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Abstract

Quantum indistinguishability directly relates to the philosophical de-
bate on the notions of identity and individuality. They are crucial for
our understanding of multipartite quantum systems. Furthermore, the
correct interpretation of this feature of quantum theory has implications
that transcend fundamental science and philosophy, given that quantum
indistinguishability is a resource in quantum information theory. Most
of the conceptual analysis of quantum indistinguishability is restricted to
studying the permutational invariance of quantum states, the concomitant
quantum statistics, and their entanglement. Here, we analyze the role of
indistinguishability and nonindividuality in other areas of quantum theory.
We start by analyzing how a very peculiar use of indistinguishability under-
lies Feynman’s rules for summing amplitudes in interference phenomena.
Next, we study how quantum indistinguishability is underestimated in
several topics of debate in the quantum physics literature, such as the
EPR argument, Bell’s inequalities, and the Bell-KS theorem. Finally, we
argue that an ontology of truly indistinguishable entities can serve as a
basis for a quantum ontology that can give interesting answers to the
interpretational problems of quantum mechanics. We claim that, in addi-
tion to superposition, contextuality, and entanglement, indistinguishability
(understood in a robust ontological sense) is one of the central features of
quantum physics.

1 Introduction

What is the most important feature of quantum physics? Some authors, such as
Erwin Schrödinger, suggest entanglement [1]. Others mention the superposition
principle. One could say that quantum physics is characterized by both the
superposition principle and entanglement.

But there is another feature that cannot be reduced to these two principles:
indistinguishability. The fact that there are situations in which there is a
fundamental impossibility to decide empirically which quantum system is which

1



has no analog with classical entities such as billiard balls [2]. We can always
attribute identities and labels to such classical objects. There are, of course,
circumstances in which we simply do not know which is which and have no
means to decide. But it does not matter how similar they are. We can always,
in principle, envisage an operational procedure to distinguish two given billiard
balls. Classical objects appear to us as indistinguishable in an epistemological
way. But the indistinguishability of quantum systems seems to have a deeper
ontological meaning. If quantum theory is correct for quantum systems entering
the indistinguishability regime, there is no operational procedure to distinguish
them [3]. Thus, together with superposition and entanglement, one could add
indistinguishability as one of the main features of quantum theory.

In this work, we take a step further and propose the following hypothesis.
Quantum indistinguishability should be the basis of an ontology for quantum
theory [4]. By accepting the hypothesis that quantum systems are truly indis-
cernible, one can shed light on many quantum features that otherwise would
seem disconnected. For instance, indistinguishability is usually not considered
in philosophical discussions of the Kochen-Specker contradiction [5] or the EPR
paradox [6]. In particular, in most arguments giving place to quantum paradoxes,
it is tacitly assumed that the objects involved obey the classical laws of identity.
We will argue that this is problematic, since the assumption of identity for
quantum systems is very strong and should not be taken lightly.

We will show that many of the so-called quantum paradoxes do not follow if
quantum objects are considered truly indiscernible and do not obey the classical
laws of identity. On the positive side, it is possible to use indistinguishability
as a unifying ontological principle for quantum theory. In particular, quantum
indistinguishability seems to be deeply related to quantum contextuality [7, 4].

After revisiting the standard formulation of quantum indistinguishability in
Section 2, we analyze the connection between the indistinguishability of paths
in interferometric problems and the path-integral formalism in Section 3. Next,
we focus on analyzing the EPR argument and the KS contradiction in Section 4.
Finally, in Section 5, we draw some conclusions.

2 Quantum and Indistinguishability

The symmetrization postulate (SP) plays a crucial role in standard quantum
theory [8]. As one of its consequences, one can derive, for example, the Bose-
Einstein and Fermi-Dirac statistics. In the relativistic regime, SP is connected
to what is called the spin-statistics theorem. This theorem establishes that
integer spin fields are bosons, while half-integer spin fields are fermions [9]. It is
important to note that no violation of this principle (or its consequences, such
as the Pauli exclusion principle) has ever been empirically observed [10]. We
could safely say that SP is one of the major principles of modern physics.

For us, the most important consequence of SP is that quantum systems of the
same kind are indistinguishable. In fact, standard quantum mechanics textbooks
usually start with indistinguishability and then argue that quantum systems
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need to be described by either a symmetric or antisymmetric wavefunction.
Independently of the interpretation, this means the following. There are physical
situations in which it is operationally impossible to specify which quantum
system is which.

As a concrete example of this, consider two indistinguishable photons entering
the Hong-Ou-Mandel setup [2, 11, 12]. In that example, the two photons P1

and P2 enter a beam splitter, as indicated in Figure 2. Detectors D1 and D2

are placed on the output paths, and statistics are recorded and analyzed on
a computer. When a photon enters a beam splitter, it can be transmitted or
reflected. Let the event representing photon 1 reflected be symbolized by R1 and
its transmission by T1 (with an analogous meaning for R2 and T2). When the two
photons are sent, there are, in principle, four possibilities, as indicated in Figure
2. Denote the reflection-reflection event by R1 −R2, a transmission-transmission
event by T1 − T2, and so on. If the photons are sent in the indistinguishability
regime (their frequencies and polarizations are the same), we have that the
alternatives T1 − R2 and R1 − T2 end up being indistinguishable. Therefore,
due to a phase change by π during reflections, their amplitudes cancel, and
an interference pattern should be observed. Ideally, there is no way to tell
which alternative took place, and an interference pattern is indeed observed
experimentally.

Figure 1: Image of the experimental setup of the HOM effect.

