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In this work we discuss a formal way of dealing with
properties of contextual systems. Our approach is to
assume that properties describing the same physical
quantity, but belonging to different measurement
contexts, are indistinguishable in a strong sense. To
construct the formal theoretical structure, we develop
a description using quasi-set theory, which is a set-
theoretical framework built to describe collections of
elements that violate Leibnitz’s principle of identity
of indiscernibles. This allows us to consider a new
ontology in order to study properties of quantum
systems.

1. Introduction
The concept of a property of a quantum system is hard
to define consistently. For instance, in a famous paper
[22], Kochen and Specker (KS) showed that attempting
to assign truth values to a quantum property [30,37], as
predicted by the algebra of observables in a Hilbert space,
may result in logical contradictions unless we assume
that properties depend on which other properties are
being simultaneously observed with it. This dependency
is what is known in the literature as contextuality,
reflecting the idea that properties are context-dependent
—context being defined by the other simultaneously
observed quantities. Quantum contextuality creates the
difficulty that the value of a property becomes dependent
on the observer’s choice of what context to measure it in,
i.e. with which other properties, and not with an intrinsic
characteristic of the measured quantum system.
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The contextual dependency of properties of quantum particles seems to be an essential aspect
of the microscopic world. It is related not only to the Kochen-Specker apparent paradox above
mentioned, but also to Bell’s proof of the incompatibility of quantum predictions with local-
realism [1]. It is also an important resource in quantum computation [36], and perhaps the
main reason why quantum computers outperform their classical counterparts [19]. Thus, it is
not surprising that extensive research in contextuality has happened in recent decades, with
entire conferences devoted to it (such as the Quantum Contextuality in Quantum Mechanics and
Beyond workshop in Prague, or the Winer Memorial Lectures at Purdue University).

This paper examines contextuality in physics by extending a point of view put forth on
references [9] and [27], namely that quantum indistinguishability is connected to contextuality.
In [9], we argued that the indistinguishability of particles, expressed mathematically by a set-
theoretical construct where the law of identity of indiscernibles is violated, invalidates the
contradiction argument put forth by Kochen and Specker (KS) in [22] (see Section 2 for a sketch
of the KS argument). In their paper, KS discuss the concept of quantum properties, represented
by self-adjoint operators in a Hilbert space [38], and show that attempts to assign truth values
to those properties in different experimental contexts fail if we assume that such properties
are context-independent. We argued that KS argument was not necessarily valid for quantum
systems because, since particles are in principle indistinguishable, it is not possible to say that we
are talking about property X or Y of particle A or particle B. All we know is that, in the case of A
and B, we have two particles, and that they have different properties X and Y, but we cannot, in
principle, know which one has property X or property Y.

Here we extend the above notion to show that it is not just the indistinguishability of particles
that may be at play in physics, but also the indistinguishability of properties, seem here as a
representation of the conjunction of a specific measurement apparatus and a physical (quantum)
system (e.g. a particle). In other words, as in the case of particles, we cannot know which
property we are talking about. Two properties, A and A’, may be indistinguishable, and this
indistinguishability leads to apparent paradoxes if we treat them, as often is done in physics,
as one and the same.

The idea of indistinguishability of properties can be seen as stemming from [14]. In that
reference, it is argued that contextuality is about the identity of properties, in the sense
that, properties taken from different contexts must be considered different. In reference [14]’s
approach, properties are assumed to obey the classical theory of identity, formalized in it by the
use of random variables in a probability space. The connection between identity and contextuality
seems to also appear in the formalism of QM. Take the case of three observables, such as Bell’s
case where observables A and A′ refer to Alice’s observations and B to Bob’s. The self-adjoint
operators in the subspace representing Bob’s observable B are the same when Alice measures
A or A′, regardless of whether Alice’s choice of measurement. It seems to be the same property,
among the different contexts of measurement. The experimental setup is the same as well: there is
an operationally identifiable procedure that allows us to say that we are measuring A, on each
instance. But yet, if we assume that all those instances represent one and the same property,
we are lead to contradictions. This situation leads the authors of [14] to conclude that the a
properties associated to the same physical quantity, but considered in different contexts, cannot
be the same. So, the distinction between B in context A and B in context B′ is only that they are
different properties, but not distinguishable. If they were distinguishable, i.e. if Bob could run an
experiment where he could, just looking at B, determine Alice’s choice of measuring A or A′,
they would be able to use this to signal to each other in a superluminal way. This, of course, is
forbidden by quantum mechanics [10].

