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In the present work, we quantize a closed Friedmann-Robertson-Walker model in the presence of a
positive cosmological constant and radiation. It gives rise to a Wheeler-DeWitt equation for the scale
factor which has the form of a Schrödinger equation for a potential with a barrier. We solve it numerically
and determine the tunneling probability for the birth of a asymptotically DeSitter, inflationary universe,
initially, as a function of the mean energy of the initial wave function. Then, we verify that the tunneling
probability increases with the cosmological constant, for a fixed value of the mean energy of the initial
wave function. Our treatment of the problem is more general than previous ones, based on the WKB
approximation. That is the case because we take into account the fact that the scale factor (a) cannot be
smaller than zero. It means that, one has to introduce an infinity potential wall at a � 0, which forces any
wave packet to be zero there. That condition introduces new results, in comparison with previous works.
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I. INTRODUCTION

Since the pioneering work in quantum cosmology due to
DeWitt [1], many physicists have worked in this theory.
The main motivation behind quantum cosmology is a
consistent explanation for the origin of our Universe. So
far, the most appealing explanation is the spontaneous
creation from nothing [2–7]. In that picture for the origin
of the Universe, the Universe is a quantum mechanical
system with zero size. There is a potential barrier that the
Universe may tunnel with a well-defined, nonzero proba-
bility. If the Universe actually tunnels, it emerges to the
right of the barrier with a definite size. The application of
the creation from nothing idea in minisuperspace models
has led to several important results. The wave function of
the Universe satisfies the Wheeler-DeWitt equation [1,8].
Therefore, one needs to specify boundary conditions in
order to solve that equation and find a unique and well-
defined wave function. The motivation to obtain a wave
function that represents the creation from nothing has led
to the introduction of at least three proposals for the
boundary conditions for the wave function of the
Universe [7]. The inflationary period of the Universe ap-

pears very naturally from the creation from nothing idea.
That is the case because most of the minisuperspace mod-
els considered so far have a potential that decreases, with-
out a limit, to the right of the barrier. It gives rise to a period
of unbounded expansion, which is interpreted as the infla-
tionary period of the Universe [7]. Also, it was shown by
several authors that an open inflationary Universe may be
created from nothing, in theories of a single scalar field for
generic potentials [9–11]. Another important issue is the
particle content in the Universe originated during the cre-
ation from nothing process [6,12,13].

In the present work, we would like to explicitly compute
the quantum mechanical probability that the Universe
tunnels through a potential barrier and initiates its classical
evolution. That probability is the tunneling probability
(TP) and the particular model we consider here is a closed
Friedmann-Robertson-Walker (FRW) model in the pres-
ence of a positive cosmological constant and radiation. The
radiation is treated by means of the variational formalism
developed by Schutz [14]. That model has already been
treated quantum mechanically using the ADM formalism
and the Dirac quantization for constrained systems
[7,15,16]. The wave function, for that model, was calcu-
lated in the WKB approximation. Here, we compute the
wave function and TP exactly, without any approximation.
It will be done by means of a numerical calculation. In
particular, our treatment of the problem is more general
than previous ones, because we take into account the fact
that the scale factor (a) cannot be smaller than zero. It
means that, one has to introduce an infinity potential wall
at a � 0, which forces any wave packet to be zero there. As
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we shall see, that condition introduces new results, in
comparison with previous works. This model has two
free parameters: the radiation energy and the cosmological
constant. Therefore, we will obtain the TP as a function of
those two parameters. One of the main motivations of any
quantum cosmological model is to fix initial conditions for
the classical evolution of our Universe [2]. Here, for the
present model, we would gain information on what is the
most probable amount of radiation in the initial evolution
of the classical Universe and the most probable value of the
cosmological constant. Another motivation of the present
work, is trying to contribute to a long standing debate about
which is the most appropriate set of initial conditions for
the wave function of the Universe. The most well-known
proposals for the set of initial conditions are the tunneling
one, due to A. Vilenkin [3], and the no-boundary one, due
to J. B. Hartle and S. W. Hawking [4]. The application of
those proposals for simple models showed that they give
some different predictions for the initial evolution of the
Universe [3,4,13,15–18]. One of such predictions, which
we shall explore here, is the initial energy of the Universe
right after its nucleation. The tunneling wave function
predicts that the Universe must nucleate with the largest
possible vacuum energy whereas the no-boundary wave
function predicts just the opposite [7]. In terms of our
results, if one assumes that the cosmological constant
describes a vacuum energy, it is important to see if TP
increases or decreases with the cosmological constant, for
fixed radiation energy. The first behavior favors the tunnel-
ing wave function and the latter favors the no-boundary
wave function.