There are plenty of similar examples in relevant areas of quantum physics.
Such indistinguishability situations do not have analogs with classical particles.
For billiard balls, no matter how similar they are, it is, in principle, always possible
to design an operational procedure to distinguish them –and no interference
effect will ever be observed. Remarkably, a similar interference effect can be
observed with classical fields. But the particle versus field distinction should not
lead to confusion: the HOM effect has been observed in massive particles, such
as neutrons [13, 14]. On the contrary, if quantum theory is correct, it will be
impossible to distinguish operationally quantum systems of the same kind (in
certain situations).

We emphasize that there are issues about indistinguishability that are
interpretation-dependent. For instance, according to some interpretations, such
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Figure 2: The alternatives T1 − T2 and R1 − R2 cannot be discerned if the
incoming particles are set in the indistinguishability regime. Accordingly, their
amplitudes cancel and an interference pattern is observed. In that case, two
incoming photons are always detected in either D1 or D2, and it is not possible
to tell which photon came from each input port.

as some versions of Bohmian mechanics, particles can be discerned, given that
they can be identified by their (hidden) trajectories. But even assuming such
hidden-variable theories, one may wonder why identity remains hidden in such a
fundamental way. This is an intriguing feature of quantum theory and cannot
be considered as a consequence of other features, such as entanglement or su-
perposition. In particular, quantum indistinguishability should not be identified
with quantum entanglement. For example, two quantum systems might display
genuine quantum indistinguishability but no correlations such that a Bell-type
inequality is violated (see, for example, [15]). Alternatively, one can certainly
entangle distinguishable particles (for example, particles with different charges
or masses).

In the above sense, indistinguishability is always related to compound quan-
tum systems. Therefore, it is associated with collections of systems of the same
kind. But there is yet another sense in which indistinguishability is used in
quantum theory. Consider the following statement by L. Mandel:

”[I]t has also been known since the earliest days of quantum mechanics
that coherence is related to the intrinsic indistinguishability of the
particle trajectories that give rise to the interference pattern. If a
photon detected by photodetector D in Fig. 1 can come from either
one of the two sources in Fig. 1, and the two possible paths are
indistinguishable, then the probability amplitude for the photon to be
detected at D is the sum of the probability amplitudes associated with
the two possible paths. The detection probability, which is the square
modulus of the probability amplitude, then exhibits interference.
Obviously coherence and intrinsic indistinguishability are intimately
connected.” [16]

Similar assertions can be found in Feynman’s Lectures on Physics [17].
What is the meaning of the ”intrinsic indistinguishability” of the trajectories?

Such a rule for interference is very common in physics. It is even taught in
undergraduate courses and can be used as a safe principle for everyday work.
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But is it possible to give a rigorous ontological meaning to it? Is it related to the
usual notion of the indistinguishability of components? In this work, we take
as starting point the thesis that indistinguishability can be taken as a crucial
ontological feature of quantum systems and that it can be used and taken into
account to understand the different interpretational problems of the theory.

3 Indistinguishably of Paths and processes

Let us consider the following quote from R. P. Feynman’s famous Lectures in
Physics.

”To repeat, do not add amplitudes for different final conditions, where
by ‘final’ we mean at that moment the probability is desired—that
is, when the experiment is ‘finished.’ You do add the amplitudes
for the different indistinguishable alternatives inside the experiment,
before the complete process is finished.” [17, p. 3-7]

In this section, we devote ourselves to clarifying the meaning of the use of the
word “indistinguishable” in the above quotation (and in Mandel’s paper [16],
quoted in Section 2 of this work). In such interference scenarios, there must
not be any way to physically distinguish between two alternate paths or, more
generally, processes. In order to illustrate this, we will first consider an example
from Feynman and then the Mach-Zender interferometer.

3.1 A scattering example

It is instructive to review here the scattering example discussed in Feynman’s
Lectures in Physics ([17, p. 3-9]). He considers two scattering particles that can
give place to alternative processes, as shown in Figure 3.1. This example was
introduced by Feynman in the following way.

”The next experiment we will describe is one that shows one of
the beautiful consequences of quantum mechanics. It again involves
a physical situation in which a thing can happen in indistinguishable
ways, so that there is an interference of amplitudes—as is always
true in such circumstances.” [17, p. 3-9]

Feynman’s reference to the possibility of something happening in two indistin-
guishable ways is rather curious. Here, we try to analyze what kind of ontology
could give more rigorous content to such a possibility. Two particles are emitted
by sources S1 and S2, and after interacting, they are detected in D1 and D2. If
the particles were distinguishable, there would be two clearly distinguishable
alternatives: The particle from the source S1 is detected in D1 and the particle
S2 is detected in D2, or the other way around. Different processes could be
operationally identified, for example, by testing the particles’ charges or masses
at the output detectors. Thus, if the particles were taken to be of a different
kind, then two distinguishable processes would take place. In that case, the
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probabilities of each process separately must be added, and no interference is
expected.

However, if the particles are of the same kind and also have all their internal
degrees of freedom in the same state (for example, they have the same spin
states), the two processes would become indistinguishable. In that case, we must
add the probability amplitudes, and an interference pattern will be observed.
For Bosons (such as Alpha particles) we must add the amplitudes, while for
Fermions (such as electrons or protons), we must use an extra minus phase to
one of the amplitudes (since the probabilities are inside a squared modulus, it is
of no relevance which process has the minus sign).

