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Abstract. This review paper has three main goals. First, to discuss a contex-
tual neurophysiologically plausible model of neural oscillators that reproduces
some of the features of quantum cognition. Second, to show that such model
predicts contextual situations where quantum cognition is inadequate. Third,
to present an extended probability theory that that not only can describe sit-
uations that are beyond quantum probability, but also provides an advantage
in terms of contextual decision making.

1. Introduction

One common view is that humans are rational decision makers. What constitutes
rational is in itself a matter of debate, but perhaps a common idea of rationality is
the notion that, when making decisions, humans follow the prescriptions of classical
logic. Where logical true or false values are replaced with uncertainty, we have to
deal with beliefs, and not with certainty. One can argue that the rules of inference
over beliefs, for a rational being, should be replaced by measures consistent with
an underlying Boolean algebra of propositions. If this is the case, and under some
reasonable assumptions, the rules of probability theory are derived [27, 59]. In
other words, if one wishes to assign measures of belief in such a way that a decision
maker, when faced with new evidence, acts in a way consistent with the rules of
logic, one needs to use classical probability (CP).

In the 1980s, Tversky and Kahneman examined the heuristics of decision making
with cleverly designed experiments where inferences required by CP were tested
against actual human beliefs. In a series of results, they showed that in many
situations humans did not follow CP, and later on developed a theory to described
human decisions, prospect theory, which fitted experimental data better than the
standard expected utility theory in economics [60]1. Such was the importance of
those results that Kahneman was awarded the Nobel Memorial Prize in Economics
in 2002 (Tversky passed away in 1996).

In 2007, in a special session during the Association for the Advancement of
Artificial Intelligence (AAAI) Spring Symposium at Stanford University, a group
of researchers, among them Andrei Khrennikov, Emmanuel Haven, Jerome Buse-
meyer, Peter Bruza, and Patrick Suppes, met to discuss applications of the quantum
mechanical formalism to the social sciences. The main idea put forth was that, in
relation to the social sciences, quantum mechanics could go beyond an analogy of
how to deal with complementary variables (in the sense of Bohr): the quantum
mechanical formalism itself could better represent situations in which the CP was

1Expected utility theory relies heavily on CP [81, 7].
1
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violated (such as Tversky and Kahneman’s examples). The area of research spawn-
ing from this became known as Quantum Interactions, and the application of the
quantum-mathematical formalism to psychology as Quantum Cognition (QC).

In this paper we put forth the following three theses. First, QC is about contex-
tuality. By this we mean that we can think of decisions as experimental outcomes,
and such outcomes depend on the experimental conditions (contexts). Second,
that contextuality in QC may come from the inconsistency of (perhaps learned, for
cognition) conditions. To support this, we provide two examples: a neural oscilla-
tor model that shows contextuality when incompatible events are activated, and a
decision-making scenario where information based on subjective beliefs are incon-
sistent. Our third and final thesis is that such contextual effects may be better
modeled by allowing non-observable probabilities to take negative values, and not
by quantum probabilities that violate classical probability theory (CP). We support
this by first showing that there are certain neural oscillator setups that result in
responses that cannot be modeled in a natural way by the Hilbert space formalism
of quantum mechanics (QM). Then, in another example, we not only show that
the QC approach is inferior to negative probabilities (NP)2, as we call our gener-
alization of CP, but also argue that because of its inherent advantage with respect
to Bayesian approaches, NP may be the mechanism of choice for actual biological
systems dealing with contextual information.

We organize this paper in the following way. In Section (2) we introduce the
idea of QC, and discuss the importance of interference for most of the discussions
of violations of CP. In Section (3) we discuss QM, and reason that contextuality is
the characteristic that makes its formalism the most relevant to QC. Keeping this
in mind, we describe in Section (4) a neurophysiologically inspired neural oscillator
model that presents the same contextuality observed in experiments used to support
QC. We then show that neural oscillators can model certain decisions that are not
compatible with the quantum formalism. Inspired by such model, we then present
in Section (5) a theory of extended probabilities that describes the cases found in
QC and provides some insight into contextual decision making. Our model seems to
be computationally better than the quantum one and seems to offer better advice
than the Bayesian approach. We finally end our paper with some remarks and
suggestions for future research.

2. Elements of Quantum Cognition

In this section we describe some of the main characteristics of QC. Here we
focus on QC models that rely on state interference3. We believe that the main
features exhibited by these models are sufficient to make our main point. However,
we should remark that our arguments and accounts do not immediately generalize
to the use of quantum dynamics, but only to the description of the relationship
between states and observables.

2Some readers may object to the use of negative probabilities, since probabilities come from the
ratio of two non-negative numbers. We ask them to hold their concerns until Section 5, where we
discuss NP in detail. However, at this point we emphasize that in our approach no experimentally
observable event have NP.

3It is not our intent to give an exhaustive account of the field of QC. Readers interested in it
should consult the excellent books available (e.g. [67, 21, 54]).
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To understand how QM violates CP, and how this can be applied to cognition,
let us look at an example. First, following Kolmogorov [71], we have the following
definition.

Definition 1. Let Ω be a finite set, F an algebra over Ω, and p a real-valued
function, p : F → R. Then (Ω,F , p) is a probability space, and p a probability
measure, iff:

K1. 0 ≤ p ({ωi}) , ∀ωi ∈ Ω

K2. p (Ω) = 1,

K3. p ({ωi, ωj}) = p ({ωi}) + p ({ωj}) , i 6= j.

The elements ωi of Ω are called elementary probability events or simply elementary
events4.

Definition 1 implies that from elementary events and F we can create complex
events. In a subjective interpretation the function p could be thought as a measure
of rational belief [27, 58]. For example, a consequence of axioms K1–K2 is that,
for two sets containing elementary events, A and B, if A ⊂ B, then p (A) ≤ p (B)
follows. This property of CP is called monotonicity, and it is possible to show that
if we relax the requirement of F being an algebra of events and instead allow it to
be a quantum lattice, monotonicity is violated [56]. In other words, QC violates
CP.

An important concept is that of a random variable, defined below.

Definition 2. Let (Ω,F , p) be a probability space, and let Θ be a finite set, with T
an algebra over this set. A random variable X is a measurable function X : Ω→ Θ,
i.e. for every T ∈ T we have X−1 (T ) ∈ F .5

Intuitively, we can understand a random variable in the following way. To each
value of Ω we assign a value in Θ, such that the function X determines a partition
of the space Ω in different regions (consistent with F , since X−1 (T ) ∈ F). Such
a partition attributes to each region of Ω a value in Θ. So, random variables can
be seen as a way to represent possible outcomes of measurements that depend
functionally on a probability event.