How to make sense of the assertion that properties are different among different contexts,
while it is, at the same time, the same quantity being measured? Reference [14] takes the approach
of just using different random variables for each context. Though this is logically consistent,
and probably work for the general case, here we take an alternative stance: we will assume
that properties —representing the same quantity to be measured— are indistinguishable among
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the different contexts, but yet, not the same. To do so, we use quasi-set theory [26], which
is a logical formalism developed to deal with collections of truly indistinguishable entities.
Quasi-sets have been applied to quantum mechanics before, in order to describe quantum non-
individuality [11–13], and as above mentioned, to avoid Kochen-Specker-type contradictions [9].
We see our approach as having two advantages over the more general one of [14]. First, it comes
from a strong ontological assumption that quantum systems are truly, and in principle, non-
distinguishable. This does not seem to be an epistemic issue, as there are real consequences for
this indistinguishability at the level of particles (i.e. different quantum statistics, or other quantum
effects such as Bose-Einstein condensates). The second advantage is that our approach stays closer
to the Hilbert space representations of quantum theory by using the same random objects for all
contexts.

This paper is organized as follows. For each section, we try to provide an intuitive and
simplified version of the concepts discussed, and then present them in a more formal way. Our
goal is to make this paper more accessible to a broader audience who may not be familiar with
some of the ideas used here. In Section 2 we discuss the concept of properties for quantum
systems, and show how they are problematic because of contextuality. In Section 3 we show how
we can represent indistinguishability of particles using the formalism of quasi-sets, constructed
formally as an axiomatic theory where Leibniz’s principle of identity is violated. Then, in
Section 4 we extend the ideas of Section 3 to properties, and we show how when properties are
indistinguishable the usual contextual inequalities are not derivable. We end the paper with some
conclusions and final remarks in Section 5.

2. Describing quantum systems
In order to discuss the quantum case, let us start with the general concept of properties1.
Intuitively, a property is a characteristic or quality of something. For example, when we say that
“the sky is blue”, the color blue is a characteristic of how we perceive the sky. In physics, when
we talk about properties of a system, we mean something similar: what characteristics this system
has. For instance, if we say that a metal block is 32cm long or 400g in mass, these statements
represents properties the block has: the property of being 32cm long and having a mass of 400g.
This concept of property is straightforward in classical physics, where we can talk about volumes
of solids, temperature of an object, or energy of a system, to mention a few.

The most basic type of property is a binary property, i.e. a quality of the system that is either
true or false. In other words, we can probe whether a system has or does not have the property.
Some simple examples of binary properties are represented in the following questions: “Does
Federico have the property of being tall?” or “Is it cold today?” Of course, such casual properties
are not what we are talking about in physics, and we need to be more precise, going beyond
defining which height we think is the minimum for being considered tall, or what temperature
below which we feel it is cold.

As such, in physics we need to talk about more complicated properties that can account
for more specificity, such as today’s temperature in C (it is 13 C outside, reads someone’s
thermometer) instead of simply saying it is cold or not. It is straightforward to see that even
such properties are made up of several binary properties. Let us examine the temperature
example. To measure the temperature means to give a number that is within the range of the
thermometer (say -20 to 60 C) and that is consistent with its precision (±0.5 C). Consider the
following series of statements that can be either true or false. A−20=“the tip of the mercury
column of the thermometer is in the interval −20.0± 0.5”, A−19=“the tip of the mercury column
of the thermometer is in the interval −19.0± 0.5”, A−18=“the tip of the mercury column of the
thermometer is in the interval −18.0± 0.5”, and so on until A60=“the tip of the mercury column
of the thermometer is in the interval 60.0± 0.5”. Each of those statements are compatible (i.e. one
1We shall not give a detailed theory of properties relevant to the empirical sciences, and the interested reader may find
references such as [23], [28] or [35] as useful and comprehensive resources; see also [2,17,20] for the notion of property in the
quantum logical approach, which plays a key role in quantum mechanics and the derivation of the Kochen-Specker theorem.
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can verify the veracity of each of those questions simultaneously), and they are complementary
(i.e. one and only one of them may be true at a given time). So, the statement “it is 13 C outside”
means that the proposition A13=“the tip of the mercury column of the thermometer is in the
interval 13.0± 0.5” is true, whereas all other complementary propositions Ai, i ̸= 13, are false.
In fact, any numerical property could be represented this way, as made up of several individual
and compatible binary properties. So, properties such as mass, charge, position, temperature,
entropy, length, etc. can be though as a combination of a large (sometimes infinite) number of
binary properties where only one of them can be true at a time.