It is important to note that what is relevant here is not that we are personally
able or not to inspect the identity of the particles in the detectors. The mere
existence of the possibility of revealing which is which destroys any chance of
observing an interference pattern, independently of whether we are actually
checking identities or not. This feature of the experiment reveals that this is a
deep physical property of quantum systems, which seems to have little to do
with our ignorance of which process actually takes place.

Figure 3: When electrons have the same spin, the above processes cannot
be distinguished by any operational means. If that situation is reached, the
probability amplitudes must be summed (and not the probabilities directly).
Consequently, an interference pattern will be observed.

As noted by Feynmann, this is a very curious effect and lies at the heart of
quantum theory. What is the meaning of “indistinguishability” in this example
when particles of the same kind are involved? Classically, we can see that there
are two different processes. Thus, one might think that even in the quantum
case one of the two processes actually took place, and we do not know which one.
A Bohmian might explain the interference by appealing to two distinguishable
particles guided by a pilot wave. The nonlocal interaction will be responsible
for the weird interference effect. But it might also be the case that the reason
we cannot operationally distinguish among the alternatives has roots in an
alternative ontology. It might well be that, since quantum particles seem to lack
individuality, both alternatives become truly indistinguishable when the electrons
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have the same spins. Only quantum systems could give place to indistinguishable
alternatives because they would be nonindividuals (as Schrödinger suggested).
An ontology of nonindividuals gives place to truly indistinguishable processes.

3.2 Indistinguishably in the Mach-Zender interferometer

Consider a Mach-Zender interferometer. This is an interesting experiment
because, differently from the HOM and scattering examples considered above,
it involves a single quantum system on each run. But, as we will show, the
assumption of nonindividuality can be seen as playing a crucial role here too.
Two (incompatible) experimental contexts are displayed in figure 3.2. In the
which-way setup, if a photon is detected in D1, we can infer that the path 1
was taken. A similar conclusion holds if a photon is detected in D2. In this
experimental context, the two paths can be perfectly distinguished. Therefore,
according to Feynman’s rule discussed above, no interference is expected. For
simplicity and affinity with popular physics jargon, here and in what follows, we
will use “paths” to refer to the different alternatives (or processes). But it is
important to keep in mind that we do not commit here with an ontology based
on particles trajectories. When a second beam splitter BS2 is placed before the
detectors (Figure 3.2 on the right), a detection event in, say, D1 cannot give
us any information about which path the particle took. In that sense, both
alternatives become operationally indistinguishable from the point of view of that
particular measurement context 1. The rule is very clear and is an important
guide for practical applications of quantum physics. What is the connection
between this rule and the traditional notion of quantum indistinguishability?

To see the role of identity, imagine that in one of the arms of the interferometer
we place an ideal switch2 that has the capability to change the identity of the
particles that pass through it. That is, if the photon enters arm 1, its type is not
changed (i.e., it emerges as a photon), and if it enters arm 2, its type is switched
and comes out as an electron. In that case, no interference could be observed
since it would be possible to distinguish the particles at the output and find
out which way was actually taken. Of course, there is no need to change the
particle’s identity to realize this experiment: It suffices to change the polarization
of the photon in a given path to destroy the interference pattern, as we explain
in what follows. Let us add a spin degree of freedom to the quantum system.
To fix ideas, think of the paths as modes of the electromagnetic field, and the
spin degree of freedom as the photon’s polarization. Let the incoming state of
the system be |ψ⟩0 = |0⟩| ↑⟩ (the system enters in mode 0 with polarization ↑).

1Using the standard quantum mechanics’ jargon, one can say that the notion of a path is
not even well defined when the second beam splitter is put in place. More in line with the
spirit of this work, we could say that the processes defined by the which-way context have now
become indistinguishable in the new context

2Whether this experiment can be actually performed or not is not crucial for our argument.
It has the sole purpose of illustrating the idea. A more concrete and realizable example is
presented below.
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Figure 4: Image of two incompatible experimental setups. On the left, we have
a which-way experiment. A photon enters a beam splitter BS1 and the outcome
is detected in D1 and D2. Statistics are analyzed on the computer PC. In this
setup, the paths can be perfectly distinguished by the detectors. On the right,
a second beam splitter precludes the distinction between the two paths. An
interference pattern is expected in this context, which gives place to wavelike
behavior. This experimental setup is known as a Mach-Zehnder interferometer.

In that case, the state of the system after the first beam splitter BS1 is given by

|ψ′
1⟩ = (BS1 ⊗ I)|0⟩| ↑⟩ = 1√

2
(|0⟩| ↑⟩+ i|1⟩| ↑⟩) = 1√

2
(|0⟩+ i|1⟩)| ↑⟩. (1)

Now, suppose that we add a device that changes the polarization of the photon
when it enters mode 1. This new state would be given by

|ψ′
2⟩ = P |ψ′

1⟩ =
1√
2
(|0⟩| ↑⟩+ iei∆|1⟩| ↓⟩). (2)

After applying the second beam splitter, we obtain

|ψ′
3⟩ =

1

2

(
(|0⟩+ i|1⟩)| ↑⟩+ i(1 + ei∆)(i|0⟩+ |1⟩)| ↓⟩

)
. (3)

By tracing out the spin degree of freedom, we end up with a mixed state, namely

ρ3 =
1

2
(|0⟩⟨0|+ |1⟩⟨1|) . (4)

Clearly, no interference can appear under these circumstances, unless we set the
polarizer in such a way that the paths become indistinguishable again.

According to the path-integral formalism, the wave function of a system can
be written as

ψ(x, t) =
1

Z

∫
X(0)=x

DxeiS[x,ẋ]ψ0(X(t)) (5)

where the action S is expressed on a given trajectory as S =
∫
dtL(x(t), ẋ(t)).