A simple example to illustrate random variables is the following. Let Ω =
{hh, ht, th, tt} be the space of outcomes of tossing a coin twice in a row (h represent-
ing heads). If the coin is not biased, we have p (hh) = p (ht) = p (th) = p (tt) = 1/4.
Let us say we now want to represent an experiment where whenever we get two
values in a row (either heads or tails) the result is 1 (we could think of a one dol-
lar payoff in a game), and -1 otherwise (one dollar lost). The ±1-valued random
variable X is the function X : Ω → {−1, 1} with outcomes X (hh) = X (tt) = 1
and X (ht) = X (th) = −1. From those functions we have the expected value of X,
given by

E (X) =
∑
θ∈Θ

θp (X = θ) ,

4It follows that any probability of an element of F is a real number in [0, 1].
5Usually there are extra constraints for defining a random variable, but we avoid such techni-

calities by working with discrete Ω and Θ. The above definition is sufficient for our purposes.
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Figure 2.1. Mach-Zehnder interferometer. A single photon state
is emitted from a source (S) and impinges on the first beam splitter
(BS), where it has equal probability of being in arm A or B. Upon
reflection at mirrors MA, MB , the two paths are recombined at
the left beam splitter. The probabilities for detection at detectors
D1 and D2 are dependent upon the phase relation between the
two alternatives at the left beam splitter. In the ideal case, the
probability for detection at D1 is unity. The dashed box in path B
represents the choice of inserting a barrier, thereby changing the
phase relationship and thus the detection probabilities.

which in our example is

E (X) = (+1) · p (X = +1) + (−1) · (X = −1)

= (+1) ·
(

1

2

)
+ (−1) ·

(
1

2

)
= 0.

The second moment is6

E (XY) =
∑
θ,φ∈Θ

θφp (X = θ&Y = φ) .

A useful notation for±1-valued random variables is the following. Instead of writing
p (X = +1), we write p (x), and, instead of p (X = −1), we write p (x).

A typical example of nonmonotonicity in QM is the two-slit experiment, whose
main features can be seen in the Mach-Zehnder interferometer (MZI) of Fig. 2.17.
For this interferometer, imagine two different situations: situation 1, in which the
arms of the interferometer are unobstructed and a detection is made on D1 or D2,
and situation 2, in which a barrier is placed in arm B (represented by the dashed

6For ±1-value random variables with zero expectation, it is easy to show that the moment
E (XY) has the same value as the correlation ρ = E (XY) / (σXσY).

7A more detailed discussion of the MZI in the context presented here can be found in [34, 35].
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box in the figure). Following Feynman [47], a particle able to go through either arm
of the interferometer has probability of detection 1 in D1 (for an appropriate choice
of lengths for the interferometer arms). However, if the particle is constrained to
go through only one of the arms (because of a barrier in the other interferometer
arm), the probability of detection in D1 is 1/2. If we consider D1 = 1 as the value
of D1 when there is a detection and −1 when not (similarly for D2), and if we
have the ±1-valued random variable A = 1 (or B = 1) as corresponding to going
through A (or B), and −1 otherwise, we have

(2.1) p (d1) = p (d1|a) p (a) + p (d1|b) p (b) ,

where

(2.2) p (x|y) ≡ p (x, y) /p (y)

is the conditional probability of x given y (for p (y) 6= 0). The expression (2.2)
is known as Bayes’s formula, and gives the definition of conditional probability in
Kolmogorov’s axiomatic framework8. From

(2.3) p (d1|a) = p (d1|b) = p (a) = p (b) =
1

2

the observed value of p (d1) = 1 of situation 1 is incompatible with Eq. (2.1) of
situation 2. Notice that Eq. (2.1) requires the existence of a joint distribution
p (x, y), and the derivation of (2.3) depends not only on such definition, but also
on the additivity of probabilities from Kolmogorov’s axioms.

The incompatibility between the observed probabilities for situation 1 and 2
comes from the assumption that the random variable D1 is the same for both sit-
uations, as this is a requirement of a joint probability distribution. However, the
experimental conditions are different, and this assumption is somewhat silly: we
have no reason to believe they should be the same, and indeed the data does not
support this view. We call this impossibility to reconcile the probability distribu-
tions of a random variable under different experimental conditions contextuality,
since each experiment provides an alternative context for the observation9.

We now return to QC. As mentioned, experiments show that human decision
making may not follow CP. For instance, in his classic work, Savage introduced a
rational decision-making concept called the Sure Thing Principle (STP) [81]. The
idea of the STP is simple:

“A businessman contemplates buying a certain piece of property.
He considers the outcome of the next presidential election relevant
to the attractiveness of the purchase. So, to clarify the matter
for himself, he asks whether he should buy if he knew that the
Republican candidate were going to win, and decides that he would
do so. Similarly, he considers whether he would buy if he knew
that the Democratic candidate were going to win, and again finds

8In Kolmogorov’s theory of probability, joint probabilities are primitives, whereas conditional
probabilities are defined from the joints [66]. But other interpretations of probability, notably
some subjective interpretations, consider conditional probabilities as more fundamental, and joint
probabilities are derived from them. For some of such interpretations, probabilities are always
conditional, and it may not even make sense to talk about joint probabilities [51].

9Physicists usually refer to contextuality as a particular concept related to hidden-variables
in a Kochen-Specker-like situation, and would not call the MZI contextual. Here we take a
comprehensive approach to contextuality, which we define mathematically below.
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that he would do so. Seeing that he would buy in either event, he
decides that he should buy, even though he does not know which
event obtains, or will obtain, as we would ordinarily say. It is
all too seldom that a decision can be arrived at on the basis of
the principle used by this businessman, but, except possibly for
the assumption of simple ordering, I know of no other extralogical
principle governing decisions that finds such ready acceptance.” [81,
pg. 21]

Formally, let us imagine that the ±1-valued random variable X corresponds to buy
if X = 1 (not buy if X = −1), and let another ±1-valued variable A be such that
A = 1 is a Democrat win and A = −1 is a Republican win. If X = 1 is preferred
over X = −1 when A = 1 and also when A = −1, then X = 1 is always preferred,
since A = 1 and A = −1 exhausts all possibilities for A. Savage calls this the
Sure-Thing Principle (STP).

If we deal with propositions that are not certain, what a “rational” being should
base his decisions for preferences of propositions (say, the proposition “buy a certain
piece of property” or “X = 1”) is represented in terms of probabilities. For example,
given a set of propositions, say {P1, P2}, we can form more complex propositions by
compounding them via the usual operators in propositional calculus, e.g. “P1&P2”,
“P1 or P2”, “not P1”, etc. If we require that the rules of inference are such that
the measures of belief assigned to propositions are consistent with this composition
of propositions (e.g., if you assign a high belief for P1, then “not P1” should be
assigned a low value), then the measures of belief follow the axioms of probability
above [58, 51]. Such axioms imply Savage’s STP.

To prove STP from CP, assume that

p(X = 1|A = 1) > p(X = −1|A = 1).

This is interpreted as “X = 1 is preferred over X = −1” if A = 1. If we also assume

p(X = 1|A = −1) > p(X = −1|A = −1),

then, multiplying each inequality by p (A = 1) and p (A = −1), and using the above
notation,

p(x|a)p (a) + p(x|a)p (a) > p(x|a)p (a) + p(a|a)p (a) .

From p(A = 1&A = −1) = p (a&a) = 1 and the definition of conditional probabil-
ities we have

P (X = 1) > P (X = −1).