In the next Section, we describe the classical dynamics
of the present cosmological model. We write the super-
Hamiltonian constraint and the Hamilton’s equations. We
solve the Hamilton’s equations and find the general solu-
tion of the model. Then, we qualitatively describe all
possible classical evolutions. In Sec. III, we canonically
quantize the model and obtain the corresponding Wheeler-
DeWitt equation. We solve it, numerically, for particular
values of the radiation energy and the cosmological con-
stant. We show the square modulus of the wave function of
the Universe as a function of the scalar factor. The tunnel-
ing process can be readily seen from that figure. Section IV
is divided in three subsections with the main results of the
paper. In Subsec. IVA, we start introducing the tunneling
probability, then we evaluate its dependence on the radia-
tion energy. We obtain that the TP increases with the
radiation energy for a fixed cosmological constant.
Therefore, it is more probable that the classical evolution
should start with the greatest possible value for the radia-
tion energy. In Subsec. IV B, we give a detailed comparison
between the exact TP, computed in the previous subsection,
and the corresponding WKB tunneling probability. Here,
we show how the presence of an infinity potential wall at
a � 0 may lead to a difference between our results and

previous ones, based on the WKB approximation. In the
final Subsec. IV C of this section, we evaluate the depen-
dence of the exact TP with the cosmological constant. We
obtain that, the TP increases with the cosmological con-
stant for a fixed radiation energy. Therefore, it is more
probable that the classical evolution should start with the
greatest possible value for the cosmological constant. This
behavior of TP also favors the tunneling wave function.
Finally, in Sec. V we summarize the main points and
results of our paper.

II. THE CLASSICAL MODEL

The Friedmann-Robertson-Walker cosmological models
are characterized by the scale factor a�t� and have the
following line element:

 ds2 � �N2�t�dt2 � a2�t�
�

dr2

1� kr2 � r
2d�2

�
; (1)

where d�2 is the line element of the two-dimensional
sphere with unitary radius, N�t� is the lapse function and
k gives the type of constant curvature of the spatial sec-
tions. Here, we are considering the case with positive
curvature k � 1 and we are using the natural unit system,
where @ � c � G � 1. The matter content of the model is
represented by a perfect fluid with four-velocity U� � ��0
in the comoving coordinate system used, plus a positive
cosmological constant. The total energy-momentum tensor
is given by

 T�� � ��� p�U�U� � pg�� ��g��; (2)

where � and p are the energy density and pressure of the
fluid, respectively. Here, we assume that p � �=3, which
is the equation of state for radiation. This choice may be
considered as a first approximation to treat the matter
content of the early Universe and it was made as a matter
of simplicity. It is clear that a more complete treatment
should describe the radiation, present in the primordial
Universe, in terms of the electromagnetic field.

Einstein’s equations for the metric (1) and the energy-
momentum tensor (2) are equivalent to the Hamilton equa-
tions generated by the super-Hamiltonian constraint

 H � �
p2
a

12a
� 3a��a3 �

pT
a
; (3)

where pa and pT are the momenta canonically conjugated
to a and T the latter being the canonical variable associated
with the fluid [19]. The total Hamiltonian is given by NH
and we shall work in the conformal gauge, where N � a.