There is an interesting connection between properties and ontology in classical physics. For
example, in classical Newtonian physics, physical systems are composed of particles, whose
fundamental properties are their mass, position, and velocity. Because mass is a constant for
Newtonian particles, only position and velocity can vary, and the value of all particles’ positions
and momenta are called the state of the system. Any other property, such as the system’s energy,
temperature, or length (if talking about a solid made of particles itself) are definable in terms of the
properties of the fundamental constituents of the system, the particles, namely their position and
velocity. Furthermore, given a system of particles and their interactions, knowing their state, i.e.
their position and velocity, completely determines their future state, and therefore any properties
associated to the system. But, more importantly, given that properties are definable in terms of two
quantities that are simultaneously measurable, position and velocity, it follows that each property
can be though as a subset of the space of all possible positions and velocities (usually R6N , where
N is the number of particles and 6 the number of components of the position and velocity vectors
necessary to describe the particle). Therefore, if we wish to define an algebra of properties, this
algebra would be simply a Borel algebra on R6N .

In quantum theory, things are very different. First, there is no simple and widely accepted
ontology for quantum systems similar to the classical one 2. Second, the state of a quantum system
is not definable in terms of the position and velocity of its particles. The reason is a fundamental
one: contrary to classical particles, position and velocity of a quantum particle cannot be, in
principle, measured simultaneously with as much precision as we wish. Therefore, the idea of
defining properties as subsets of R6N is not a straightforward matter 3.

Instead, binary properties are represented in quantum theory by projection operators in
a separable Hilbert space, H [2,13]. The Hilbert space itself is determined by the number
of such binary properties that we can maximally observables. More complex outcomes of
experiments and their associated properties are modeled by self-adjoint operators in H. Due
to the spectral decomposition theorem, Hermitian operators can always be written as sums of
projection operators. In other words, we can think of Hermitian operators as made up of several
binary properties, which, due to their connections to experiments, are called observables. Thus,
observables and the Hilbert space are dependent not only on the system, but on our ability to
extract information from this system. The more information, the larger the Hilbert space becomes.

To give a less abstract example, take the case of a single electron. If we were only able to
measure its position on the x direction, its Hilbert space would be L2, the space of all square
integrable functions, and a vector in this space would be a function ψ ∈L2 whose absolute value
squared, |ψ(x)|2, at x gives the probability density that the electron is found between x and x+ dx

if a measurement of position is performed. In this Hilbert space, the position operator is simply x.
Correspondingly, the observable associated to the property “momentum” is the operator iℏ∂/∂x
on L2. However, electrons have another property of interest: spin. The Hilbert space for spin 1/2,
as is the case for the electron, is C2. So, if we were to only measure position or momentum, the
Hilbert space would be L2; if we were to only measure spin (regardless of direction), the Hilbert

2It is important to mention that Bohm’s theory [4] provides an ontology close to a classical one, but it is far from being widely
accepted among physicists [32]. One of the main reasons for this, is, perhaps, that its hidden-variables behave in a manifestly
non-local way. Furthermore, the hidden-variables introduced are not of much use in practice, given that they cannot be
manipulated in the lab (due to its hidden character). Thus, they play only an ad-hoc explanatory role, without giving place to
any relevant predictions. Our approach in this work aims to stay closer to most physicists guiding intuitions in their practice.
3Attempts to do so lead to quasi-probability distributions [40].
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space would be C2; if we were to measure both position and spin, the Hilbert space would be
L2 ⊗ C2. Things get more complicated as we increase the number of particles, or if we increase
the number of possible observables.