This, is clearly Savage’s STP.
Savage’s view of probabilities is normative, and not descriptive. A descriptive

theory of decision under uncertainty tells us how actual human beings make deci-
sions, whereas a normative theory tells us how they ought to make decisions (see
[16]). In the words Boole, “probability I conceive as to be not so much expectation,
as a rational ground for expectation” [15]. Therefore, we should think of probability
theory not as a description of what humans actually think (or do), but instead as
what humans should do faced with uncertain information.

According to such views, STP should hold if agents are making rational decisions.
However, as mentioned, actual human decision makers do not follow the STP [90,
82]. For example, in [90] students were told about a game of chance, to be played in
two steps. The first step, not voluntary, players had a 50% probability of winning
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$200 and 50% of loosing $100. The second step allowed a choice of whether or not
to gamble a second time, with the same odds and payoffs. When told that that
they had won the first bet, 69% of subjects accepted the second gamble, and when
told they lost 59% also accepted. If we think of the random variables A and X as

A = +1 ↔ "Won first bet,"
A = −1 ↔ "Lost first bet,"
X = +1 ↔ "Accept second gamble,"
X = −1 ↔ "Reject second gamble,"

and
P (x|a) = 0.69 > P (x|a) = 0.31,

P (x|a) = 0.59 > P (x|a) = 0.41,

then “Accept second gamble” is preferred over “Reject second gamble” regardless
of A. However, the decision X was asked later on the semester, but participants
were not told whether they won in the first step (they did not know A). Under the
unknown condition, 64% of students rejected the second gamble, and

P (x) = 1− 0.64 = 0.36 < P (x) = 0.64,

a clear violation of the STP.
Violations of CP by human decision makers are one of the main driving force

behind QC. For instance, the non-monotonicity of probabilities in the MZI yield
results that are very similar to violations of the STP. In the MZI, let us say that the
statement “detector D1 is preferred over D2” corresponds to a higher probability
of detecting a particle in D1 instead of D2, and let us represent such statement in
terms of the random variable X, where

(2.4) p (x) > p (x)

corresponds to the previous statement. We can also represent the which-path in-
formation by a ±1-valued random variable A, where A = 1 corresponds to the
particle going through A and A = −1 to the particle going through B. Clearly, in
this case, we have10

(2.5) p (x|a) = p (x|a) = p (x|a) = p (x|a) =
1

2
.

Similarly to violations of STP, when a or a, we have no reason to prefer x over x or
vice versa, but CP imply, from (2.5), that p (x) = p (x), in dissonance with (2.4).

Thus, non-monotonic violations of CP, such as the STP, can be reproduced by
quantum interference, as in the MZI. Thus, it should not come as a surprise that
the typical QC model relies on interference. For example, Busemeyer, Wang, and
Townsend [20] used quantum interference to model the disjunction effect observed
by Tversky and Shafir [82, 90]. In their model, they showed that a quantum process
with interference yielded better fit to experimental observations than a classical
Markov model. There are several other uses of the quantum formalism to cognitive
sciences, such as modeling the conjunction effect [79, 18], order effects [89, 11, 91, 19]
(see also [68]), and the “guppy” effect [3, 4, 5]. We refer the interested reader to the
excellent available reviews, such as [67, 21, 54, 8].

10Equal probabilities in (2.5) are not necessary, as biases in the interferometer could modify
the conditional probabilities.
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To summarize, CP fails to properly describe actual human cognition, and we
need to generalize it to account for such cases. A generalization of CP was revealed
with the creation of a mathematical formalism to deal with order and context
effects in Physics: the quantum formalism. QC tries to use the mathematics of
quantum mechanics to describe systems that may have similar contextual effects to
the Physical ones.

3. Contextuality in Classical and Quantum Systems

We saw that contextual effects, such as the ones present in the MZI, may give
rise to outcomes of experiments that are not consistent with CP. In this section, we
explore the idea of contextuality as the connection to violations of CP in QC.

Let us start with the role of contextuality in QC11. QM was laid out about 100
years ago. However, it comes as a surprise to many that there is no consensus as to
what this theory actually represents. Of course, researchers agree with the theory’s
predictions, but there is substantial disagreement as to what the theory has to
say about the physical systems it models. For example, is the theory about what
the system actually is (ontological) or about what we can tell about the system
(epistemological)?

The sources of such disagreements are in the many consequences of quantum
mechanics that are irreconcilable with the classical views of nature. Following [36],
we stress three main characteristics of QM that are not part of classical mechanics:
non-determinism, contextuality, and non-locality. To single out contextuality as
the relevant aspect to QC, let us analyze each separately.

Determinism, in its simplest form, comes from the idea that a past state of a
system determines its future state. This is certainly true in classical mechanics,
where given the state of a particle at time t0 and the forces acting on it, the state
of such particle at times t > t0 are determined by

d2r (t)

dt2
=

F (t, r, ṙ)

m
,

where r (t) is the position of the particle at time t, m its mass, and F (t, r, ṙ) the
force acting on the force. From this, it follows that the state of the system at
t ≥ t0 is completely determined by the particle’s position r (t0) and velocity ṙ (t0).
Determinism is also true for classical electromagnetic theory, and seems to even be
consistent with thermodynamics, via the Kinetic Theory of Gases. However, already
in the late 1800’s, with the discovery of the radioactive decay, some physicists
started to realize that some nuclear processes seemed inconsistent with the idea
of determinism [77]. As knowledge about microscopic systems increased, and QM
developed, physicists realized that quantum systems seemed to be different from
classical ones, as they did not always allow for predictable outcomes from the state
of the system; not only was the state based on less information (as position and
velocity could not be simultaneously measured), but it also had an intrinsically
probabilistic connection to measurement outcomes (Born’s rule). Thus, QM seems
to violate determinism.

However, we can argue that quantum non-determinism is not necessary to QC
for two reasons. First, as we argued extensively elsewhere [84], the discrimination

11For a quick review of quantum mechanics, see Ref. [55] in this issue.
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between determinism and predictability is difficult, and all we can say is that cer-
tain cognitive processes may not be predictable. So, positing a non-deterministic
underlying process is unnecessary. Second, cognitive models already make exten-
sive use of stochastic processes without resorting to QM [17]. So, the use of QM in
cognitive modeling seems unnecessary.

The second feature of QM we analyze is non-locality. In 1932, Einstein, Podoslky,
and Rosen (EPR) published a seminal paper [45] where they examined the effects
of a measurement on an entangled quantum system, e.g. a system comprised of
two particles, 1 and 2. In this paper, EPR argued that if an interaction happens
with particle 1, such interaction cannot in any way instantaneously affect particle
2, if the particles have a large spatial separation. In Bohm’s version for spin half
particles, the EPR state is given by

(3.1) |ψ〉 =
1√
2

(|+〉1 ⊗ |−〉2 − |−〉1 ⊗ |+〉2) ,

where |+〉i (|−〉i ) corresponds to an eigenvector of spin in direction ẑ with eigen-
value +1 (−1) for particle i (we use here units where ~/2 = 1). As we see from
(3.1), if we measure the spin in the direction ẑ for particle 1 and obtain +1 (or
−1), then we “know” for sure the result of a spin-z measurement for particle 2.
Thus, according to EPR, since we cannot have any instantaneous influence of 1 in
2, a measurement in 1 yields information about 2 without disturbing it. EPR then
went on and argued that such result would imply that the description of nature
given by quantum mechanics was incomplete, as clearly we could know something
about 2 without directly measuring it. In a surprising result, John Bell [12, 13]
showed that EPR’s view that a measurement in 1 did not disturb 2 was inconsis-
tent with the experimental predictions of QM. Therefore, QM seems to allow for
some superluminal influence12. This characteristic of QM is known as non-locality.