The classical dynamics is governed by the Hamilton
equations, derived from the total Hamiltonian NH ,
namely
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8>>>>>>><
>>>>>>>:

_a � @�NH �
@pa

� � pa
6 ;

_pa � �
@�NH �
@a � 6a� 4�a3;

_T � @�NH �
@pT

� 1;

_pT � �
@�NH �
@T � 0:

(4)

Where the dot means derivative with respect to the confor-
mal time � � Nt. We also have the constraint equation
H � 0. We have the following solutions for the system
(4):

 

T��� � �� c1;

a��� �

�������
6�
p

����������������������������������
3�

����������������������
9� 12��

pq

� sn
� ���������������������������������������

18� 6
����������������������
9� 12��

pq
��� �0�

6
; �
�
;

(5)

where c1, � and �0 are integration constants, sn is the
Jacobi’s elliptic sine [20] of modulus � given by

 � �

���
2
p

2

�������������������������������������������������������
�2��� 3�

����������������������
9� 12��

p
��

vuut : (6)

In the case studied here �> 0, the radiation energy � can
take values in the domain, � � 3=�4��. If one substitutes
values of � such that �< 3=�4�� in Eqs. (5) and (6), the
scale factor, starting from zero, expands to a maximum size
and then recollapse. On the other hand, if � � 3=�4��, the
scalar factor initially decelerates and then, enter the regime
of unbounded expansion.

III. THE QUANTUM MODEL

We wish to quantize the model following the Dirac
formalism for quantizing constrained systems [21]. First
we introduce a wave function which is a function of the
canonical variables â and T̂

 � � ��â; T̂�: (7)

Then, we impose the appropriate commutators between the
operators â and T̂ and their conjugate momenta P̂a and P̂T .
Working in the Schrödinger picture, the operators â and T̂
are simply multiplication operators, while their conjugate
momenta are represented by the differential operators

 pa ! �i
@
@a
; pT ! �i

@
@T

: (8)

Finally, we demand that the operator corresponding to
NH annihilate the wave function �, which leads to
Wheeler-DeWitt equation

 

�
1

12

@2

@a2 � 3a2 ��a4

�
��a; �� � �i

@
@�

��a; ��; (9)

where the new variable � � �T has been introduced.

The operator NĤ is self-adjoint [22] with respect to the
internal product

 ��;�� �
Z 1

0
da��a; ��	��a; ��; (10)

if the wave functions are restricted to the set of those
satisfying either ��0; �� � 0 or �0�0; �� � 0, where the
prime 0 means the partial derivative with respect to a. Here,
we consider wave functions satisfying the former type of
boundary condition and we also demand that they vanish
when a goes to 1.

The Wheeler-DeWitt Eq. (9) is a Schrödinger equation
for a potential with a barrier. We solve it numerically using
a finite difference procedure based on the Crank-Nicholson
method [23,24] and implemented in the program GNU-
OCTAVE. Our choice of the Crank-Nicholson method is
based on its recognized stability. The norm conservation is
commonly used as a criterion to evaluate the reliability of
the numerical calculations of the time evolution of wave
functions. In Refs. [25,26], this criterion is used to show
analytically that the Crank-Nicholson method is uncondi-
tionally stable. Here, in order to evaluate the reliability of
our algorithm, we have numerically calculated the norm of
the wave packet for different times. The results thus ob-
tained show that the norm is preserved.

In fact, numerically one can only treat the tunneling from
something process, where one gives an initial wave func-
tion with a given mean energy, very concentrated in a
region next to a � 0. That initial condition fixes an energy
for the radiation and the initial region where a may take
values. Our choice for the initial wave function is the
following normalized gaussian,

 ��a; 0� �
�
8192E3

�

�
1=4
ae��4Ea2�; (11)

where E is the radiation energy. ��a; 0� is normalized by
demanding that the integral of j��a; 0�j2 from 0 to 1 be
equal to one and its mean energy be E. After one gives the
initial wave function, it propagates following the appropri-
ate Schrödinger equation until it reaches infinity in the a
direction. Numerically, one has to fix the infinity at a finite
value. In the present case we fix amax � 30 as the infinity in
the a direction. The general behavior of the solutions,
when E is smaller than the maximum value of the potential
barrier, is an everywhere well-defined, finite, normalized
wave packet. Even in the limit when the scale factor goes to
zero. For small values of a the wave packet have great
amplitudes and oscillates rapidly due to the interaction
between the incident and reflected components. The trans-
mitted component is an oscillatory wave packet that moves
to the right and has a decreasing amplitude which goes to
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zero in the limit when a goes to infinity. As an example, we
solve Eq. (9) with � � 0:0121. For this choice of � the
potential barrier has its maximum value equal to 185.95. In
order to see the tunneling process, we choose E � 185 for
the initial wave function Eq. (11). For that energy, we
compute the points where it meets the potential barrier,
the left (altp) and right (artp) turning points. They are,
altp � 10:7287 and artp � 11:5252. In Fig. 1, we show
j��a; tmax�j