The Lagrangian of a free particle can be written as L = pq̇. Therefore, the
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action takes the form S =
∫
path

Ldt =
∫
pq̇dt = p∆q. For the Mach-Zehnder

interferometer, we have four alternative paths. The detection amplitudes in D1

and D2 are then given by:

D1 =
1

2
e

i
h̄px1 − 1

2
e

i
h̄px2 (6)

D1 =
1

2
e

i
h̄px1 +

1

2
e

i
h̄px2 (7)

The path integral formalism illustrates very well the fact that classically
distinguishable trajectories become indistinguishable in the quantum domain.
As such, they must be added as amplitudes (and not as probabilities), giving
rise to the possibility of interference phenomena.

It is instructive to think about what would have happened to an actual
individual, such as a billiard ball, when entering a device that intends to mimic
the Mach-Zehnder interferometer. We could envisage a probabilistic mechanism
in which, in ”beam splitters,” the particle is scattered to one part or the other
with probability 1

2 . Obviously, at the output detectors, we would observe a 1
2

probability of detection and no interference at all, independently of whether or
not a second beam splitter is placed at the output. Why? According to our
discussion, a possible conclusion could be as follows. Only a non-individual can
give place to truly indistinguishable alternatives. Only truly indistinguishable
alternatives can give way to interference. We can summarize this simply by
stating that:

Noindividuals ⇐⇒Indistinguishability ⇐⇒ Interference.

We think the above relationship between an ontology of non-individuals and one
of the main features of quantum systems was unexplored in previous works and
opens the door for developing a new ontology for quantum theory.

4 A few selected examples from the Foundations
of Quantum Mechanics

In this section, we discuss some important examples from the foundations of
quantum mechanics that involve, from our point of view, indistinguishability.
Some of the examples presented are not commonly considered to have any
relationship with indistinguishability. However, we have argued elsewhere [18,
19, 4] that the arguments presented in them are intrinsically or counterfactually
based on the ability to assign an identity to the quantum entities involved. As
such, we believe that they illustrate the deeper role of indistinguishability in
quantum ontology and its connection to identity.

4.1 The Einstein-Podolsky-Rosen Paradox

We begin our discussion with the famous Einstein-Podolsky-Rosen (EPR) ”para-
dox” [6]. Here, we focus on a version of it described by David Bohm in his
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famous text on quantum mechanics. We start with two spin-1/2 particles, A
and B, prepared in the singlet state below.

|ψ⟩ = 1√
2
[|+⟩A|−⟩B − |−⟩A|+⟩B ] . (8)

Here, we use the standard notation that |+⟩i means that particle i is in an
eigenstate of the spin-z operator σ̂z with eigenvalue +1.3 Similarly for |−⟩i. For
example, if the state is |+⟩A and we measure the spin of the particle A in the z
direction, we would obtain +1/2 with probability 1.

An interesting aspect of an entangled state such as (8) is that the results of
the measurements for each particle are highly correlated. For example, take the
observable σ̂A

z σ̂
B
z , corresponding to the simultaneous spin measurement in the

direction z for particles A and B. We obtain the following if we compute the
expected value of σ̂A

z σ̂
B
z .

E(σ̂A
z σ̂

B
z ) = ⟨ψ|σ̂A

z σ̂
B
z |ψ⟩ = −1. (9)

This result means that spins are perfectly anti-correlated; if we measure A with
spin ±1, we will measure B with spin ∓1 with probability one. The peculiar
features of the singlet state 8 are such that the same property would hold if,
instead of choosing z, we had chosen any other spatial direction.

This perfect correlation in all possible directions has an interesting conse-
quence. Because A and B are two particles, it is possible to design an experiment
in which the state (8) is such that each particle is sent in opposite directions.
If this happens, after some time, we may find particle A in Alice’s lab and
particle B in Bob’s lab, both very far apart from each other (as far apart as we
may want). This means that if Alice performed an experiment to measure the
particle’s spin in the z direction (or any other direction), she would know for
sure what Bob’s result would be if he were to also measure spin in the direction
z (or any other direction).

Because Alice and Bob’s laboratories are far apart, Einstein, Podolsky, and
Rosen (EPR) argued that Alice’s measurements cannot, in any way, influence the
results of Bob’s measurements [6]. Thus, according to EPR, a measurement by
Alice allows us to know the results of Bob’s measurements without disturbing its
system, even if Bob does not perform such a measurement. Therefore, it follows
that there should be an element of reality related to the spin value obtained. In
other words, according to EPR, the spin of Bob’s particle has a definite value
before measurement. Also, given that Alice is free to choose the spin of her
system in any direction, applying a similar reasoning line, one concludes that
the spin of Bob’s particles is defined in any possible direction. Given that, in
the standard interpretation, a measurement does not simply reveal the value
of an observable, EPR claimed that this entangled state shows that quantum
mechanics is incomplete.

As is widely discussed, EPR’s argument relies on some metaphysical assump-
tions. First, it requires locality, that is, the impossibility that a measurement

3For simplicity, we use units where h̄/2 = 1.

10



by Alice instantaneously affects a measurement by Bob. This requirement was
incorrectly viewed as necessary to ensure that quantum mechanics is consistent
with special relativity. Second, based on an argument from nonlocality, EPR calls
for the assumption that measurements reveal ”elements of reality” of a quantum
system. This assumption leads EPR to conclude that quantum mechanics is an
incomplete theory. To complete quantum mechanics, the argument goes, one
must supplement it by introducing (local) hidden variables. As we shall see in
the next section, EPR’s criteria of realism can be written down in terms of the
existence of joint probability distributions, as implicitly done by John Bell.

