) and the fact that the random variables are ±1-valued
allow any correlation between −1 and 1, and we see that the minimization of
the negative mass offers further constraints to a decision maker. Notice that the
interval given is consistent with the value predicted by the Bayesian model.

6 Conclusions

The use of the quantum mechanical formalism has been successfully done in
many distinct examples in the social sciences. However, one of the questions we
raised was whether some minimalist versions of the quantum formalism which
do not include a full version of Hilbert spaces and observables could be relevant.
In this paper we extended the simple example modeled with neural oscillators
in [20] to a different case where each random variable could be interpreted as
outcomes of a market, and where the inconsistencies between the correlations
could be interpreted as inconsistencies between experts’ beliefs. Such inconsis-
tencies result in the impossibility to define a standard probability measure that
allows the decision-maker to select an expectation for the triple moment. Using
signed probabilities inspired by quantum mechanics, we showed that a (non-
Kolmogorovian) joint probability distribution could be computed. We then de-
fined the negative mass of such distribution, and interpreted it as a departure
from a classical framework. By minimizing the negative mass, we showed that
the triple moment had extra constraints that did not come from the marginal
distributions. We then proposed that signed probabilities could be used as a
normative model for decision making based on inconsistent beliefs.

As we briefly discussed in Section 4, a Bayesian approach provides a way
to make decisions based on the same set of inconsistent beliefs. However, the
Bayesian approach requires not only a prior distribution, but also a model of the
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expert’s opinions by the decision maker. As such, the Bayesian model constructed
here gives a triple moment that is consistent with the signed probability bounds.
However, we do emphasize that the signed probability approach can be computed
much more directly, without any additional assumptions, and could provide a
fast way to estimate possible bounds on rational decisions.
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