2 for the values of � and E, given above, at the
moment (tmax) when � reaches infinity. For more data on
this particular case see Table III in Appendix A. It is
important to mention that the choice of the numerical
values for � and E above and in the following examples,
in the next section, were made simply for a better visual-
ization of the different properties of the system.

IV. TUNNELING PROBABILITIES

A. Tunneling probability as a function of E

We compute the tunneling probability as the probability
to find the scale factor of the Universe to the right of the
potential barrier. In the present situation, this definition is
given by the following expression:

 TPint �

R
1
artp
j��a; tmax�j2daR

1
0 j��a; tmax�j2da

; (12)

where, as we have mentioned above, numerically 1 has to
be fixed to a maximum value of a. Here, we are working
with amax � 30.

Since, by normalization, the denominator of Eq. (12) is
equal to the identity, TPint is effectively given by the
numerator of Eq. (12). We consider initially the depen-
dence of TP on the energy E. Therefore, we compute TPint

for many different values of E for a fixed �. For all cases,

we consider the situation where E is smaller than the
maximum value of the potential barrier. From that numeri-
cal study we conclude that the tunneling probability grows
with E for a fixed �. As an example, we consider 47 values
of the radiation energy for a fixed � � 0:01. For this
choice of � the potential barrier has its maximum value
equal to 225. In order to study the tunneling process, we fix
the mean energies of the various ��a; 0�’s Eq. (11) to be
smaller than that value. In Table II in Appendix A, we can
see, among other quantities, the different values of the
energy E, TPint, altp and artp for each energy. In Fig. 2,
we see the tunneling probability as functions of E, for this
particular example. Because of the small values of some
TP0s, we plot the logarithms of the TP0s against E.

Since TP grows with E it is more likely for the Universe,
described by the present model, to nucleate with the high-
est possible radiation energy. Therefore, it is more probable
that the classical evolution should start with the greatest
possible value for the radiation energy.

B. Exact tunneling probability versus WKB tunneling
probability

Let us, now, compare the exact tunneling probability
represented by TPint Eq. (12) with the approximated WKB
tunneling probability (TPWKB). The TPWKB is defined by
the ratio between the square modulus of the transmitted
amplitude of the WKB wave function and the square
modulus of the incident amplitude of the WKB wave
function [27,28]. For the present situation, it is given by
the following expression [28],

 TPWKB �
4

�2	� 1
�2	��

2
; (13)

where,

 

ρ

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30

a

FIG. 1. j��a; tmax�j
2 � �, for � � 0:0121, E � 185 at the

moment tmax when � reaches infinity, located at a � 30.
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FIG. 2. logTPint for different radiation energies (E) for a fixed
� � 0:01.
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 	 � exp
�Z artp

altp
da

�����������������������������������������
12�3a2 ��a4 � E�

q �
: (14)

It is important to note that the TPWKB Eq. (13), was
computed considering that the incident wave (�I) reaches
the potential barrier at altp. Then, part of �I is transmitted
to1 (�T) and part is reflected to �1 (�R). In the present
problem, we have an infinity potential wall at a � 0 be-
cause the scale factor cannot be smaller than zero. It means
that �R cannot go to �1, as was assumed in order to
compute the TPWKB. Instead, �R will reach the infinity
potential wall at a � 0 and will be entirely reflected back
toward the potential barrier, giving rise to a new incident
wave (��R�I). The new incident wave ��R�I reaches the
potential barrier at altp and is divided in two components.
A reflected component which moves toward the infinity
potential wall at a � 0 (���R�I�R) and a transmitted com-
ponent which moves toward 1 (���R�I�T). ���R�I�T will
contribute a new amount to the already existing TPint due
to (�T). On the other hand, ���R�I�R, after being reflected
at a � 0, gives rise to a new incident wave which will
contribute a further amount to the already existing TPint. If
we let our system evolve for a long period of time, TPint