However, here we point out an important and often forgotten assumption. It
is well known that the EPR argument uses counterfactual reasoning. It assumes
that if Alice measured spin +1 in direction ẑ, Bob would have obtained −1
should he have measured spin in the same direction. The same would follow
for any other direction, say X̂. However, since it is impossible to measure the
spin in two different directions simultaneously, EPR needs to assume that the
spin values are counterfactually defined. That is, EPR needs to consider that
Alice’s particle can be viewed in contexts ẑ and x̂, even if these two contexts
cannot co-exist: They necessarily belong to different (possible) worlds. From a
purely logical standpoint, the particle of context ẑ needs to be identified with
the particle of context x̂ in order to claim that Bob’s particle has a definite
value of spin in both directions. Thus, Alice’s particle is assumed to retain its
identity among two realities that cannot coexist in the same world. This is a
natural assumption in classical physics since classical entities are assumed to be
individuals.

However, quantum particles are indistinguishable. As such, they lack identity
[4]4. Therefore, even if we assumed that we could argue in a counterfactual
way (something that many physicists, including Bohr, refute), if we accept the
indistinguishability of particles as part of the quantum ontology, we could not
ensure that a particle in one measurement context is the same as a particle in
another measurement context. In the best case, we obtain two similar copies
(same mass, same intrinsic spin, and same charge). However, even if they are
completely alike in their defining properties, they cannot be identified a priori.
An extra metaphysical assumption is needed in order to claim that there are
no two entities but only one: One needs to assume that the notion of sameness
applies to them. According to the ontology of a nonindividual, we cannot do so.
Therefore, we could not conclude that we could know the spin in all possible
directions in advance. We may be discussing indistinguishable particles, which
are different solo numero.

4It is perhaps relevant to recall here Schrodinger’s words: ”. . . we have . . . been compelled
to dismiss the idea that . . . a particle is an individual entity which retains its ‘sameness’
forever. Quite the contrary, we are now obliged to assert that the ultimate constituents of
matter have no ‘sameness’ at all”. [20]
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4.2 Bell’s criteria of realism

We now turn to Bell’s analysis of the EPR experiment. Because Bell’s argument
uses probabilities, it is helpful to introduce the language of random variables
to discuss it. We start with Kolmogorov’s definition of a probability space. A
probability space is a triple (Ω,F , p), where F is an algebra5 over the elements
of Ω and p is a function that satisfies the following requirements [21].

1. p : F → [0, 1],

2. p(Ω) = 1,

3. ∀A,B ∈ F with A ∩B = ∅, p(A ∪B) = p(A) + p(B).

The set Ω is called sample space, and p(A) is the probability of the event A ∈ F .
Intuitively, the algebra F over Ω gives us a way to attribute probabilities to

logical propositions about events. For example, for any A ∈ F , it follows that Ac,
the complement of A, also exists in F . This complement can be thought of as
the negation of A, and it follows from the above axioms that p(Ac) = 1− p(A),
as expected. Similarly, A ∩B and A ∪B correspond to the logical conjunction
and disjunction. In other words, by requiring the existence of a measure over the
algebra over a sample space, we ensure that such a measure satisfies some basic
tenets of rationality. This idea can be stated in a more robust way through Cox’s
Theorem [22] (see [23] for the extension of Cox’s theorem to the non-Boolean
setting).

Probabilities tell us the likelihood that an event will occur. In an objec-
tive interpretation, this likelihood corresponds to the relative frequencies of
the empirical observations. In a subjective interpretation, they represent the
modeler’s subjective beliefs about possible observable results. For example, we
can consider obtaining the likelihood of heads and tails when tossing a coin in
two different ways. We can perform an experiment in which we toss this coin
N times and then count the relative frequencies of heads nh/N and tails nt/N ,
with nh + nt = N . This is an objective way of thinking about probabilities.
Alternatively, without any tossing or experimental observation, we can examine
the coin and conclude that we have no reason to believe that heads are more
likely than tails and vice versa. Therefore, subjectively, we can argue that the
probabilities should be p(h) = p(t) = 1/2.6 We shall not discuss the differences
between subjective and objective interpretations of probabilities in detail. We
mention them here because they are relevant to some of the following discussions.
The interested reader is referred to Maria Carla Galavotti’s wonderful book on
interpretations of probabilities [24]. Notice that in the standard formulation
of quantum mechanics, probabilities are assumed to have an ontological char-
acter in the following sense. The description given by the wave function (or,

5Technically, F should be a σ-algebra, i.e., an algebra closed under countable unions and
intersections.

6An attentive reader may say that this would be problematic, as the coin may be biased.
We would point this reader to discussions about the role of Bayes’ Theorem in subjective
probabilities (see [24]), but here it suffices to say that this is not a problem.
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more generally, by the quantum state) is assumed to be complete or, in other
words, that quantum probabilities are irreducible. This means that, differently
from a classical coin toss (which is ultimately governed by rather complicated
deterministic dynamics), the reason we need a probabilistic description in QM
is not due to our ignorance of the details of the physics of the atoms but to
the fact that there is intrinsic randomness in nature [25]. Each time we run a
quantum experiment, the unpredictability of the result is assumed to be due to
an objective feature of nature and not to our ignorance about the experimental
details.