As mentioned above, properties related to a Hilbert space through observable operators. Given
a quantum system S, we can construct a Hilbert space H, whose basis represent a set of possible
projection operators that completely span H. This set of projection operators provide a maximal
set of compatible properties of S. We can then use those properties to create more complex
properties in the form of Hermitian operators.

Again, let us explore this with a simple example: a three-dimensional Hilbert space, C3. Since
this space is three-dimensional, it follows that a basis for this space is constituted of three linearly
independent vectors, say

e1 =

 1

0

0

 , e2 =

 0

1

0

 , e3 =

 0

0

1

 .

and the corresponding projectors associated to each vectors are

Pe1 =

 1 0 0

0 0 0

0 0 0

 , Pe2 =

 0 0 0

0 1 0

0 0 0

 , Pe3 =

 0 0 0

0 0 0

0 0 1

 .

We can see that Pe1 + Pe2 + Pe3 = 1̂, where 1̂ is the identity matrix, which is a consequence of e1,
e2, and e3 forming a basis for H. It is easy to create now, in this formalism, an observable that is
associated to the property of having values 1, 2, and 3 as simply Pe1 + 2Pe2 + 3Pe3 .

Once you have a basis for H, you can define observables as above. However, it is always
possible to define another basis. In quantum theory, this new basis will correspond to new
observable properties. What is important here is that a property with a definite value in one basis
may not be associated with a state that has definite values for another property (represented by
another basis). Furthermore, once we measure the observable associated to the new basis, and find
out a value for a given property, the new state of the system will be associated to this property,
and the old basis (and their corresponding properties) will not have definite values anymore. An
observation (or measurement) affects the state of the system.

In other words, the sequential observation of properties in different basis may lead to changes
in the outcomes of past observations. Properties become dependent on the how we observe them:
if we first observe A and then B, we may get something different from observing B and then A.
Even more importantly, if we observe A, B, and then A, the second time we observe A its value
may be different. Additionally, attempts to assign values to properties that are independent of
how we observe them will lead to inconsistencies.

The above argument is at the core of KS’s theorem [22]. In an example provided by Cabello
et al. [5], we start with a specific set of projection operators Pi, i= 1, . . . , 18, in a Hilbert space
of dimension four. The set {Pi} is selected such that there are 9 contexts such that the sum
of the four Pi’s in it is the identity operator (e.g. P1 + P2 + P3 + P4 = 1̂). Furthermore, the
contexts are selected such that each projector appears twice, once in two different contexts (e.g.
P1 + P2 + P3 + P4 = 1̂ andP1 + P5 + P6 + P7 = 1̂). The consequence is that we have 9 equations,
one for each context, where they all add to 1̂, and such that each operator appears twice. Now,
the contradiction comes from the fact that if we associate to each projector a property of being
1 (for true) and 0 (for false) as the same in all contexts, the sum of all projectors’ values on the
9 equations adds to an even number (each appears twice). However, since each equation adds
to one, their sum needs to add to nine, which is odd, and we reach a contradiction. This is the
essence of the KS theorem: the assumption that the values of Pi are independent of context lead
to a contradiction.

One may object that the above arguments were focused solely on cases where the property of
the system is known with certainty, i.e. one can assign to it a truth value. One may argue that in
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quantum physics, properties are not deterministic, and one must talk about probabilities, which
would make the above arguments not apply. However, this is not the case. It is possible to show
that the underlying assumption that properties have a value, even though we may not know
what they are and represent them with a probability function, is incompatible with quantum
theory [16]. The reason is that standard probability theory assumes an underlying consistency
through a Boolean algebra.

To accommodate the quantum predictions, one must either expand the number of properties
to include other properties that are co-measured (see [15] and references therein), or one needs
to modify probability theory, either by allowing probabilities to take negative values [6,7,33], by
changing the rule for adding probabilities [8,34], by modifying the algebra of events [17,18,29],
or by rethinking about measurement outputs as depending on all components of an examined
experiment [21]. But regardless of how we choose to deal with such issues, the key aspect of
the quantum world is that quantum properties are not definable in a consistent way if we require
classical logic and context independence. This quantum contextuality is essential for any ontology
associated to it, and we will explore it in more details in Section 4.