will get many such contributions from the different re-
flected components. The only way it makes sense compar-
ing TPint with TPWKB is when we let the system evolve for
a period of time (�t) during which �R cannot be reflected
at a � 0 and come back to reach the potential barrier. It is
clear by the shape of our potential that the greater the mean
energy E of the wave packet (11), the greater is (�t). As an
example, Table I in Appendix A, shows a comparison
between TPint and TPWKB for different values of E and
�t for the case with � � 0:01. We can see, clearly, that
both tunneling probabilities coincide if we consider the
appropriate �t, for each E.

In order to have an idea of how the TPint may differ from
the TPWKB, we let the initial wave packet (11), with differ-
ent mean energies, evolve during the same time interval
�t. We consider the example given in the previous
subsection IVA, with a common time interval of 100.
Observing Table I, we see that this amount of �t guaran-
tees that �R of the wave packet with mean energy 223 does
not contribute to the TPint. Therefore, we may expect that
to all wave packets with mean energies smaller than 223,
TPint will be greater than TPWKB. We show this compari-
son in Table II in Appendix A, where we have an entry for
TPWKB. It means that, we computed the values of the
TPWKBs for each energy used to compute the TPints, in
the case where � � 0:01. In Fig. 3, we show, graphically,
that comparison between both tunneling probabilities as
functions of E, with �t � 100 for all values of E. Because
of the small values of some TP0s, we plot the logarithms of
the TP0s against E.

As we can see from Fig. 3, for this choice of �t the
tunneling probabilities disagree for most values of E. They
only agree for values of E very close to the top of the

potential barrier. There, because the values of E are similar
to 223, �t is almost sufficient to guarantee that �R of each
wave packet does not contribute to the TPint.

As we have mentioned above, numerically one can only
treat the tunneling from something process, where one
gives a initial wave function with a given mean energy,
very concentrated in a region next to a � 0. Then, if we
take E � 0 the TPint will be zero. On the other hand, we
may have an idea how TPint behaves near E � 0 from
Fig. 2. From Table II in Appendix A, one can see that
TPWKB � 7:0246� 10�522 when E � 0.

Finally, we may compute the time (�) the Universe
would take, for each energy, to nucleate. In order to under-
stand the meaning of �, consider a photon that composes
the radiation which is initially confined to the left of the
potential barrier. Then, compute the emission probability
of that photon, per unit of time. We may invert it to obtain
�, the time the photon would take to escape the potential
barrier. If we consider � as the time it takes for the most
part of the photons to escape the barrier, we obtain the time
the Universe would take, for each energy, to appear at the
right of the barrier. In the present situation, � is given by
the following expression [27],

 � � 2altp
1

PTint
(15)

From Table II in Appendix A, we may see the values of
�, for each energy. It is clear by the results that, the smaller
the energy E the longer it will take for the Universe to
nucleate.

C. Tunneling probability as a function of �

We would like to study, now, how the tunneling proba-
bility depends on the cosmological constant. In order to do

 

–500

–400

–300

–200

–100

0

logTP

50 100 150 200
E

FIG. 3. Comparison between logTPWKB (dots) and logTPint

(line) for different radiation energies (E) for a fixed � � 0:01.
The integration time �t is equal to 100 for all values of E.
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that, we must fix an initial energy E for the radiation and
compute the TPint for various values of �. For all cases, we
consider the situation where E is smaller than the maxi-
mum value of the potential barrier. From that numerical
study we conclude that the tunneling probability grows
with � for a fixed E. As an example, we choose E � 185
and 22 different values of �, such that, the maximum
energy of the potential barrier (PEmax), for each �, is
greater than 185. The values of �, TPint, PEmax, �, altp
and artp are given in Table III in Appendix A. With those
values, we construct the curve TPint versus �, shown in
Fig. 4. Because of the small values of some TP0s, we plot
the logarithms of the TP0s against �.

