
Exploring non-signalling polytopes with negative

probability

G. Oas1,†, J. Acacio de Barros2, and C. Carvalhaes3

1 SPCS, 220 Panama Street, Stanford University, Stanford, CA 94305-4101
2 LS Program, 1600 Holloway Street, San Francisco State University, San Francisco,

CA 94132
3 CSLI, 220 Panama Street, Stanford University, Stanford, CA 94305-4115

E-mail: †
oas@stanford.edu

Abstract. Bipartite and tripartite EPR-Bell type systems are examined via joint

quasi-probability distributions where probabilities are permitted to be negative. It is

shown that such distributions exist only when the no-signalling condition is satisfied.

A characteristic measure, the probability mass, is introduced and, via its minimization,

limits the number of quasi-distributions describing a given marginal probability

distribution. The minimized probability mass is shown to be an alternative way to

characterize non-local systems. Non-signalling polytopes for two to eight settings

in the bipartite scenario are examined and compared to prior work. Examining

perfect cloning of non-local systems within the tripartite scenario suggests defining

two categories of signalling. It is seen that many properties of non-local systems can

be efficiently described by quasi-probability theory.

PACS numbers: 02.50.-r, 03.65.Ta
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1. Introduction

Ever since Bell’s seminal work [1], it has been clear that certain quantum mechanical

sets of observables are stochastically incomplete, in the sense that no proper joint

probability distribution exists that explain their expectations and moments. Later,

Pitowski showed that classical systems, as defined by Bell, formed a polytope within the

space of probabilities, determined by CHSH-like inequalities [2]. Much work has been

done ever since to understand why quantum mechanics violates classical probability,

and, more importantly, why its boundaries are the way they are. For example, Popescu

and Rohrlich asked whether non-signalling between two actors in a bipartite system

could account for the observed quantum correlations [3]. They answered this question

in the negative, by describing a range of states that do not signal and yet can not be

described by quantum theory.

To explore those boundaries, here we focus on bipartite and tripartite EPR-type

systems. In a bipartite scenario, two observers, Alice and Bob, each receive one of two

subsystems. Alice, has a choice of input x ∈ {0, ..., nx − 1} and a measurement yields

outcome a ∈ {0, ..., na − 1}, while Bob inputs y ∈ {0, ..., ny − 1} and receives output

b ∈ {0, ..., nb − 1}; such systems are labeled nxnynanb. This is viewed as Alice and Bob

having a choice of random variables Ax,By which can take one of the na − 1, nb − 1

values respectively. For example, 2222 is the label for standard Bohm-EPR system.

A question of interest is what type of correlations can be formed with various

constraints imposed. Three regions can be clearly defined. First, from Pitowski’s work

we have the local polytope, L. The second region is defined by the range of systems

whose marginal probabilities can be described by states and operators on Hilbert space,

the quantum set, Q. Finally, we have a third region, NS, satisfying the non-signalling

condition (NS). NS states that marginal probabilities restricted to one observer do not

change when the context of the experiment is changed at a space-like separated event,

i.e.

P (a|xi) =
∑

b

P (a, b|xi, yj) =
∑

b′

P (a, b′|xi, yk),

P (b|yi) =
∑

a

P (a, b|xj, yi) =
∑

a′

P (a,′ b|xk, yi), ∀i, j 6= k. (1)

It is clear that L ⊂ Q ⊂ NS, i.e. there are quantum systems that are non-local and

there are non-signalling systems that are not quantum [3]. The commonly called ‘no-

signalling’ polytope is defined here as P = NS ⋂M, where M is the set of non-negative

marginal probability distributions.

As an example, let us examine the 2222 case, where non-locality is observed when

Alice and Bob have binary inputs and outputs. It can be proved [4] that a joint

probability distribution over all random variables exists if NS and the following eight

CHSH inequalities [5] are satisfied:

|S| = |〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉| ≤ 2, (2)

with the other inequalities found by distributing the minus sign through the terms,



Exploring non-signalling polytopes with negative probability 3

and 〈AiBj〉 = P (Ai = Bj) − P (Ai 6= Bj). Marginal distributions satisfying all eight

inequalities, and satisfying NS, admit pre-established strategies or local hidden variable

models. The local polytope is formed by the eight CHSH-saturating 7-dimensional

facets, having 16 vertices. Each vertex corresponds to a joint probability distribution

(jpd) where one probability atom is 1. The quantum set extends beyond L up to a

maximum described by Tsirelson |S| = 2
√

2 [6]. The non-signalling polytope contains

the 16 local vertices and eight non-local vertices, where |S| = 4. These non-local vertices

are known as PR boxes [3]. The nature of the 2222 system has been extensively studied

and forms the benchmark to explore more complex scenarios. Increasing the number of

inputs, outputs, or parties leads to an explosion in number of Bell inequalities (facets)

and vertices. It is a computationally hard problem to generate facets for systems with

much more than 2 inputs.

