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Abstract

In this work we apply Bohm'’s interpretation to the quantized spherically-symmetric blackhole coupled to a massless scalar
field. We show that the quantum trajectories for linear combinations of eigenstates of the Wheeler—DeWitt equation form a
large set of different curves that cannot be predicted by the standard interpretation of quantum mechanics. Some of them are
consistent with the expected value of the time derivative of the mass, whereas other trajectories are not, because they represen
blackholes that switch from absorbing to emitting regimes.
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Since the fundamental discovery, made by Hawking, that blackholes may emit raijtiovany studies have
been made in order to better understand this process. Initially, most of the works were concentrated in the area of
quantum field theory in curved space—tif2¢. More recently, some physicists have started studying Hawking’s
radiation with the aid of a quantum gravity thedB~6]. Most of these works deal with the theory of quantum
general relativity. In this theory, the standard probabilistic Copenhagen interpretation of quantum mechanics cannot
be applied. The use of different interpretations of quantum mechanics have been proposed to deal with quantum
general relativityf 7—11], and among them is the causal or de Broglie—Bohm interpretation.

The causal interpretation of quantum mechanics was first proposed by de Broglie, and later on it was extended by
Bohm to include many-particle systems and figldy. In this interpretation, variables corresponding to observable
physical quantities have an ontological meaning regardless of whether they are observed or not, contrary to the
standard Copenhagen interpretation of quantum mechanics. The problems of applying Copenhagen’s interpretation
of quantum mechanics to quantum cosmology has raised recent interest on the causal interpretation of quantum
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mechanics in quantum cosmolo@l/3,14], as this interpretation does not need an external observer to bring a
observable into reality. The causal interpretation has been applied with success, by several authors, to quantum
general relativityf13-19]

In the present work we would like to continue our previous st{#] on the Hawking radiation process
using the theory of quantum general relativity and the causal interpretation. We shall use, once more, the two
wave-functionals derived in Tomimatsu’s wof&]. The first wave-functional¥,; see Eq.(1)), was interpreted
by Tomimatsu as representing the classical blackhole behavior, mainly because the expected value of the time
derivative of the mass of the blackhole is positive. The second wave-functignakg. (2)), was interpreted as
representing the quantum blackhole behavior, as the expected value of the time derivative of the blackhole mass is
negative. Furthermore, the mass loss rate is in agreement with the one derived directly from the Hawking emission
procesg21].

In our earlier work[20], we showed that one may obtain evolution equations for the blackhole mass when
one considers quantum states described eithew bgr ¥,. This result is relevant because from the standard
interpretation of quantum mechanics used in Tomimatsu’s work one has just expected values for the time derivative
of the blackhole mass, whereas the quantum trajectories for the evaporating blackholes yield a change in the rate
of emission consistent with earlier resulgd]. In this work we will extend this result to include states that will
have different behavior from the ones obtained by Tomimatsu.

In this Letter, first, we compute Bohmian trajectories for several different cases and show the existence of states
that may, during some time, behave quantum mechanically, emitting Hawking radiation, and, some other time,
behave classically, absorbing energy. This is done by studying sates described by linear combinatjcarsdof
¥, . Each wave-functional is characterized by two parameters: one present in the phase and the other in the modulus.
Therefore, one may have a state which is the result of the linear combination of two differekd we shall see,
the mass evolution trajectories for this particular combination may have a very different behavior from the one
found in[20] for a state represented by a single We shall also consider the other possible linear combinations:
¥, with ¥, and¥, with ¥,. We must emphasize that the fluctuating behavior of those superpositions cannot be
obtained from the standard interpretation of quantum mechanics, as it would not show up in the expectations for
the rate of change of mass. Also, when this behavior appears, the WKB approximation cannot always be used, as
the effects of the quantum potential, and therefore the rate of change of the absolute value of the wave functional,
may be strong.

From[3] we have the following solutions to the Wheeler—DeWitt equation

2
v, = Cexp[i(g - S_R +kq§)} Q)

2
lI/q=Cexp|:i<R §R> |k¢|} 2

wherek andC are arbitrary real and complex parameters, respectivelyRaadd @ are the physical fieldg0].
Tomimatsu argued thak, represents the classical blackhole behaf{8pr One way to understand Tomimatusu'’s
argument s the following. If we impose the classical const{@id} H = v/2(P /2R? — P +1/4), with the aid of
the expression for the canonical moméqpt= M /2+1/4, we obtain at once thM > 0. It means that the apparent
horizon increases and the blackhole absorbs. This is expected, as we have an ingoing null fluid with positive energy
density. Quantum mechanically, we can see this same behavior if wi. s®l compute the expectation value of
M, (M), where over-dot means a derivative with respect to the advanced taret r [3], finding positive value
equal to 5. Also, the scalar field sector is describedqihby scalar waves penetrating the apparent horizon from
the exterror region.