3. Indistinguishability of particles
There are two remarkable features that characterize compound quantum systems. One of them
is entanglement, that can be interpreted as the impossibility of describing certain quantum
correlations by appealing to mixtures of classical correlations [39]. The other feature —the one
that we are interested in— is indistinguishability: when quantum systems of the same kind are
put together, they display statistics which are very different from those which are used to describe
distinguishable entities4. This is expressed in the symmetrization postulate and the celebrated
Bose and Fermion statistics. This feature lies behind very important fields of research, such as
the study of Bose-Einstein condensates. In recent years, the difference between entanglement and
indistinguishability has been studied in detail: it turns out that these are very different physical
features, in the sense that a quantum system can be prepared in a fully symmetrized state in which
no non-local correlations are present [31]. This distinction leads us to the question of whether it is
possible to consider quantum indistinguishability as a resource. What is the relationship, if any,
between quantum indistinguishability and contextuality? In order to explore possible answers for
these questions in the following sections, let us first review the formalism for indistinguishable
particles.

Let us illustrate how the formalism works for only two fermions. For this case, if we know that
one particle is in state |b⟩ and the other in state |a⟩, then, using the symmetrization postulate, the
joint state will be given by

|ψ⟩= 1√
2
(|a⟩ ⊗ |b⟩ − |b⟩ ⊗ |a⟩) (3.1)

The above state means that there is one particle in each state. But the symmetrization tells us
that we cannot tell which one is which: a permutation of the particles yields an overall minus
sign, and thus, the probabilistic predictions of the theory are exactly the same. This situation
lead many authors —including E. Schrödinger— to conclude that quantum systems, in certain
situations, cannot be considered as individuals [24].

In the position representation, the wave function associated to our two-particle state in (3.1) is
given by

ψ(x, y) =
1√
2
(ψa(x)⊗ ψb(y)− ψb(x)⊗ ψa(y)), (3.2)

4We emphasize that the indistinguishability of particles is an ontological assumption. For example, as mentioned before,
in Bohmian theory [3,4] the ontology is classical, with quantum effects originating from a quantum potential. The anti-
symmetrization or symmetrization of the wave function, thus, in this theory, leads to non-local effects on the particles due
to the quantum potential. Though the authors of this paper are sympathetic to Bohm’s approach, we are also aware that the
majority of the physics community rejects it, perhaps mainly because of its classical ontology. In this paper, we embrace the
quantum weirdness, and try to explain quantum effects based on a non-classical ontology of indistinguishable particles.
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where x and y are the coordinates of particles 1 and 2. When x−→ y, i.e. when the particles are
close to each other, we observe that the square modulus of the wave function

|ψ(x, y)|2 = 1

2
(|ψa(x)ψb(y)|2 + |ψb(x)ψa(y)|2 − 2ℜ(ψa(x)ψb(y)ψ

⋆
b (x)ψ

⋆
a(y))) (3.3)

tends to zero. This implies that no two fermions can be found occupying the same state.
If the wave functions |ψa(x)| and |ψb(y)|2 have compact support, we see that there are no
indistinguishability effects when |x− y| is big enough. Thus, when the particles get close each
other, we can go continuously from a distinguishability for all practical purposes situation, to a
non-distinguishability one.

The state of a Bosonic system is similar to (3.1), but there is “+" sign instead of a “−". In
the first case, the states are symmetric under permutation of particles, while in the second, anti-
symmetric. This changes the statistics considerably: unlike Fermions, it is possible to have an
arbitrary number of Bosons occupying the same state.

In order to study the case with arbitrary particle number, it is useful to consider the Fock-space
formalism. The standard Fock-space is built up from the one particle Hilbert spaces as follows.
Let H be a Hilbert space and define

H0 =C,

H1 =H,

H2 =H⊗H,
...

Hn =H⊗ · · · ⊗ H. (3.4)

The Fock-space is thus constructed as the direct sum of n particle Hilbert spaces,

F =

∞⊕
n=0

Hn. (3.5)

When dealing with bosons or fermions, the symmetrization postulate must be imposed. Thus,
given a vector v= v1 ⊗ · · · ⊗ vn ∈Hn, define

σn(v) = (
1

n!
)
∑
P

P (v1 ⊗ · · · ⊗ vn) (3.6)

and
τn(v) = (

1

n!
)
∑
P

spP (v1 ⊗ · · · ⊗ vn), (3.7)

where

sp =

{
1 if p is even,
−1 if p is odd.