Aspect and collaborators provided evidence for quantum non-locality in the 1980s
[10, 9], when they showed that a set of inequalities (known as CHSH inequalities,
after reference [25]) were violated. For non-signaling systems13, the CHSH inequal-
ities are necessary and sufficient conditions for the existence of a joint probability
distribution [48], which are also equivalent to the the existence of a local (realistic)
theory, meaning that their violation implies non-locality. We point out that to
show non-locality, Aspect’s experiment had to show correlations between spacelike
separated measurements.

With Aspect’s experiment in mind, we ask ourselves whether non-locality is
relevant to cognition. Given the brain’s radius is of order of 10−1 m, any events
within the brain would have to be correlated within a time window of 10−10 s for
them to be separated by a spacelike interval. Since there are no cognitive processes

12Bell’s results and the actual claims about superluminal influences are conceptually very
subtle, and it would go beyond the scope of this article to carefully explain them. We refer the
interested reader to Bell’s excellent papers in [14].

13In physics, the non-signaling condition is the statement that no matter, energy, or informa-
tion (i.e. signal) can be sent between two spacelike separated events. It is a restriction imposed
by relativity theory. In practice, this condition simply states that marginal probabilities for one
observer cannot change when a second, far away, observer changes the choice of measurement,
such that the choices and measurements are spacelike separated. Other terms for this property
of marginal probabilities have been used (e.g. “parameter independence,” “marginal selectivity,”
among others).
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that can be measured within such intervals of time, no empirical evidence of non-
locality in the brain should be expected. Furthermore, since cognitive processes are
several orders of magnitude slower than 10−10 s, one could never reject classical
mechanisms that explain such influences. Therefore non-locality should not be
pertinent for QC.

We are then left with the idea of contextuality. Contextuality in QM was dis-
cussed explicitly by Kochen and Specker in [70], but its roots appeared early on
in the realization that experiments did not actually reveal the outcomes of a pre-
existing quantity, but instead create them. In Peres’s example [78], three mea-
surement directions, ê1, ê2, and ê3, for spin 1/2 present problems if assumed that
measurements reveal the component of the spin in a given direction, i.e. if we
imagine that the particle has some unknown spin µ and that measuring it in direc-
tion ê1 reveals the component of µ in this direction (i.e., ê1 · µ). Since each spin
measurement only yields either +1 or −1, if we choose our directions such that
ê1 + ê2 + ê3 = 0, we have

µ · (ê1 + ê2 + ê3) = µ · ê1 + µ · ê2 + µ · ê3,

which would yield a contradiction, since the left hand side is zero (by our choice of
directions) and the right hand side is either ±3, or ±1, but never zero. This problem
is resolved when we realize that an experiment to measure ê1 is incompatible with
an experiment to measure ê2 or ê3 (spins operators do not commute), and that the
contradiction comes from assuming that the values of the spin components do not
change when we change the experiment.

We say a set of experimental outcomes are contextual if their values change
under different conditions (see [43, 44, 41, 32]). To illustrate this, imagine three
±1-valued random variables X, Y, and Z recorded under such conditions that we
never observe all three simultaneously, but only in pairs (e.g. X and Y but not
Z, or Y and Z but not X). For simplicity assume that their expectations are
all zero, E (X) =E (Y) =E (Z) = 0, and that they are perfectly anti-correlated,
E (XY) = E (XZ) = E (YZ) = −1. Now, the assumption that a variable is the
same under different experimental conditions leads to a contradiction. To see this,
start with a hypothetical X = 1 and Y = −1 on a trial. The second correlation
gives Z = −1, but the third correlation gives Z = 1. Clearly, Z when measured
with X is different from Z measured with Y, and this system is contextual.

We formalize contextuality following Dzhafarav and Kujala. Let us assume that
variables are a priori contextual, and instead of calling them X, Y, and Z, we in-
clude a label to describe context. For the three correlation experimental conditions,
we have the following six variables: XY, YX,XZ, ZX, YZ, and ZY. For these vari-
ables, the observed correlations are E (XYYX) = E (XZZX) = E (YZZY) = −1,
and it is straightforward to confirm that no contradiction arises from this expanded
set of random variables. So, we now have a clear definition of contextuality: our
system of three random variables is non-contextual if and only if it is possible to
find a probability distribution consistent with the observed correlations and ex-
pectations such that P (XY = XZ) = P (YX = YZ) = P (ZY = ZX) = 1. In
other words, a system is non-contextual if the values of the random variables do
not depend on the experimental contexts, and contextual otherwise. The notion
of non-contextuality (and contextuality) can be easily extended to more variables,
and we refer the reader to reference [40].
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The most famous case of a contextual quantum system was presented in Kochen
and Specker’s seminal paper [70], where they provided a set of yes-no questions
that if answered in accord with quantum mechanical predictions lead to inconsis-
tencies, similar to our example above (though with 118 questions, instead of only
three). As mentioned above, the CHSH inequalities are equivalent to the existence
of a joint probability distribution. Its violation by quantum mechanics means that
Bell-type quantum systems are contextual. However, they present a special type
of contextuality, where the contexts for the variables are set by the choice the ex-
perimenters make in a spacelike separated interval (thus the non-local character of
QM). Furthermore, because they are probabilistic, unlike Kochen-Specker, they are
not often discussed as examples of contextuality14, though they clearly are, if we
think of contextuality as above. As such, QM provides other types of contextuality
which do not require non-locality, such as is the case with the MZI or with order
effects.

Can contextuality be a feature of cognitive systems? Absolutely. As we saw in
the examples from QC above, the cases where CP fails to describe all situations
where different contexts were used to probe an answer (say, a known versus unknown
context, in the violation of the STP). Furthermore, as we show in the next section,
such contextual outcomes can be modeled in a very classical way.

To summarize, in this Section we discussed reasons for using QM in cognitive
models. Among those reasons, we argued that only stochasticity and contextuality
are relevant. To support this, in the next section we provide a neural model that
fits the same outcomes as quantum cognitive models, but also provide cases where
outcomes are contextual but yet not describable by quantum mechanics15.

4. A neural model of Quantum Cognition

In the previous sections, we discussed the features of QM relevant to QC. We
argued that contextuality is the most probable feature relevant to social systems.
In this section we present, in a hopefully intuitive way, a classic neural oscillator
model that replicates some of the characteristics of QC [85]. Our goal is that such
model might shed some light into the limitations of using QM to model cognition.