On the other handy, in Eq. (2) represents the quantum-mechanical blackhole beh§joas in this case

the value of(M) is given by (M) = 4M2 This value is always negative, which means that the apparent horizon

and
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decreases and the blackhole emits. The scalar field cannot penetrate the horizon, as it is exponentially suppressec
This can be interpreted as a classically forbidden state.

Now, let us see what the causal interpretation tell us about the states describedlbpndy, (2). Following
the causal interpretation formalism applied to quantum general reldtiviyif we write our wave-functionals as

U =Rexpis), (3)
we obtain dynamical equations for the physical variables from
)
Py, = —, 4
X = 5x, 4)
whereX; stands forR and®. The expression for the quantum potentials given, in the present situation by
V2R
=——. 5
0=—— (5)

We shall restrict our attention tB, as the equations fap are trivial. Starting with?,., we may write(4), for
Xi =R, as

1k
Pr=-+—. 6
R=77 2R ©)
Now, introducing the expression &, Eq.(15) from Ref.[20], we obtain
.k
M=—. 7
4M?2 (7)
This equation is easily integrated to give
3
M3 = 21kz(v — vo) + M§, (8)

wherevg and My are the initial values ob and M, respectively. This solution tells us that the blackhole méss
increases continuously as the time, measured, liycreases. This wave-functional is associated with the classical
behavior of the blackhole. In particular, if we compute the value of the quantum pot@ritiam Eq.(5) for ¥, in
Eq. (1), we find that it is zero, as expected for the classical situation.
Similarly, for ¥, we find the dynamical equation fof,
. k2
M=-———. 9
4M2 ©

Note that Eq.(9) is similar to the equation for the expected valueMsf The difference is that Eq9) can be
integrated to give the exact evolution &f and not just its expectation giving

3
M3 = —Zkz(v —vo) + Mg, (10)

wherevg and My are the initial values ob and M, respectively. Eq10) tell us that if the blackhole has an initial
massMy at vg after a timev, = 4M§’/3k2 + vp, it will completely evaporate. This is in accordance with the
qualitative predictions made by Hawking that, taking into account quantum properties, blackholes eJaporate
Eq. (10) is also in accordance with predictions on how this evaporation should take place, if one considers the
elementary particle picture of blackhole emissiof21]. The quantum potentiaD in Eq. (5), computed forZ, in
Eq.(2), is given by—k?/2R?. This may be interpreted as an attractive potential that gutis zero. If we take into
account thaR = 2M in Tomimatsu’s gaugg8], this potential also pulls the mass towards zero.

Even though the cases presented above are interesting, as they go beyond expected values and predict that th
rate of change in the mass of an evaporating blackhole decreases as the mass increase, they still do not give u:
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Fig. 1. M versusv for a state described by, (11)with C.q =1,C.o =1/2,k.1 =1,kep =10,M (v =0) =1 and® (v = 0) = 0.1. (a) Small
values ofv, (b) greater values af.

any physics that could not be obtained from using a WKB approximation. However, let us see what the causal
interpretation tells us about the states described by linear combinations of the wave-functional¢in & (2)
We start with a general linear combination of two “classical” stgtgs

(R K (R k%
Yee=Ca exp| Z - ﬁ + k1 ® +Ce2 exp| Z - E + ke2® s (11)

wherek,1, k.2, C.1, andC.; are constants. Following the steps shown above, we obtaindom

_ 2Cc1C2c08B1) (kZ) + k2 + 4M (v)?)

M(v) = 8(C2 > 2
(Ca + €+ 2Cc1Ce2C08B1)) M (v)
CA(2kZ +4AM()?) + CH2k5+4M )P 1 (12)
8(C2 + C% +2CaCe2c08p1)) M) 2
PR CEke1 + Coke2 + Ce1Cep(ker + ke2) cOS 1) (13)
4M (v)2 CZ4 + C% +2C1Ce2c08B1)
where

(ker — ke2) (ker + k2 — AM (V)P (v))

pr= 4M (v)

This system of coupled differential equations can be integrated numerically for a set of initial conditions and
parameters. Performing numerical investigations on a large number of different initial conditions, we see that most
of them behaves as expected, i.e., from an initial valfiethe mass increases asincreases. For some initial
conditions, though, we notice a behavior quite different from the expected one, as we can find solutions where the
mass initially increase fromMg for increasingv, reaching a maximum and decreasing afterwards. We stress that
whenM is small, the oscillations of the wave make the WKB approximation unsuitable, and Bohm'’s interpretation
gives new resultsrig. 1shows a typical trajectory for the latter case.