Let
Hn

σ = {σn(v) : v ∈Hn} (3.8)

and
Hn

τ = {τn(v) : v ∈Hn}. (3.9)

Thus, we have the Fock-space

Fσ =

∞⊕
n=0

Hn
σ (3.10)

for bosons and

Fτ =

∞⊕
n=0

Hn
τ (3.11)

for fermions.
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The standard wave mechanics approach to the description of multi-particle systems uses the
kinetic energy operator

Tn =

n∑
i=1

T1(ri) (3.12)

for n particles, where T1(r) =−(ℏ
2∇2

2m ). A similar expression holds for the external potential. For
a pairwise interaction potential, we have

Vn =

n∑
i>j=1

V2(ri, rj). (3.13)

The total Hamiltonian operator is thus given by

Hn =

n∑
i=1

[(−ℏ2∇2
i

2m
) + V1(ri) +

n∑
i>j=1

V2(ri, rj)]. (3.14)

The n-particles wave function can be expressed as

Ψn(r1, . . . , rn, t), (3.15)

and it is a solution of the Schrödinger’s equation

HnΨn = iℏ ∂
∂t
Ψn. (3.16)

4. Indistinguishability of properties
We now move to discuss what we call the indistinguishability of properties, starting with the
concept of properties. Suppose that we have the quantum system formed by parts S1 and S2. The
observables associated to the compound system will be represented by the algebra B(H), with
H=H1 ⊗H2. For any observable A of S1, we may consider the observable of the compound
system A⊗B. The interpretation of A⊗B is that we measure A in S1 and B in S2. But for each
A∈B(H1), there are infinitely many possible observables to chose in B(H2). Each one of these
possibilities, defines a different measurement context. Thus, we can define the set

CA = {A⊗B |B ∈B(H2)}

that enable us to represent all possible contexts associated to a single observableA∈B(H1). Now,
prepare N copies of the compound system in the same state ρ and measure only observable A of
S1. The state of S1 is given by ρ1 = tr2(ρ). From the preparation point of view, all these processes
are indistinguishable: we prepare N copies of the compound system, and measure the same
observableA of S1. But, even if these measurements are indistinguishable for an observer focused
only on S1, they are not exactly the same: a measurement of A in S1 could be performed jointly
with an arbitrary element of CA, and these elements could change on each run of the experiment.
As an example, if N =N1 +N2, we can perform the experiment A⊗B N1 times, and N2 times
the experimentA⊗B′ (forB ̸=B′). Thus, each context defined on the compound system, gives us
a different observable on the compound system, but an indistinguishable one for system S1. Thus,
from the point of view of the observer focused on subsystem S1, a measurement of the property
associated to the physical quantity A can be represented by a collection of indistinguishable but
yet different observables.

There is a formalism that allows to deal properly with collections of truly indiscernible entities,
namely, quasi-set theory (for details, see for example [11–13,26]). In this theory, there is a primitive
notion of indistinguishability, represented by the symbol “≡". The axioms are written in such
a way that, X ≡ Y does not necessarily implies X = Y . The equality symbol “=”, can only be
applied on special elements of the theory (i.e., the classical ones). Thus, we can represent the
observable quantity A by a quasi-set, that we call [A], formed by the collection of all possible
experimental contexts associated to A. The elements of [A] are all indistinguishable, but not
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the same (i.e., the quasi-cardinal —which represents the number of elements— of [A] is greater
than 1), in the sense that X ≡ Y , for all X,Y ∈ [A]. What are the valuations compatible with
this description? We must be careful. Using quasi-set theory, if we try to assign a value to each
element of [A], we define a quasi-functionf : [A]−→{0, 1, · · · , d− 1} (here, we are assuming
that A defines a d-dimensional observable). But, unlike the classical case, were we have d♯[A]