Since TP grows with � it is more likely for the Universe,
described by the present model, to nucleate with the high-
est possible cosmological constant. Therefore, it is more
probable that the classical evolution should start with the
greatest possible value for the cosmological constant. Also,
if we assume that � describes a vacuum energy, this result
is qualitatively in accordance with the prediction of the
tunneling wave function due to A. Vilenkin [3].

V. CONCLUSIONS

In the present work, we canonically quantized a closed
Friedmann-Robertson-Walker (FRW) model in the pres-
ence of a positive cosmological constant and radiation. The
radiation was treated by means of the variational formalism
developed by Schutz [14]. The appropriate Wheeler-
DeWitt equation for the scale factor has the form of a
Schrödinger equation for a potential with a barrier. We
solved it, numerically, and determined the tunneling proba-
bility for the birth of an asymptotically DeSitter, infla-

tionary Universe, as a function of the radiation energy
and the cosmological constant. In particular, our treatment
of the problem is more general than previous ones, because
we took into account the fact that the scale factor (a)
cannot be smaller than zero. It means that one has to
introduce an infinity potential wall at a � 0, which forces
any wave packet to be zero there. As we saw, that condition
introduced new results, in comparison with previous
works. Then we verified that the tunneling probability
increases with the radiation energy for a fixed cosmologi-
cal constant. Therefore, it is more probable that the classi-
cal evolution should start with the greatest possible value
for the radiation energy. We also gave a detailed compari-
son between the exact TP, computed here, and the
corresponding WKB tunneling probability. Finally, we
evaluated the dependence of the exact TP with the cosmo-
logical constant. We obtained that the TP increases with
the cosmological constant for a fixed radiation energy.
Therefore, it is more probable that the classical evolution
should start with the greatest possible value for the cosmo-
logical constant. Also, if one assumes that the cosmologi-
cal constant describes a vacuum energy, the latter result
seems to be in accordance with the predictions of the
tunneling wave function [3].
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APPENDIX A: TABLES
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FIG. 4. logTPint for 22 different values of � for a fixed E �
185.

TABLE I. A comparison between TPint and TPWKB for 10
different values of E with its associated integration time �t for
the case with � � 0:01.

E TPint TPWKB �t

80 6:0648� 10�302 1:1845� 10�303 13
100 1:5887� 10�259 3:7271� 10�258 18.5
130 6:4375� 10�194 9:8051� 10�193 30
160 6:9194� 10�130 5:7774� 10�130 45.5
175 6:5061� 10�100 2:1361� 10�99 54.5
190 5:3119� 10�69 2:6372� 10�69 65.5
200 2:2682� 10�49 1:7295� 10�49 73.5
215 5:4531� 10�20 4:1983� 10�20 88
219 5:2168� 10�12 2:4754� 10�12 93
223 7:0045� 10�04 1:3731� 10�04 100
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TABLE II. The computed values of TPint, TPWKB, �, altp and artp for 47 different values of E
when � � 0:01.