This is the main working hypothesis behind the standard formulation of
quantum theory, and it underlies the discussion between Bohr and EPR. Bohr
was an adherent of the idea that quantum probabilities are irreducible (taking
sides with Heisenberg, Pauli, and Born). The mechanism cannot be known
because, being genuinely random, there is nothing to know. Consequently, it
cannot be assumed that the values obtained during measurements represent
pre-existing quantities associated with the system under study. With their
example of a system whose values are well-defined prior to measurements, EPR
suggested that quantum mechanics could be indeed completed, opening the door
to a research program aimed at discovering hidden variables and re-obtaining an
ignorance interpretation for the quantum probabilities. This is connected with
Einstein’s famous dictum: “God does not play dice.”

Thus, the EPR argument and Bell’s elaborations can be considered a major
challenge to the standard formulation of QM. Although the empirical violation
of Bell’s inequalities was considered a victory of Bohr’s perspective by many
physicists7, some authors still support the idea that there is a place for an ontology
based on nonlocal hidden variables. Among them, Bohmians are perhaps the
most popular in the philosophy of physics community. Other authors have argued
that the unpredictability that pervades all quantum phenomena might be due
to an underlying chaotic (hidden) layer of reality. Contextual hidden-variable
models, which have the virtue of being local, are worth mentioning.

If probabilities represent the likelihood of outcomes, how can we use them to
model real experiments? The representation of the experimental results is done
with the use of random variables. Given a probability space, we can define a
random variable as a function R : Ω → O, where O is the (measurable) space of
outcomes. For example, if we were trying to represent the outcome of throwing
two dice and then adding them, the sample space Ω would have 36 elements
(one for each possible result of throwing two dice), but the set of outcomes O
would be O = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with only 11 members. What is
nice about random variables is that, once we define them, i.e., the functions, it
is straightforward to compute the probabilities associated with each outcome.
Furthermore, random variables provide a mathematical way to represent not only
one possible experiment but by selecting a reasonable sample space, multiple
experiments, or variables. For example, a single probability space could be

7To this respect, it is instructive to see the interview with J. Clauser [26] explaining the
motivations of some of the experiments that gave rise to the 2022 Nobel Prize in Physics
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constructed to model the properties of height, weight, gender, and age in a given
population. We can use physics to model any classical experimental outcome
and its inevitable fluctuations due to experimental errors. Therefore, extending
the use of random variables to model quantum phenomena is natural. This is
what we shall do with the EPR experimental setup.

Each quantum observable defines a random variable when restricted to an
empirical context. This can be summarized using the spectral theorem. To
illustrate this, let us consider the finite-dimensional case. Let the Hermitian
matrix A represent an observable (such as the spin of a particle). Let {λi} be
the set of eigenvalues of A and {Pi} their corresponding projection operators
associated with their eigenspaces. Then, we can write that

A =
∑
i

λiPi. (10)

As simple as it appears, the above equation has deep implications. First,
notice that the set of projection operators {Pi} generates a Boolean algebra
FA

8. A quantum state ρ will define in a canonical way a classical probability
distribution pρ in FA (as in Kolmogorov’s axioms above). Therefore, a quantum
observable always defines a classical random variable when we restrict ourselves
to a concrete empirical measurement to measure it. Intuitively, this means that a
classical probability space can describe any concrete empirical context satisfying
Kolmogorov’s axioms.

Where is the quantum behavior if classical random variables can naturally
represent quantum observables? Quantum characteristics arise when we add
multiple contexts. Let us put it in a simple but direct way. For some quantum
systems, no joint classical probability distribution allows us to compute all
possible quantum correlations as marginals (in the usual way) in all possible
contexts. Each time we attempt to combine incompatible quantum contexts
into a classical joint probability, we face a contradiction with local realism. And
this is essentially what Bell does when deriving his inequalities: He assumed the
existence of a joint classical probability distribution.

To illustrate the role that identity plays in Bell’s derivation, consider the
following observables: σz ⊗ σz and σx ⊗ σx. Operationally, the former implies
that both Alice and Bob measure the spin in the ẑ direction, while the latter
means that Alice and Bob measure the spin in the direction x̂ instead. Because
we cannot create an experimental procedure that measures the spin in x̂ and
ẑ simultaneously, each observable requires a whole set of distinct experiments.
These different experiments define distinct and incompatible empirical contexts.
As such, how can we consider them at the same time? There are three possibilities.
The first is to consider two equivalent copies of the quantum system (i.e.,
equivalent preparations) and instantiate the different measurement contexts in
different laboratories. The second is to consider a new preparation of the same

8In order to see this, define the canonical operations between projections as follows. Let
the intersection “∩” of subspaces be the conjunction “∧”, the direct sum ⊕ the disjunction
“∨”, and the orthogonal complement of a subspace “⊥” the negation ¬. With these operations
between subspaces, the eigenspaces of A generate the Boolean algebra FA.
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system (i.e., to perform different measurements at different moments of time).
Finally, the third possibility is to consider the contexts as mere possibilities
(without the necessity of actually realizing them). In the first option, we explicitly
have two quantum systems with indistinguishable particles. In the second case,
we have a quantum system considered at different moments of time. Again, if
quantum systems lack identity, how can we identify them over time? The third
alternative is perhaps the most interesting from a philosophical point of view.
How many quantum systems are considered in this case? One could be tempted
to say that only one quantum system is considered in two different situations. In
other words, the quantum system considered in context σz ⊗ σz is the same as
the one considered in context σx ⊗ σx. But in what sense can we say that two
systems are the same? What sort of metaphysical principle allows us to make
an identification? Let us recall Schrödinger’s words:

“I beg to emphasize this and I beg you to believe it: it is not a
question of our being able to ascertain the identity in some instances
and not being able to do so in others. It is beyond doubt that the
question of ‘sameness’, of identity, really and truly has no meaning.”
[27, pp. 121-122]

According to Schrödinger’s suggested ontology, we cannot apply the notion
of sameness to an elementary particle. Or, at least in a weaker version, we
cannot do that in all possible situations. Therefore, we must be careful when
asserting that ”the system is the same.” If Schrodinger is right and the questions
about sameness and identity have no meaning, we cannot say, at least in all
possible situations, that a system considered at different times is the same. Or,
more importantly, we cannot say that the equivalent copies of quantum systems
considered in incompatible contexts are the same because identity does not apply
to them. We can only say that we obtain equivalent copies indistinguishable
from each other.