valuations, there are only d quasi-functions of this kind, namely: ⟨[A], 0⟩, ⟨[A], 1⟩, · · · , ⟨[A], d− 1⟩.
This is so, due to the fact that all ordered pairs collapse into the same class. This means that,
considered as an observable, the only values that A can take are given by {0, 1, · · · , d− 1}.
This is compatible with what we observe in an actual experiment: the outcome set is given by
{0, 1, · · · , d− 1}. But something more interesting happens when we try to actually put values
to the elements of [A] previous to measurement. Let us do this as follows. In order to pick up
one element of [A], consider a strong singleton [[X]]⊆ [A]. In quasi-set notation, this means that
qc([[X]]) = 1 and ∀x∈ [[X]], we have x∈ [A]. Now, take j ∈ {0, 1, ·, d− 1} and form the ordered
pair ⟨[[X]]; j⟩ in such a way that the pair has only two elements (this can be done in quasi-set
theory). This pair can be interpreted as follows: assign the value j to the context [[X]]. All contexts
are indistinguishable from the perspective of the observer associated to S1, in the sense that, if the
rest of the universe is ignored, each representative of the class [A] is indistinguishable from the
others. But they are different from the point of view of the joint system, since the different contexts
define distinguishable global observables. By forming pairs of the form ⟨[[X]]; j⟩, a definite value
can be assigned to an observable in a given context. But an indistinguishable observable taken
from a different context may have a different value. In this way, we see how a kind of logical
indistinguishability, one taken from quasi-set theory, can be used to model quantum contextuality
in a suitable way.

In order to illustrate the description of contextuality using quasi-set theory with more detail,
lets consider first a classical system formed of three dichotomic random variables X , Y and Z,
having values in the set {−1, 1}. Let us assume that X , Y and Z obey the classical theory of
identity (and accordingly, that these variables retain their identity among the different contexts in
which they may appear). Thus, for example, we are assuming that X is the same, independently
of whether it is measured in connection with Y or in connection with Z. A similar consideration
holds for Y and Z. In this way, we obtain the following (classical) table:

X Y Z XY XZ YZ
1 1 1 1 1 1
1 1 -1 1 -1 -1
1 -1 1 -1 1 -1
-1 1 1 -1 -1 1
1 -1 -1 -1 -1 1
-1 -1 1 1 -1 -1
-1 1 -1 -1 1 -1
-1 -1 -1 1 1 1

(4.1)

Using the above table, a quick check indicates that the values the compound random variables
XY , XZ and Y Z, satisfy the inequality

− 1≤XY +XZ + Y Z ≤ 3. (4.2)

Thus, by convexity, their mean values ⟨XY ⟩, ⟨XZ⟩ and ⟨Y Z⟩ must, in turn, satisfy

− 1≤ ⟨XY ⟩+ ⟨XZ⟩+ ⟨Y Z⟩ ≤ 3. (4.3)

Now, let us see what happens if, instead of assuming a classical theory of identity, we
consider that X , Y and Z define indistinguishable properties. Thus, the only thing we can say
is that we have classes of indistinguishable properties [X], [Y ] and [Z], formed by all possible
indistinguishables from X , Y and Z, respectively. Thus, when considering, for example, X in
connection with Y and afterwards, in connection with Z, we will have X and X ′Z′, with X ′
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indistinguishable from X and Z′ indistinguishable from Z —yet not the same! Thus, the value
that we must assign to X needs not to be the same than the one that we assign to X ′. Therefore,
if we proceed as before and consider all possibilities, we don’t have a definite value for X , but
a collection of them: a value attached to each element of the class [X], by appealing to quasi-
pairs of the form ⟨[[X]],−1⟩ and ⟨[[X]], 1⟩ (being [[X]]⊆ [X] a strong singleton of [X]). A similar
consideration holds for Y and Z. The only think we can do, regarding joint measurements, is to
write down a table like:

X’Y’ X”Z’ Y”Z”
1 1 1
1 -1 -1
-1 1 -1
-1 -1 1
-1 -1 1
1 -1 -1
-1 1 -1
-1 -1 -1
1 1 -1
1 -1 1
-1 1 1

where the primed quantities are indistinguishables fromX , Y andZ. Notice that the last four lines
of the above table are strictly forbidden for classical random variables. Or, in our terminology, for
random variables obeying the classical theory of identity. But this implies that inequality (4.3)
will be violated by random variables of this sort. Thus, we find that the violation of the theory of
identity for properties, can be used to describe contextuality in a natural way.