Energia TPint TPWKB � altp artp

0.0000 0.0000 7:0246� 10�522 1 0.0000 17.3205
1.0000 2:5795� 10�67 2:7574� 10�517 4:4790� 10�66 0.5777 17.3109
2.0000 3:9975� 10�64 2:7181� 10�513 4:0896� 10�63 0.8174 17.3012
3.0000 4:8040� 10�61 1:5939� 10�509 4:1702� 10�60 1.0017 17.2915
4.0000 2:6388� 10�59 6:6774� 10�506 8:7714� 10�58 1.1573 17.2818
5.0000 5:7738� 10�57 2:1799� 10�502 4:4844� 10�56 1.2946 17.2721
6.0000 9:3459� 10�56 5:8369� 10�499 3:0366� 10�55 1.4190 17.2623
7.0000 6:9178� 10�55 1:3258� 10�495 4:4337� 10�54 1.5335 17.2525
8.0000 7:0061� 10�56 2:6169� 10�492 4:6827� 10�55 1.6404 17.2427
9.0000 6:3878� 10�53 4:5691� 10�489 5:4506� 10�52 1.7409 17.2328
10.0000 3:9939� 10�51 7:1563� 10�486 9:1944� 10�50 1.8361 17.2229
15.0000 1:3310� 10�46 1:8319� 10�470 3:3888� 10�46 2.2553 17.1731
20.0000 3:3918� 10�44 9:0816� 10�456 1:5401� 10�44 2.6119 17.1224
30.0000 1:4814� 10�41 7:5933� 10�428 4:3450� 10�41 3.2183 17.0189
40.0000 5:8991� 10�40 2:5466� 10�401 1:2679� 10�40 3.7397 16.9120
50.0000 9:8017� 10�39 8:0358� 10�376 8:5875� 10�38 4.2086 16.8014
60.0000 1:1252� 10�37 3:9314� 10�351 8:2507� 10�37 4.6419 16.6869
70.0000 1:1121� 10�36 4:1409� 10�327 9:0821� 10�36 5.0499 16.5680
80.0000 1:0627� 10�35 1:1845� 10�303 1:0236� 10�36 5.4391 16.4443
90.0000 1:0557� 10�34 1:0939� 10�280 1:1016� 10�35 5.8147 16.3153
100.0000 1:1488� 10�33 3:7271� 10�258 1:0760� 10�34 6.1803 16.1803
110.0000 1:4319� 10�32 5:2113� 10�236 9:1338� 10�32 6.5393 16.0386
120.0000 2:1333� 10�31 3:2602� 10�213 6:4634� 10�31 6.8942 15.8893
130.0000 3:9754� 10�30 9:8051� 10�193 3:6464� 10�30 7.2479 15.7311
140.0000 9:7584� 10�29 1:5060� 10�171 1:5582� 10�29 7.6029 15.5626
150.0000 3:3597� 10�27 1:2439� 10�150 4:7398� 10�27 7.9623 15.3819
160.0000 1:7562� 10�25 5:7774� 10�130 9:4858� 10�25 8.3293 15.1863
165.0000 1:5321� 10�24 1:0157� 10�119 1:1118� 10�25 8.5171 15.0818
170.0000 1:5472� 10�23 1:5685� 10�109 1:1259� 10�24 8.7085 14.9720
175.0000 1:8431� 10�22 2:1361� 10�99 9:6624� 10�22 8.9045 14.8563
180.0000 2:6520� 10�21 2:5758� 10�89 6:8673� 10�21 9.1059 14.7337
185.0000 4:7418� 10�20 2:7600� 10�79 3:9286� 10�20 9.3142 14.6029
190.0000 1:0919� 10�18 2:6372� 10�69 1:7457� 10�19 9.5310 14.4624
195.0000 3:3916� 10�17 2:2544� 10�59 5:7545� 10�17 9.7585 14.3099
200.0000 1:5114� 10�15 1:7295� 10�49 1:3233� 10�16 10.0000 14.1421
205.0000 1:0542� 10�13 1:1943� 10�39 1:9466� 10�14 10.2605 13.9543
210.0000 1:3129� 10�11 7:4432� 10�30 1:6069� 10�12 10.5485 13.7379
215.0000 3:6494� 10�09 4:1983� 10�20 5:9628� 10�09 10.8801 13.4767
216.0000 1:2796� 10�08 3:7003� 10�18 1:7121� 10�09 10.9545 13.4164
217.0000 4:7368� 10�08 3:2487� 10�16 4:6582� 10�08 11.0325 13.3523
218.0000 1:8642� 10�07 2:8413� 10�14 1:1926� 10�08 11.1150 13.2837
219.0000 7:8683� 10�07 2:4754� 10�12 2:8476� 10�07 11.2029 13.2097
220.0000 3:6052� 10�06 2:1485� 10�10 6:2674� 10�06 11.2978 13.1286
221.0000 1:8228� 10�05 1:8577� 10�8 1:2512� 10�06 11.4018 13.0384
222.0000 1:0419� 10�04 1:6002� 10�6 2:2110� 10�05 11.5187 12.9352
223.0000 7:0045� 10�04 1:3731� 10�4 3:3281� 10�04 11.6558 12.8118
224.0000 5:9816� 10�03 1:1671� 10�2 3:9562� 10�03 11.8322 12.6491
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