Our model relies on neurophysiological evidence that suggests cognitive pro-
cesses as an activity involving large collections of synchronizing neurons. This is
corroborated by EEG experiments showing the EEG data as a good representa-
tion of language or visual imagery [?]. In this Section we follow [33], and readers
interested in more technical details are referred to [85].

In our model, the mathematical behavioral stimulus-response theory (SR theory)
is described by synchronized neural oscillators16. SR theory is one of the most
successful behavioral theories, mainly because it can be mathematically formalized
as a simple set of axioms. In terms of random variables Z, S, R, and E, with
Z : Ω→ E|S|, S : Ω→ S, R : Ω→ R, and E : Ω→ E, where S is the set of stimuli,
R the set of responses, and E the set of reinforcements, a trial in SR theory has

14There are exceptions, such as the works of Cabello [23, 22, 24, 52].
15Here we mean non describable in the sense discussed in [69]; see also [28, 31].
16It is beyond the scope of this article to give a full fledged account of SR theory, and here we

only attempt to describe it in an intuitive way. Readers interested in a mathematical treatment
of this theory are referred to [83, 86].
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OS

Or1

Or2

Figure 4.1. Schematic representation of the SR oscillator model
for two possible responses, 1 or 2, represented by the synchroniza-
tion of the stimulus oscillator Os with the response oscillators Or1
or Or2 . Each circle corresponds to groups of neurons synchronized
among themselves, and the lines to connections between each group
of neurons.

the following structure:

(4.1) Zn → Sn → Rn → En → Zn+1.

Intuitively, a trial n starts with the subject having a given state of conditioning Zn.
Then, a stimulus s ∈ S is sampled (Sn), and a response Rn is given according to
the sate of conditioning (or randomly, if no conditioning is associated to s). After
a response, a reinforcement En event occurs, informing the subject of the correct
answer, and this may result (with probability c) to a change in conditioning to this
reinforced event, thus leading to a new state of conditioning Zn+1. In other words,
learning happens with repeated reinforcement in a probabilistic way by changes in
the state of conditioning.

To obtain SR theory in terms of neurons, a distal stimulus is represented in the
brain by a set of synchronized neurons, and similarly for responses. Collections of
neurons synchronize in phase because of their excitatory connections, and synchro-
nize out of phase because of inhibitory connections [33]. Because we are talking
about ensembles of neurons (perhaps thousands), each set stimulus/responses can
be described in a first approximation by a periodic function, which for simplicity we
assume to be a cosine function. Thus, the basic unit in our model is an oscillator

(4.2) O (t) = A (t) cosωt,

where ω = ω (t) is its time-dependent frequency. Since ω is a function of time,
O (t) is determined by the argument of the cosine, i.e. by ϕ (t) = ω (t) · t. Thus, we
rewrite this simple oscillator as O (t) = A (t) cosϕ (t), and call ϕ (t) the phase of
O(t). Firing neurons spike with same amplitude but varying frequencies. Therefore,
a collection of firing neurons can be approximately described by A (t) = A0 and
ϕ (t), and in our model we assume interactions that affect only the phase.

So, let Os (t) be a stimulus oscillator given by

Os(t) = A cos (ω0t) = A cos (ϕs(t)) ,(4.3)

and let

Or1(t) = A cos (ω0t+ δφ1) = A cos (ϕr1(t)) ,(4.4)
Or2(t) = A cos (ω0t+ δφ2) = A cos (ϕr2(t)) ,(4.5)

be the two response oscillators (Figure 4.1) .
To describe synchronization, we start with Os (t) and Or1 (t). When uncou-

pled their natural frequencies ωs and ωr1 are constant. From equation (4.2) their
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uncoupled dynamics satisfy
dϕs
dt

= ωs,(4.6)

dϕr1
dt

= ωr1 .(4.7)

If weakly coupled, their interaction does not affect the sinusoidal character of Os (t)
and Or1 (t), but affects their relative phases, and (4.6) and (4.7) need to include an
interaction term. Such term reflects the tendency of phases to either move closer
to each other for excitatory synapses or move apart from each other for inhibitory
synapses. Then, in first approximation, we have

dϕs
dt

= ωs − ks,r1 sin (ϕs − ϕr1) ,(4.8)

dϕr1
dt

= ωr1 − kr1,s sin (ϕr1 − ϕs) ,(4.9)

where kij are the couplings. To understand where synchronization comes from, let
us define

ϕ′s = ϕs − ωst,
ϕ′r1 = ϕr1 − ωr1t.

Substituting in (4.8) and (4.9), we have
dϕ′s
dt

= −ks,r1 sin
((
ϕ′s − ϕ′r1

)
+ (ωs − ωr1) t

)
,(4.10)

dϕ′r1
dt

= −kr1,s sin
((
ϕ′r1 − ϕ

′
s

)
− (ωs − ωr1) t

)
.(4.11)

Equations (4.10) and (4.11) have fixed points17 when

ϕ′r1 − ϕ
′
s = δω t,

or,
ϕr1 = ϕs.

In other words, (4.8) and (4.9) are stationary when synchronized.
The system (4.8) and (4.9) can be extended to N oscillators, and become

(4.12)
dϕi
dt

= ωi −
∑
j 6=i

kij sin (ϕi − ϕj) .

Equations (4.12) are known as Kuramoto equations [72], and they are often used to
describe synchronizing systems. Their advantage come from two main points. They
can be exactly solved under symmetry assumptions in the limit of largeN , providing
insight into the nature of emerging synchronization. Second, sets of weakly-coupled
oscillating systems can be roughly described by Kuramoto-like equations [57]. In
our model, we assume Kuramoto’s equations are a good approximation for the
dynamics of coupled sets of neural oscillators.

From the oscillators’ mathematical description, we can describe how SR theory
is modeled by them. The main idea is straightfoward. Once a distal stimulus
is presented, an associated ensemble of neurons in activated the brain. Neurons

17A fixed point is a point where all derivatives are zero. Their are important points because
they represent stationary solutions for the dynamical system. Fixed points can have stationary
solutions that are either stable or unstable.
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in this ensemble synchronize, and we describe this highly complex system by its
average phase. We think of this synchronization as an activation of the stimulus
representation in the brain.

Once the stimulus is activated, it may elicit a response by activating synapti-
cally coupled oscillators (in a mechanism that may lead to spreading activation
[26]). Similarly to stimuli, responses are represented by ensembles of synchronized
neurons. Among the active responses, selection of a particular one is done by the
relative phase synchronization between the stimulus oscillator and the selected re-
sponse. This phase synchronization is determined by the couplings between the
stimulus and response oscillators, and the couplings are related to the state of
conditioning in SR theory.