It is important to remark that this is not a quantum example. The reason is that, for three
projection operators that commute pairwise, it follows that it is possible to define a set of vectors
on the Hilbert space such that those vectors are eigen-vectors of those projectors. Therefore, it
follows that a joint probability distribution exists, and the properties associated to the projectors
are not contextual. But, in principle, we could extend the argument to a Bell-type scenario with
four properties if necessary (though it would be more cumbersome).

It is interesting to compare our approach with previous ones. The KS theorem has a very
straightforward consequence: to assume that a given property possesses the same value among
different contexts leads to contradictions. This has led many authors to conclude random
variables –representing the same physical quantity– are different. In other words, that contexts
can be used to index random variables in such a way that they become different (see for example
[14]. According to the classical theory of identity, this sounds as a reasonable conclusion. But
still, there remains a feeling that, with such a proliferation of properties –in most examples of
interest, there are, indeed, infinitely many contexts for each given property– a high ontological
price is paid, special when we consider that it is the same physical quantity among all possible
contexts. Our framework is a way out of this situation, in the sense that, one is able to speak
about indistinguishable properties in a strong sense, but, at the same time, the instances of these
properties are not forced to obtain the same values on each context in which they are considered.

5. Conclusions
In this work we proposed a formal framework for dealing with properties of contextual systems.
According to our proposal, properties describing the same physical quantity, but belonging
to different measurement contexts, are not different, but neither are they equal. They are
indistinguishable in a strong sense. The existence of such objects require, mathematically, the
introduction of a theory that allows a violation of Leibnitz’s principle of identity of indiscernibles.
Quasi-set theory is such a theory, a set-theoretical framework that allows for the description of
collections of entities which do not obey the classical principle identity [24–26]. Quasi-set theory
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includes objects that obey a weaker relationship of indistinguishability, allowing for entities
being different solo numero. Here we showed that quasi-sets can be used to describe quantum
contextuality in a consistent way. We believe this approach opens the door for a new ontology for
describing quantum properties.

It is useful to compare our proposal with other ones. In the contextuality by default approach
(CdB), properties belonging to different contexts are considered different ab initio. If this is done,
we can assume that not only properties obey the classical theory of identity, but they also
satisfy classical probability theory. The cost of such approach is that properties then become
context-dependent, and thus dependent on the observer’s choice of context. Our framework is
an alternative one, that allows to reconcile the fact that the same quantity may acquire different
values in different measurement contexts. In the other approaches using non-standard probability,
it is possible to argue (and we did so in Section 4) that the use of indistinguishable objects from
quasi-set leads to non-standard probabilities. This, in a sense, may provides an interpretation
for the appearance of non-standard theories in quantum physics, and we believe it is a topic that
should be investigated further. As such, it would also be interesting to study the consequences for
probability theory of assuming random variables that do not obey the classical theory of identity.
Such a non-standard probability calculus may be useful to understand the peculiar behavior
of probabilities in quantum theory. In this direction —and, in connection with the problem of
identical particles— we hope that by addressing contextuality in quantum theory using quasi-
sets, may help to understand the link between the underlying quantum particle ontology and
their properties.

The ontology behind our approach assumes that properties are, in reality, associated to
collections of indistinguishable entities. This ontology has interesting consequences for answering
the following question: which are the necessary and sufficient conditions for contextuality?
According to our proposal, contextuality appears whenever properties depart from classical
identity theory. But there could be many ways in which this may happen, being quantum
mechanics a particular case. This opens the door for studying generalized probabilistic models
using quasi-set theory or similar set-theoretical frameworks. In particular, it would be interesting
to investigate which constraints in the indistinguishability of properties would produce the
quantum boundaries, such as Tsirelson’s.

The main advantage of our approach is that it is a more natural description of what happens
to properties in the quantum realm. The main disadvantage is that it is not as general as other
proposals, such as contextuality by default, as it would not be applicable to non-quantum
contextual systems, since we expect such systems to not have an ontological issue with identity.
But, perhaps more interesting from the point of view of this paper’s authors, is that our approach
points toward a feasible quantum ontology —perhaps a physical principle— that needs to be
thought in more detail.
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