Usually unrelated to this discussion, many physicists proposed the use of modified

probability theories to explain certain quantum phenomena. The quantum logic

approach modifies the underlying algebra of sets [2], while approaches such as general

probabilistic theory modify the Boolean algebra [7]. Another strategy, considered here,

is to maintain the Boolean algebra but modify the probability measure by allowing

it to take negative values (see [8] for a comprehensive review). Such an approach is

termed quasi-probability theory [9], or simply negative probabilities [10, 11]. However,

as Feynman mentioned in [11], no clear advantage seems to come from using negative

probabilities. Despite his comments, negative probabilities have seen a resurgence

in the physics literature, particularly in connection with super-quantal correlations

[12, 13, 14, 15, 16].

In this paper, we show an application of negative probabilities to explore local

and non-signalling polytopes in the EPR-Bell scenario. We start with a definition of

negative probabilities that imposes further constraints than previous approaches, and

show that such probabilities define non-signalling polytopes. We then examine the use

of negative probabilities in bipartite systems of interest in quantum mechanics, and

show a connection between negative probabilities and Bell-type inequalities. Finally, we

investigate a tripartite system, and show that NS needs to be generalized in the case of

quantum cloning.

2. Quasi-probability

As mentioned above, not all quantum systems allow for the existence of proper

probability distributions. To overcome this, some authors proposed the relaxation of

the non-negativity requirement for probabilities, thus leading to negative probabilities,

or joint quasi-probability distributions (jqpd). However, one of the problems of relaxing

this requirement is the explosion of possible jqpd’s that are consistent with the observed

expectations and moments.

To limit the number of jqpds, two constraints are imposed. The first is simply to

reiterate the criterion imposed by Feynman in [11]: any marginal probability derived
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from a jqpd for which the outcome event can be realized within an experiment, what

will be termed “observable” probabilities, must be non-negative. The second constraint

is to minimize the probability mass, M =
∑ |pi|, where pi’s are probabilities of atomic

events [17]. This defines an L1 norm for the jqpd, and we restrict the jqpd to those

with the lowest value for M . Such minimized probability masses are labeled M∗. With

these constraints, states within L correspond to M∗ = 1, and M∗ > 1 can be seen as a

measure of deviation from a joint probability distribution.

Joint quasi-probability distributions are related, in a non-trivial way, to NS through

the following theorem (independently derived by [15, 16]).

Theorem: A necessary and sufficient condition for a system to satisfy the no-

signalling condition (1) is the existence of a normalized joint quasi-probability

distribution yielding the marginal probabilities of the system.

A sketch of the proof involves expressing the NS condition (1) in terms of atoms and

employing the notation where a dot implies a sum over that index, e.g. pa0,a1,·,b1 =
∑

1
b0=0 pa0a1b0b1 , we have,

P (ai|xiyj) =
d−1∑

bj=0

p···ai···bj··· = p···ai·······,

P (ai|xiyk) =
d−1∑

bk=0

p···ai·····bk· = p···ai·······. (3)

The only way to violate this condition is for a jqpd not to exist, and satisfying this

condition implies the existence of a jqpd.

3. Bipartite systems in terms of jqpds

We return to the 2222 case and examine the range of jqpds. The CHSH inequalities

(2) can be expressed in terms of the 16 probability atoms, pa0a1b0b1 , as Sm,n =

2
∑

(−1)fn,mpa0a1b0b1 where fm,n = (a0 ⊕ a1)(b0 ⊕ b1) ⊕ an ⊕ bm, and ⊕ signifies

addition modulo 2. For a particular inequality, with fixed m and n, we label those

atoms corresponding to fm,n = 0 as p and those corresponding to fm,n = 1 as q.