Although identification through incompatible contexts is natural in classical
physics, logic does not allow us to jump so quickly into the quantum domain. We
must be careful about the ontology. We need an extra ontological assumption if
we want to conclude that the obtained copies are indeed the same. In principle,
experimental situations σz ⊗ σz and σx ⊗ σx inhabit different possible worlds.9

Furthermore, these worlds are necessarily different since the experiments are
incompatible. One needs a strong metaphysical assumption about the identity
of the particles involved if one wants to identify them among these alternative
worlds. This is the case in an ontology based on individuals, such as Bohmian
mechanics. However, at this point, the ontological weight of the individuality
assumption should be clear. One needs to assume that, when considering
different (incompatible) contexts, the system considered retains its identity for
the existence of a joint probability distribution.

To our knowledge, the role of identity as an ontological assumption was not

9Here, we emphasize that we mean possible worlds, not actual, as is the case in the Many
Worlds Interpretation of quantum mechanics.
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considered in the philosophy of physics literature10. This is a crucial assumption,
given that if quantum systems are considered genuine nonindividuals, we cannot
conclude that the systems from the different alternative possible worlds are
the same. In the best case, they are indistinguishable. The impossibility of
identifying them a priori reveals that assuming an ontology based on individuals
is crucial to grant the existence of a joint probability distribution. From an
ontology of nonindividuals, one can only conclude contextual hidden variable
models; as is well known, this is not enough to derive Bell inequalities. It
is an open philosophical problem to determine to which point an ontology
based on nonindividuals necessarily leads to a nonlocal interpretation (such
as Bohm’s). Here, it suffices to conclude that non-individuality fits perfectly
with the contextual behavior of quantum systems. Therefore, as a result of the
discussions in this section, we could conjecture the following.

Indistinguishability =⇒ Contextuality.

4.3 The assumptions underlying the Kochen-Specker the-
orem

Now, we analyze the Kochen-Specker contradiction from the point of view of
the indistinguishability assumption. As will be clear from our analysis, one of
the hypotheses that leads to the contradiction is that quantum systems obey
the classical rules of identity. In short, the KS theorem assumes that a quantum
system retains its identity among the different contexts in which it is considered.

To explain the argument, let us consider an analogy. At some point in life,
we may wonder how things might have been if we had chosen a different career.
We can imagine an alternate world in which we are not physicists but lawyers.
In this world, as physicists, we are deeply interested in quantum foundations.
What about our ”copy” in the alternate possible world? Can we infer something
about their interest in the interpretational problems of quantum theory? It is
reasonable to assume that very little can be inferred. Unless we assume that our
passion for quantum physics is rooted in our genes or some structural feature of
our brain, little can be said about that. We can even state that we are talking
about different people. Thus, why should we expect a similar behavior or set of
interests? To connect our current selves with those of the alternate realities, we
need to make a strong assumption that ensures that we will retain properties in
completely different contexts. In particular, we must retain, to a great extent,
our identity to arrive at the conclusion that we will behave in the same way.

The situation of quantum systems is similar to the discussion above in the
following sense. Two quantum contexts cannot be realized simultaneously:
They exist only as possibilities. Thus, the same quantum system cannot be
considered in two different incompatible contexts simultaneously. If the system is
considered in one context, complementary contexts are necessarily counterfactual;
they belong to alternate worlds. Thus, the question arises: Can we identify a
quantum system considered in one context with an equivalent one but viewed in

10The one exception being our own work in [4], which is forthcoming.

16



a different context? As we shall see, the answer is ”no” if we are talking about
nonindividuals.

Suppose that, when considered in the context C1, we assign the property
P1 to a quantum system. If we now want to make the assumption that P1 is
retained when considering the system in the complementary context C2, we need
to make a very strong assumption about its identity. Namely, we need to assume
that, since it is the same system, it will retain the property in the new context.
However, under the assumption that quantum systems are nonindividuals, the
rules of classical identity do not apply to them. Therefore, talking about the
same system is impossible when considering a different context. In the new
context, we obtain a new instantiation of an object of the same class, which
is, in the best case, indistinguishable from the one of the previous one (the
same mass, the same charge, and the same spin, but in a different context).
Thus, the attribution of properties can only be made with regard to a particular
measurement context since, for nonindividuals, we cannot even claim that we
are speaking of the same entity when we consider different contexts. Under the
nonindividuals assumption, there is no logical rule that allows us to deduce that
only one individual is the bearer of all the possible properties at once. Therefore,
there is no way to reach the global (noncontextual) attribution of properties
that leads to the KS contradiction.