The simplest model utilizes three oscillators as introduced above. Once activated,
the rate of firings within each response oscillator is due to their own dynamics and
also the firings of Os. Thus, it is reasonable to assume that they interfere, with
interference meaning higher coherence when in phase and lower coherence when
out of phase. Mathematically, we have, for equal amplitude oscillators, equations
(4.3)–(4.5). As with physical oscillators, the mean intensity is a measure of the
excitation carried by the oscillations, and at response 1 it is

I1 =
〈

(Os(t) +Or1(t))
2
〉
t

=
〈
Os(t)

2
〉
t

+
〈
Or1(t)2

〉
t

+ 〈2Os(t)Or1(t)〉t ,

where 〈f (t)〉t0 is the time average of f (t) defined by 〈f (t)〉t0 = 1
∆T

´ t0+∆T

t0
f (t) dt

(∆T � 1/ω0). We have at once

I1 = A2 (1 + cos (δφ1)) ,

and similarly
I2 = A2 (1 + cos (δφ2)) .

Therefore, the intensity for r1 or r2 depends on the phase difference between the
SR oscillators.

Since I1 and I2 are competing responses, the maximum contrast between them
happens when one of their relative phases (with respect to the stimulus oscillator)
is zero while the other is π. It is standard to normalize the difference I1 − I2 by
the total intensity,

(4.13) b =
I1 − I2
I1 + I2

.

taking values between −1 and 1. The quantity b is called the contrast.
The contrast provides a way to think about a continuum of responses between

r1 and r2. Assume

(4.14) δφ1 = δφ2 + π ≡ δφ,
which yields

(4.15) I1 = A2 (1 + cos (δφ)) ,

and

(4.16) I2 = A2 (1− cos (δφ)) .

Then, to determine b all we need is δφ, as

b = cos (δφ) ,(4.17)
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0 ≤ δϕ ≤ π. So, δφ codes a continuum of responses between −1 and 1 or any
arbitrary interval (ζ1, ζ2) upon rescaling.

The above discussion presents only some aspects of our oscillator model, which
was designed to reproduce SR theory. It goes beyond the scope of this paper to
describe fully this model, particularly because learning, one of the central features
of SR theory, is not relevant to our current purposes of showing quantum-like
characteristics in neural oscillators. However, we examine in more detail two of the
mathematical components of the oscillator SR model that are relevant to us here:
sampling and response.

When a stimulus sn is sampled, a collection of neurons fire synchronously, cor-
responding to the activation of a neural oscillator, Osn . In consonance with SR
theory, we assume the activation of sn in a way that is consistent with the random
variable Sn. In other words, from a set of sn oscillators, we activate only one oscil-
lator with equal probability. This is a stochastic characteristic of the theory that
is not part of the dynamics, but is a classical type of stochasticity.

Once sn is sampled, the active oscillators evolve for the time interval ∆tr, which
is selected as a parameter representing the time of response computation. This
evolution satisfies Kuramoto’s differential equations

(4.18)
dϕi
dt

= ωi −
∑
i 6=j

kij sin (ϕi − ϕj + δij) ,

where kij is the coupling constant between oscillators i and j, and δij is an anti-
symmetric matrix representing phase differences, and i and j can be either Osn ,
Or1 , or Or2 . Equation (4.18) can be rewritten as

(4.19)
dϕi
dt

= ωi −
∑
j

[
kEij sin (ϕi − ϕj) + kIij cos (ϕi − ϕj)

]
,

where kEij = kij cos (δij) and kIij = kij sin (δij), and this has an important physical
interpretation: kEij corresponds to excitatory couplings, and kIij to inhibitory ones.
In terms of those couplings, the evolution equation is

dϕi
dt

= ωi −
∑
i 6=j

[
kEi,j sin (ϕi − ϕj)− kIi,j cos (ϕi − ϕj)

]
,(4.20)

where ωi is the oscillator’s natural frequency. The solutions to (4.20) and the
initial conditions randomly distributed at activation give us the phases at time
tr,n = ts,n+∆tr. The coupling strengths between oscillators determine their relative
phase locking, which in turn corresponds to the computation of a given response,
according to equation (4.13). The couplings are determined by reinforcement, but
here we assume the values are given for each experimental condition (see [85] for
details).

At this point the attentive reader may have guessed where quantum-like con-
textuality come from: the interference of two neural oscillators in (4.17). To see
how interference renders quantum-like results, let us consider the following case
discussed in details in [29]. Imagine that instead of a single stimulus, Os, we have
two stimuli, Os1 and Os2 which can be activated separately or simultaneously. The
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activation of stimulus Os1 leads to a response (contrast) b1 when

kEs1,r1 = kEr1,s1 = αb1 = −kEs1,r2 = −kEr2,s1 ,(4.21)

kEr1,r2 = kEr2,r1 = −α,(4.22)

and

kIs1,r1 = kIr2,s1 = α
√

1− b21 = −kIs1,r2 = −kIr1,s1 ,(4.23)

kIr1,r2 = kIr2,r1 = 0,(4.24)

where α is a convergence to synchronization parameter (the larger the α, the faster
it converges). A similar set of couplings can be obtained for the other stimulus
oscillator Os2 if we require it to answer b2.

Now, from (4.20) and couplings (4.21)–(4.24), the system is deterministic. How-
ever, the initial conditions are not the same at every trial, and if we assume a
Gaussian distribution of initial phases at each trial, the responses given to the
stimulus Os1 will vary around the value b1. To code a discrete response, such as a
±1-valued random variable A we say the outcome of a random variable A is +1 if
the response b1 is greater or equal to 0.5, and −1 if the response is lesser than 0.5,
and we interpret the value +1 as an action being preferred over no action. Then,
if we carefully chose the parameters in (4.21)–(4.24) such that b1 is slightly greater
than 0.5, then A would be +1 with higher probability than −1. Thus we could say
that an action is preferred given stimulus Os1 . We could do the same type of setup
for stimulus Os2 , such that whenever this stimulus is presented an action is also
preferred.

The oscillator case above is equivalent to the example presented in Section 2 if
we think of the two distinct stimuli Os1 and Os2 as corresponding to “won first
bet” and “lost first bet,” respectively, and A = 1 as “accept second gamble” and
A = −1 as “reject second gamble.” If Os1 and Os2 are inconsistent stimuli, the
violation of the STP comes from the probabilities of response for such oscillator
model when both oscillators are activated (in case of lack of knowledge), and the
interference effects of the oscillations lead to the nonmonotonicity of probabilistic
outcomes [29]. In other words, because of interference, neural oscillator models may
exhibit contextual quantum-like features.

A natural question now arises from our oscillator model. Since QM brings so
many features in addition to stochasticity and contextuality18, it is worth investi-
gating whether there are violations of CP from our neural model that cannot be
described by QM. A natural starting point is the three random variable example,
X, Y, and Z, given in Section 3. It is straightforward to prove that a Hilbert space
description of three observables, represented by the Hermitian operators X, Y , and
Z, where we can observe them in a pairwise fashion implies that we can observe
all three simultaneous. In other words, if [X,Y ] = [X,Z] = [Y,Z] = 0, then there
exists a basis where X, Y , and Z are simultaneously diagonal. This means that if
we can concoct an experiment to measure X and Y together, another to measure
Y and Z, and yet another to measure X and Z, quantum mechanics predicts it
to be possible to create an experiment where all three observables, X, Y , and Z
are measured simultaneously. Since a simultaneous measure of three observables is

18Non-locality, as we talked about in Section 3, is one prominent case, but there are many
non-trivial results in QM that bear no clear connection to social systems, such as the no-cloning
theorem [37], or the monogamy of entanglement [92], to mention a few.
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a guarantee of the existence of a joint probability distribution (by simply count-
ing how many times each elementary event shows up), the three random-variable
example provided in Section 3 cannot be described by QM19.