Furthermore, we split each atom into positive and negative parts, pi = p+
i − p−i , where

p±i , q±i ,≥ 0, and sum over each category, p± =
∑

p±a0a1b0b1
, q± =

∑
q±a0a1b0b1

. We then

have 1 = p+ − p− + q+ − q−, M = p+ + p− + q+ + q−, and above each S > 2 facet,

M =
S

2
+ p− + q+. (4)

The minimum value of the probability mass, M∗, obtains when p− = q+ = 0. This

suggests the use of M∗ = |S|/2 as a measure of departure from a local system. As M∗

is easily computable for more complex scenarios, it is conjectured that it provides a

general, more economical, approach to characterize local and non-signaling polytopes.

As an example, the well-studied isotropic systems, those having vanishing means

and running from S = 0 to a maximally nonlocal vertex (PR box), can be parameterized
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as pi = 1

16
+ x

8
, qi = 1

16
− x

8
, x ∈ (0, 1). The box at ∂L occurs at x = 1

2
, ∂Q (at S = 2

√
2)

at x = 1√
2
, and the PR box occurs at x = 1 where M∗ = 2.

3.1. NN22 systems

We now generalize to N settings and examine specific cases. When moving from the

2222 to 3322 scenario, one new class of inequalities, I3322, appears in addition to the

CHSH inequalities. This class was generalized to INN22 [18]. In the notation of [19] it

reads 〈INN22|P 〉 ≤ 0 if P ∈ L, where

INN22 =

−1 0 0 · · · 0 0

−(N − 1) 1 1 1 · · · 1 1

−(N − 2) 1 1 1 · · · 1 −1
...

...

−1 1 1 −1 · · · 0 0

0 1 −1 0 · · · 0 0

(5)

is the table of coefficients whose entries are multiplied by the corresponding marginal

probabilities in the following table

P =
p(bi = 0)

p(aj = 0) p(aj = 0, bi = 0)
i, j = 1, · · · , N. (6)

The inequality can also be expressed as a 22N ×22N table of coefficients multiplying

each probability atom. For sake of brevity this table is not displayed; however, it is

noted that a finite set of coefficients appear, 0,−1,−2, · · · ,−k where k = 1

2
N(N − 1).

To relate M to INN22 the probability atoms are re-expressed, as above, according to

their coefficient in the inequality, p, q1, q2, · · · , qk, where p are those corresponding to

0 coefficients and qj to the −j terms. As before, each atom is split into positive and

negative terms and each category is summed.

With this parameterization we have,

1 = p+ − p− +
k∑

j=1

(q+

j − q−j ), (7)

M = p+ + p− +
k∑

j=1

(q+

j + q−j ), (8)

INN22 =
k∑

j=1

(q−j − q+

j ). (9)

A maximal violation of INN22 and M∗ requires q+
j = 0 and p− = 0. This, along with

(7)-(9), give

M∗ = 2INN22 + 1 − 2
k∑

j=2

(j − 1)q−j . (10)

As discussed in [19] a general form for PRN boxes can be given based on the structure

of (5). For those PRN boxes, INN22 = 1

2
(N − 1) and, with (10), gives a maximum value
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of M∗ = N . However, this upper limit is only guaranteed for N = 2, since for higher N

the sum in (10) is nonzero.

The minimization of M is a nonlinear optimization problem and can be cumbersome

to compute. However, by splitting each probability atom into positive and negative parts

it can be recast as a linear-programming problem: minimize (8) such that marginal

probabilities are obtained and the distribution is normalized [20]. In the minimization

process, there exists a subroutine to adjust cases where both p+ and p− are non-zero

for an atom, however it was never called in this work.

For N = 3 all 1344 vertices of the 3322 non-signalling polytope were generated

and all vertices had M∗ = 2. This is in contrast with the conclusions of [19] where the

vertices were placed into 4 categories and it was shown that the 192 PR3 boxes require

at least two PR boxes to be simulated. Suggesting that the PR3 boxes are a stronger

non-local resource than the PR boxes. The contrast with the result found here needs

further examination.

For N = 4 all 216 non-deterministic extremal boxes, those with p(ai) = p(bj) =
1

2
, p(ai, bj) = 0 or 1

2
∀i, j, fall within 4 classes: 128 are local boxes (M∗ = 1), 43904 with

M∗ = 2, 12288 with M∗ = 2.33, and 9216 boxes have the value M∗ = 2.4. Systems

up to N = 8 were generated and more classes of maximal vertices are found with the

maximum value increasing with additional settings, up to M∗ = 2.9091 for N = 8. Of

significance is that for N > 3 vertices with M∗ = 2 satisfy the MNN22 inequality of [19]

and can be simulated with a single PRN−1 box, those vertices with M∗ > 2 are all PRN

boxes. This suggests further classes amongst PRN boxes beyond that found in [19].