5 Conclusions

In this work, we have discussed several interpretational problems of quantum
theory considering the possibility that quantum systems belong to the ontological
category of nonindividuals. In the vast majority of philosophy of physics works,
it is implicitly assumed that quantum systems are, in fact, individuals in the
sense that they can be labeled, identified, and reidentified in different contexts
or situations. Put in logical terms, it is implicitly assumed that the entities
involved obey the classical laws of identity. Here, we have stressed that the
notions of identity and individual must be considered essential to define the
characteristics of the assumed ontology. Recognizing this implies that one could
consider different examples of ontologies in which those features do not hold (or
that hold partially). As quantum systems can enter situations where they cannot
be operationally discerned, exploring the idea that they lack individuality is
natural, as Schrödinger suggested. But, as we have shown here, the assumption
of nonindividuality right from the start is game-changing since many of the
arguments that give place to the so-called quantum paradoxes tacitly use the
objects’ identities. When this assumption is relaxed, the arguments do not
follow.

We have presented arguments that suggest that ontological indistinguishabil-
ity is a strong notion that pertains not only to the subsystems of a compound
system. Even for a single quantum system, we saw that the assumption of it being
a nonindividual can give place to genuinely (and operationally) indistinguishable
physical processes. A classical entity, such as a billiard ball, is an individual, and,
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as such, it cannot generate operationally indistinguishable processes. As the
indistinguishability of processes (such as paths in an interferometer) is known to
be one of the crucial conditions for quantum interference, our arguments suggest
a strong link between nonindividuality and the quantum superposition principle.

More interestingly, there also seems to be a strong link between contextuality
and the failure of the classical laws of identity. A plain individual can be
operationally distinguished from others of the same kind in every situation.
It can be identified and reidentified, be it in different moments of time or
different contexts. In contrast, quantum systems seem to lack these features:
There are situations in which there is no operationally coherent way to identify
and reidentify them. This feature strongly suggests that the classical laws of
identity do not hold for quantum systems. However, if that is true, it has
strong implications for contextuality. Given that no single world can contain
two incompatible measurement contexts, a diversity or plurality is necessarily
associated with a quantum system when considered in different contexts. When
we conceive of a given entity in different (incompatible) contexts, classical logic
only allows us to conclude that we have several copies of it, given that the
contexts belong necessarily to different possible worlds. If one wants to suppress
diversity and obtain a single entity —e pluribus unum—, a strong metaphysical
principle of identity must be postulated. From the discussions presented here, it
follows that this identification can be carried out only for entities that obey the
classical laws of identity (such as billiard balls). For quantum systems, on the
other hand, if we assume the hypothesis of nonindividuality, there is no way to
conclude that identification can be performed. Only indistinguishable copies are
obtained when we consider a quantum system in different contexts. A similar
consideration applies to a quantum system at different moments of time or two
equivalent preparation procedures (that generate two equivalent copies of the
“same” system).

We believe that the arguments presented in this work open the door to
further philosophical investigation of questions that had never been considered.
In particular, it remains to understand in more detail what happens with the
so-called quantum nonlocality in an ontology of nonindividuals11. Another inter-
esting question is this: At what point can ontological indistinguishability be used
to isolate quantum theory from all possible no-signal generalized probabilistic
theories? We hope to address these questions in future work.

Acknowledgement

We thank Professor Décio Krause for discussions on indistinguishability and
quantum ontology issues. We also thank the anonymous referees for their
suggestions and help improving this manuscript.

11For an analysis based on bundles of properties, see [28, 29].

18



References

[1] E. Schrödinger. Discussion of probability relations between separated
systems. Mathematical Proceedings of the Cambridge Philosophical Society,
31(4):555–563, 1935.

[2] C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement of subpicosecond time
intervals between two photons by interference. Phys. Rev. Lett., 59:2044–
2046, Nov 1987.

[3] Federico Holik, Juan Pablo Jorge, and Cesar Massri. Indistinguishability
right from the start in standard quantum mechanics. arXiv:2011.10903,
2020.

[4] J. A. de Barros, F. Holik, and D. Krause. Distinguishing Indistinguisha-
bilities: Differences Between Classical and Quantum Regimes. Synthese
Library. Springer, Cham, Switzerland, 2023. Forthcoming.

[5] S. Kochen and E. Specker. The problem of hidden variables in quantum
mechanics. Journal of Mathematics and Mechanics, 17:59–87, 1967.

[6] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical descrip-
tion of physical reality be considered complete? Physical Review, 47:777–780,
1935.

[7] J. Acacio de Barros, Federico Holik, and Décio Krause. Indistinguishability
and the origins of contextuality in physics. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 2019.

[8] A. M. L. Messiah and O. W. Greenberg. Symmetrization postulate and its
experimental foundation. Phys. Rev., 136:B248–B267, Oct 1964.

[9] W. Pauli. The connection between spin and statistics. Phys. Rev., 58:716–
722, Oct 1940.

[10] J Marton, S Bartalucci, S Bertolucci, C Berucci, M Bragadireanu,
M Cargnelli, C Curceanu, S Di Matteo, J-P Egger, C Guaraldo, M Ili-
escu, T Ishiwatari, M Laubenstein, E Milotti, D Pietreanu, K Piscicchia,
T Ponta, A Romero Vidal, A Scordo, D L Sirghi, F Sirghi, L Sperandio,
O Vazquez Doce, E Widmann, and J Zmeskal. Testing the pauli exclusion
principle for electrons. Journal of Physics: Conference Series, 447:012070,
jul 2013.

[11] Frédéric Bouchard, Alicia Sit, Yingwen Zhang, Robert Fickler, Filippo M
Miatto, Yuan Yao, Fabio Sciarrino, and Ebrahim Karimi. Two photon
interference: the hong-ou-mandel effect. Reports on Progress in Physics,
2020.
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