However, as we showed in [28, 31], in a more complicated three stimulus and
six response oscillators, there are couplings between oscillators that give a higher
probability of anti-correlation between pairwise activations of stimuli. For strong
enough anti-correlations, there are no joint probability distribution, as Suppes and
Zanotti [87] proved that a joint probability exist iff

−1 ≤ E (XY) + E (XZ) + E (YZ)(4.25)
≤ 1 + 2 min {E (XY) , E (XZ) , E (YZ)} .

Thus, there are neural oscillator models that exhibit a type of contextuality that
cannot be modeled by QM.

In this Section we presented a neural oscillator model that reproduces not only
SR theory, but also displays the nonmonotonicity associated with contextual quantum-
like behavior. We also showed that such model poses difficulties for quantum de-
scriptions, as it implies the theoretical existence of systems that would not be de-
scribable by QM. In the next Section we introduce an alternative stochastic model
that we believe could be a natural replacement for the quantum formalism in such
cases where QM is not applicable.

5. Negative Probabilities

In this Section we introduce the idea of negative probabilities as a way to describe
certain contextual stochastic processes. Historically, negative probabilities (NP)
were first encountered in QM, when Wigner attempted to produce a joint probabil-
ity distribution for momentum and position that would give the same outcomes as
quantum statistical mechanics (for a somewhat old review, see [75]). Wigner dis-
missed NP as meaningless, and called them quasi-probability distributions20. Later,
Dirac used NP to approach problems in quantum electrodynamics [38], and Feyn-
man use them to describe the two-slit and spin [46]. Dirac and Feynman’s views
were similar to Wigner, but they thought of NP as a nice accounting tool that could
perhaps be as useful as negative numbers in mathematics. However, not all quan-
tum mechanical setups allow for negative probabilities (e.g. the two-slit experiment
can be shown to allow for negative probabilities only under certain counterfactual
reasoning [34, 35]). We emphasize that here NP always mean that a joint probabil-
ity distribution takes negative values for non-observable events (such as joint values
of position and momentum), but is always non-negative for observable events.

19This is a point mentioned by Kochen in [69], but in [30] we showed that by increasing the
Hilbert space and adding a fourth variable corresponding to context, we can artificially reproduce
the correlations that violate a joint probability distribution.

20Perhaps very much in the same way that mathematicians had problems with negative num-
bers. For instance, as late as the 1800’s, the famous mathematician Augustus De Morgan, stated
the following [74, pg. 72]. “Above all, he [the student] must reject the definition still sometimes
given of the quantity −a, that it is less than nothing. It is astonishing that the human intellect
should ever have tolerated such an absurdity as the idea of a quantity less than nothing; above all,
that the notion should have outlived the belief in judicial astrology and the existence of witches,
either of which is ten thousand times more possible.”
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Before we delve further into our discussion of NP, we formally define it (from
now on we follow [35]). We start with a preliminary definition related to marginal
expectations that are observable.

Definition 3. Let Ω be a finite set, F an algebra over Ω, and let (Ωi,Fi, pi), i =
1, . . . , n, a set of n probability spaces, Fi ⊆ F and Ωi ⊆ Ω. Then (Ω,F , p),where p is
a real-valued function, p : F → [0, 1], p (Ω) = 1, is compatible with the probabilities
pi’s iff

∀ (x ∈ Fi) (pi (x) = p (x)) .

Furthermore, the marginals pi are viable iff p is a probability measure.

Intuitively, we can think of the pi’s as observable marginal probabilities on sub-
spaces of a larger sample space Ω. Then such marginals are viable21 if it is possible
to “sew” them together to produce a larger probability function over the whole Ω
[42, 39, 32, 35].

As mentioned, in QM the marginals are not always viable, but are compati-
ble with a real-valued function p that has the characteristic of being somewhere
negative. This motivates the following definition.

Definition 4. Let Ω be a finite set, F an algebra over Ω, P and P ′ real-valued
functions, P : F → R, P ′ : F → R, and let (Ωi,Fi, pi), i = 1, . . . , n, a set of n
probability spaces, Fi ⊂ F and Ωi ⊆ Ω. Then (Ω,F , P ) is a negative probability
space, and P a negative probability, if and only if (Ω,F , P ) is compatible with the
probabilities pi’s and

N1. ∀ (P ′)

(∑
ωi∈Ω

|P ({ωi})| ≤
∑
ωi∈Ω

|P ′ ({ωi})|

)
N2.

∑
ωi∈Ω

P ({ωi}) = 1

N3. P ({ωi, ωj}) = P ({ωi}) + P ({ωj}) , i 6= j.

In this definition we replaced Kolmogorov’s nonnegativity axiom with a mini-
mization of the L1 norm of P . There is an intuitive reason to do so: we seek a
quasi-probability distribution that is as close to a proper distribution as possible.
This departure from a proper norm is the motivation for the following definition.

Definition 5. Let (Ω,F , P ) be a negative probability space. Then, the minimum
L1 probability norm, denoted M∗, or simply minimum probability norm, is given
by M∗ =

∑
ωi∈Ω |P ({ωi})|.

In [35] we proved that P is a probability (and therefore (Ω,F , P ) is a probability
space) if and only if M∗ = 1. Since M∗ can be greater than one for systems with
negative probability, and since negative probabilities come from the impossibility
of defining a proper probability distribution that can put together the different
marginals, we interpret M∗ as a measure of contextuality. In other words, not only
does the existence of NP lead to contextuality, but the more they depart from a
proper distribution the more there contextuality there is [32].

An important result for negative probabilities relies on the following definition
[35].

21A term coined by [53].
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Definition 6. Let Ω be a finite set, F an algebra over Ω, and let (Ωi,Fi, pi),
i = 1, . . . , n, a collection of n probability spaces, Fi ⊆ F and Ωi ⊆ Ω. Then the
probabilities pi are contextually biased22 if there exists an a in Fi and in Fj , i 6= j,
b 6= a 6= b′,

∑
∀b∈Fj

p (a ∩ b) 6=
∑
∀b′∈Fi

p (a ∩ b′).

In references [1, 6, 76, 73] it was independently proven that NP (in the sense we
use above) exist if and only if the marginals pi are not contextually biased. Thus, it
follows that for many systems where proper joint probability distributions cannot be
defined, we can still define NP if such systems are not contextually biased. Another
way is to say that a collection of probabilities pi are compatible if and only if they
are not contextually biased.