4. Tripartite systems in terms of jqpds

Here the most basic tripartite systems is briefly examined in relation to perfectly cloned

systems. To implement perfect cloning, one needs to arrive at a joint conditional

distribution that yields identical marginals, i.e., p(abb′|xyy′) −→ p(ab|xy) = p(ab′|xy′),

for all settings and outcomes. It is known that all perfectly-cloned non-local systems

permit signalling: if the original system is a PR box, which satisfies a ⊕ b = xy, the

cloned subsystem satisfies a⊕ b′ = xy′, then Bob can determine Alice’s setting, x, since

a ⊕ b ⊕ a ⊕ b′ = xy ⊕ xy′, which yields b ⊕ b′ = x(y ⊕ y′) → (b ⊕ b′)(y ⊕ y′) = x.

Recalling the parameterization of probability atoms for isotropic boxes in the

2222 case, a perfectly cloned isotropic box can be represented by the following jqpd

pa0a1b0b1b′
0
b′
1

= (3x+1

64
)(1 − f0,0) + (1−2x

64
)f0,0, where f0,0 = (a0 ⊕ a1)(b0b

′
0 ⊕ b1b

′
1) ⊕ a0 ⊕

b0b
′
0 ⊕ (a0 ⊕ 1)(a1 ⊕ 1)(b0 ⊕ b′0) ⊕ a1(a0 ⊕ 1)(b1 ⊕ b′1). Once outside of the local

polytope, at least one observable marginal must be negative. For example, the marginal

P (a0 = 0, b0 = 1, b′1 = 1) = 1

8
(1 − 2x) and thus no non-local state can be perfectly

cloned. Again, all of these systems satisfy the no-signalling condition, but are known to

allow signalling.
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5. Conclusion

We showed that negative probabilities provided an additional tool to examine a variety

of correlated bipartite and tripartite systems. For instance, a theorem relating the

existence of jqpds to satisfaction of the NS condition was introduced. Furthermore,

negative probabilities provide a more efficient method, compared to the ones existent

in the literature, to examine non-signalling polytopes of any dimension, since they can

be obtained from computationally fast linear-programming techniques. The method of

extending standard probability theory introduced here brings a new view of non-local

systems that has the potential to simplify analyses of complex correlation polytopes

and shed light on the nature of and relationship between entanglement, non-locality,

and contextuality.

For the 2222 system it was shown that for non-local systems M∗ = |S|
2

, allowing the

former to be interpreted as a measure of deviation from a local system. This measure

was then applied to cases up to eight settings for Alice and Bob. In the 3322 case all

non-local vertices are found to have M∗ = 2, while for 4422 three values are obtained,

M∗ = 2, 2.33, 2.4 with higher classes with increased settings. For N > 3 vertices with

M∗ = 2 fall under the PRN−1 (or less) category while those with M∗ > 2 are PRN

boxes. This suggests previously uncharacterized differentiations amongst PRN boxes.

We also showed that for the perfectly cloned PR box, known to permit signalling,

a jqpd exists, and, from our theorem, NS is satisfied. This suggests two distinct forms

of signalling for two space-like separated systems: an explicit one, where actions for

one observer change the marginal probabilities for the other (violating NS), and a

more passive form where information is revealed but not changed. For the latter,

Feynman’s criterion is violated for perfect cloning of any non-local state. However,

obtaining negative observable marginals is not necessarily an indication of signalling;

in the bipartite case, systems beyond P also violate Feynman’s criterion, satisfy the

NS condition, yet do not seem to allow signalling in any manner. It is just the highly

unphysical nature of observable negative probabilities that make it difficult to envision

the properties of such systems.

It still remains to relate the minimal probability mass to concepts relating to non-

local systems in a more precise way. The view moving forward is that M∗ is more

precisely a measure of the contextuality embodied within a system. This requires a more

careful study of jqpds and systems with contextuality, e.g. GHZ, Kochen-Specker type

scenarios, and recently discussed KCBS relations. To make progress, the approach here

needs to be related to an independent approach that explicitly embodies the contextual

nature of the system, one such method is the contextuality by default approach [21, 22].
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