Consider now, the general linear combination of Wgogiven by

(R k§1 (R kgz
Wyq = Cq1EXP| i RET — lkg1®@| | + Cq2€Xp| i VRET] — lkg2®1 |, (14)

wherek,1, kq2,C41, andC,» are constants. Following the same steps as before, we obtain
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. ek thDW) ¢, cog i ol )(k 2, —4Mv)?)
4D1(M, ®)M (v)2
equ2<D(v)C§2(2k52 _ 4M(U)2) N equlq)(v)(_ZkSl +4M(U)2) _ } (_‘]_5)

4Dy (M. )M (v)? 8DLM, &)M@)? 2

(kq1+k, 2)<1>(v)(k )C ( ! k‘?z)
. 1 e\t q 1_ 2 ZSIn
S = q2)%q AM (v) i (16)

4M(U)2 Di(M, D)

where, without loss of generality, we €}, = 1, and where we used the abbreviation

k2, — k2
Di(M, ®) = [ Za1®2®) 4 (22?02 4 2, (k1 k2P , o a1 "q21) )
1( ) (e +e q2 1 2e 92 4 ()

Egs.(15) and (16)can be integrated numerically. However, we can easily prove that the fidpis always
negative, and as a consequence, the mass always decreaise 2Arwe see a typical mass trajectory for this case.
Finally, let us consider the general linear combination of a “classical” Stateith a quantum state&,,

(R K? R k2
lI/Cq:CCexpz<Z—ﬁ+k 45) + Cyexp|i ( 2R> kg @] |, @an
wherek,, k,, C., andC, are constants. We obtain at once

2 2
—2eV 97", cosBo) (—k2 + K2 — 4AM(v)?)

M®) =
2W+C2+2 \/WC cos(B2)) M (v)?
ZW (K2 +4M W) + CH-22 +4M (D) 1 (18)
ZW + C2 4 2e \/76‘ Coiﬂz) M(U)2 2
‘ eW(EWkCW+kCCq COS(ﬂz)\/W)
D (v) = 2
4M (1) (ez\/W +C2+ 20152072 Cy coiﬁz))\//m
1 e\/w k2Cy @ (v) Sin(B2) (19)

T AM ()2 26 ()2 2 (1)2 ’
7 (VRO | 24 20 ¢, cospy) k20 ()2
where, without loss of generality, we g€t = 1, and use the abbreviation

k2 + k2 — 4k M (v)@ (v)

4M (v)
Integrating(18)—(19)numerically on a large number of trajectories fdr, depending on the value of the fraction
kc/kq, we found several different types of trajectories. Wlkgnk, > 1, most of the mass trajectories behave
as if they were a superposition of two statEs This behavior shows that, in this case, the classical component
dominates the quantum component. In the casekthidt, <« 1, most trajectories behave as if they were a quantum-
quantum superposition, showing the domination of the quantum component for this case. Finally, in the case that
kc/kqy ~ 1, we have trajectories that mix the classical and quantum behavidfig.|§ we may see an example of

po=
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Fig. 2. M versusv for a state described by, (14)with Cq =1,k;1 =1,kj2 =2, M(v=0) =10 and® (v =0) = —-1.
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Fig. 3. M versusv for a state described by, (17)with C; =1,k =1,k =2, M(v =0) = 2.135 and® (v = 0) = 0.0410.

such trajectories. The mass increases initially from a given initial value, up to a maximum, and then decreases to a
local minimum, increasing thereafter.

It is important to notice that several of the trajectories for the mass computed above cannot be predicted by the
expected value aff. This is because the expected value is a fixed number for each quantum state considered, and
does not say anything about the behavior of individual systems in the ensemble.

To summarize, using the causal interpretation, we computed the individual quantum trajectories determined by
the initial conditions. We showed that the quantum trajectories for the blackhole mass could either increase or
decrease with time, depending on the wave-functignsor ¥,. We also showed that for superpositions of those
wave-functions new behavior is predicted that cannot be obtained from the standard interpretations of quantum
mechanics. In particular, for some states and initial conditions, it was possible to have a blackhole that would
start absorbing mass and then, after some time, start evaporating. In some cases the evaporation would last a shol
amount of time and the absorption process would restart, but in some other cases all the mass evaporates.
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