We now present an example of a nontrivial application of negative probabilities
to decision making [30]. In this example, Deana is a decision maker who wants
to bet on the stock market (well, some “simple” version of it). She she wants to
invest in three companies, creatively named here X, Y , and Z. Since she knows
nothing about X, Y , and Z, she contacts three “experts,” Alice, Bob, and Carlos,
who provide her with expected outcomes of X, Y , and Z. However, each expert is
specialized only on two of the companies, but not all. Furthermore, perhaps because
of a bias, experts may give information that is inconsistent. For example, say we
create the following ±1-valued random variables, X, Y, and Z, corresponding to
their beliefs of a stock value going up if +1 and down if −1. Our experts all agree
that the probabilities of stocks of X, Y , and Z going up are the same as going
down, and therefore we can say that

(5.1) E (X) = E (Y) = E (Z) = 0.

But since Alice only knows about X and Y , she can only tell us that her belief is

(5.2) EA (XY) = −1,

where we put a subscript on the expectation to emphasize that it is Alice’s subjec-
tive belief23. Equation (5.2) has the simple interpretation: Alice believes that if X’s
stocks go up/down then Y ’s will go down/up with certainty. Bob’s and Carlos’s
beliefs are that

(5.3) EB (XZ) = −1

2
,

and

(5.4) EC (YZ) = 0.

It is easy to see from (4.25) that (5.2)–(5.4) are not viable, but (5.1) imply the
probabilities that lead to Alice, Bob, and Carlos’s expectations are compatible.
Therefore, there exists a negative probability distribution consistent with (5.1)–
(5.4).

What is Deana to do with the inconsistent information she got from Alice, Bob,
and Carlos? A standard approach is to start with a prior distribution and use their
information to update the posterior using Bayes’s theorem. However, as demon-
strated in [30], such approach has a shortcoming: it does not tell us anything new

22Here we adopt and adapt the terminology of [39].
23An example of inconsistent information like the one we present here is not easily translatable

into objective interpretations of probabilities.
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about the triple moment E (XYZ). The Bayesian approach does not update the
triple moment, and its value comes purely from Deana’s prior.

The lack of update for the triple moment presents a difficulty. To show it, take
the deterministic (and consistent with a proper joint probability) case where Deana
was given EA (XY) = EB (XZ) = EC (YZ) = 1. It is immediately clear from these
correlations that E (XYZ) = 1. So, since the experts are not disagreeing, and since
their judgment leads to a specific value for the triple moment, why should Deana
not take this into account? Why should her bet on the triple moment be related
simply to her prior on it? This seems to be a failure of the Bayesian approach.
The situation is different for NP. Because we assume that a joint quasi-probability
distribution exists (albeit negative) and that the best joints (as they are not unique)
minimize the L1 norm, as they are the closest to a “rational” and consistent joint,
then we are constrained to only the best joints. In the deterministic case of 1
correlations, this leads to the correct prediction that the triple moment is 1.

The minimization of the L1 norm also has a consequence for the inconsistent
pairwise expectations (5.2)–(5.4). It restricts the possible values for the triple mo-
ments to the range [30]

−1

4
≤ E (XYZ) ≤ 1

2
.

Given that the Bayesian approach provides no information to Deana, it should
possible to devise a Dutch book between NP and Bayesian approaches for certain
situations24. NP provides normative information that goes beyond the Bayesian
approach.

The situation is a little better between NP and QC. As we mentioned, the X, Y,
and Z example is only describable via QM with supplementary assumptions, as done
in [30], where an extra dimension to the Hilbert space was added corresponding
to the internal states of belief of Alice, Bob, and Carlos. However, the triple
moment correlation needs to be explicitly given in the state vector, and there are
no arguments to limit its values. So, QC is in better shape than the Bayesian
approach because even though it does not provide an advantage over the other
approaches, it at least makes it explicit that the triple moment are included ad hoc.

We end this Section with some comments about the meaning of NP. In this paper
we take Feynman and Dirac’s views: NP are a useful accounting tool. However,
there are ways to interpret them. For example, Khrennikov showed that in the
frequentist interpretation of von Mises, negative probabilities appear when we have
sequences in the usual Archimedian metric that violate the principle of stabiliza-
tion, and therefore do not converge to a specific probability value25. In those cases,
a p-adic metric makes such sequences convergent, and negative probabilities appear
as the p-adic limiting case [61, 62, 63, 64, 65, 66]. Abramsky and Brandenburger
[1, 2] interpret NP in the context of sheaf theory. For them NP comes from two
independent types of events belonging to different types. One type of event erases
recordings of the other type, and this allows for the observed correlations. Finally,
closely related to Abramsky and Brandenburger’s, is Szekely’s interpretation, who
thinks of negative probabilities P as related to a proper probability p via a convo-
lution equation P ∗ f = p, which always exists [80, 88]. This convolution means

24A Dutch Book is the name given to a strategy that would allow one of the gamblers to win
for sure over the other gamblers in a game [7].

25Pseudo-random sequences may have this property.
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that for a random variable X whose probability distribution is P , there exists two
other random variables, X+ and X− with proper probability distributions (p and
f , respectively) and such that X = X+ −X−. Our interpretation can be though
as subjective: NP are an accounting tools, but provide us the best subjective in-
formation about systems who do not have an objective probability distribution, as
it is the closest distribution to a proper one (via normalization of the L1 norm).

6. Final Remarks

In this paper we discussed how some of the well-known examples used in QC are
connected to the contextuality of the two-slit experiment. A neural oscillator model
was introduced based on reasonable neurophysiological assumptions that reproduce
behavioral SR theory and the nonmonotonic character of QC. Such a neural model
produces outcomes for certain situations that are not naturally modeled by QM, as
in the case with six-response oscillators. However, such examples could be modeled
by NP. More importantly, NP did not only provide a way to describe such systems,
but was also normative.

QC comes from the idea that human decision making is better describable by
the mathematics of quantum mechanics, with its probability associated to density
operators in a Hilbert space. However, there are possible situations where QC is
not appropriate, such as the X, Y, and Z example. Furthermore, we saw that the
X, Y, and Z example shows up in neural oscillator models that reproduce stan-
dard SR theory, but also in decision-making situations. Therefore, as an extended
probability theory, QC is too restrictive, leaving out perhaps important situations.
Furthermore, QC is mostly descriptive, not offering, as far as we are aware, any
normative power. We contrast this with NP, which describes many of the QC sys-
tems (those with compatible probabilities), but also those created by inconsistent
oscillators or inconsistent information. Given how NP offers normative information
via the minimization of the L1 norm, which is computationally simple for biolog-
ical (as well as computer) systems, perhaps it is not unreasonable to hypothesize
that such processes actually happen in our brain. This, we believe is an exciting
perspective, and we hope to further investigate it in the future.

Bayesians have problems with not updating their triple moment, even faced
with indirect information about them. This suggests the existence of a Dutch
Book. An interesting question is how such a Dutch Book could be constructed.
For example, if Alice, Bob, and Carlos are subject to confirmation biases, could we
model it (similar to Fine’s prism model [49, 50]) and show that NP outperforms
Bayesianism? Furthermore, if our L1 norm hypothesis for the brain is correct,
wouldn’t human decision makers unconsciously follow a strategy that would win
bets with “rational” Bayesians? These questions also present a research program
that we believe will be fruitful.
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