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We assume: St) Photons are emitted by harmonically oscillating
sources. (ii) They have definite trajectories. (iii) They have a prob-
ability of being scattered at a slit. (iv) Detectors, like sources, are
periodic. (v) Photons have positive and negative states which locally
interfere, 1.e., annihilate each other, when being absorbed. In this
framework we are able to derive standard diffraction and interference
results. We thereby eliminate in this approach wave-particle duality
for photons, and give nonparadoxical answers to standard questions
about interference. For example, in the two-slit experiment each
photon goes through only one slit.

Key words: photon, interference, trajectories, stochastic-model, QED,
quantum-optics.

There have been many papers on optical diffraction, both
foundational and technical. Why another one on the foundations?
We have several justifications for the present cffort. First, it is, we
believe, of continuing philosophical interest to give a purcly particle
theory of diffraction of light. Such particle theories have a long
history reaching back to Newton.

Second, the best known particle theories of diffraction, the
stochastic mechanics of Nelson and others, and the quantum poten-
tial theory of de Broglie-Bohm, are not really suitable for photons.
They both depend on dynamical interaction with a ficld and conse-
quently are focused on the behavior of particles with positive mass.
The theory we develop is not dynamical in this sense. Except for
local interaction with matter, we assume photons follow lincar tra-
jectorics. -

Third, using our probabilistic theory of photons we can define,
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in a standard mathematical way, the scalar electromagnetic field.
From a philosophical standpoint this reduces the concept of such a
field to the progability distribution of photons.

Fourth, although our results agree with those of quantumn me-
chanics for optical diffraction, a point again of philosophical interest
is that we avoid the seeming paradoxes of wave-particle duality. For
example, does an individual photon somehow go through both slits
simultaneously? In our theory, as we spell out later, the answer is
negative.

Our main objective is to derive diffraction from the assump-
tion of well-defined photon trajectories. To do this we start with a
harmonically oscillating source assuming only knowledge of the mean
distribution of emission (Sec. 1). To get a mean probability distribu-
tion that is symmetric in the oscillation of the source we introduce
positive and negative states of photons. These assumptions are used
to derive the mean distribution of photons in free space (Sec. 2) and
to define the electric field (Sec. 3). When photons pass through a
slit scattering occurs. The resulting diffraction distribution on the
screen at a given time is derived (Sec. 4).

To average over time and derive well-known diffraction pat-
terns, we use two additional hypotheses. The first is that positive
and negative photons annihilate each other in the process of absorp-
tion by a detector. The second is that the process of absorption, like
the process of emission, is periodic. We then derive (Sec. 5) a result
asymptotically equivalent to the classical definition of intensity. The
convergence to an exact equivalence is rapid.

We conclude (Sec. 6) with our response to a number of the
conceptual questions often raised about photon diffraction phenom-
ena. The present article continues and considerably extends the foun-
dational analysis begtin in Suppes and de Barros (1994).

There are several aspects of the research we are undertaking to
be emphasized. In a general way our approach is to analyze the main
empirical phenomena characteristic of quantum electrodynamics, but
with a stronger ontological commitment than that of QED to a purely
particle theory. This viewpoint contrasts sharply with the ontological
commitment to ficlds of Bolim, Hiley and Kaloyerou (1987), Bohin
and Hiley (1993) and Kaloyerou (1994). Of course, our ideas are not
as yet as thoroughly developed.

Conceptually a key point for us is to introduce from the very
beginning two kinds of photons, or, equivalently, two different states
for photons, which we label positive or negative. As alrcady re-
marked, their introduction leads to a natural symmetrization of the
expectation density of photons, and also to a local principle of inter-
ference. Because only the net excess of positive or negative photons is
observable, it is appropriate to call the positive and negative photons
virtual and thus not necessarily individually observable. Although
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our concept of virtual photon is not the same as that of QED, we

expect common features to be present in our subsequent extension
of the present work.

1. SOURCES AND TRAJECTORIES

It is important within the framework of the ideas we are devel-
oping to give sources primacy of place over fields. There is already a
justification of this in classical electromagnetic theory because, given
the sources, the electromagnetic field is uniquely defined, but given
the field, the sources cannot be uniquely identified. Of course, our
reason for stressing the importance of sources is deeper. We in fact
want to define the concept of a field and not use it as a primitive
concept in our development. In particular, we want to define the con-
cept of field, as will Le clearer later on, in terms of the ezpectation
density of photons.

In the present paper we take a semi-classical approach to
sources. In particular, we assume that we have a harmonically os-
cillating point source of monochromatic light. It clearly does not
represent a detailed theory about how atoms radiate photons.

The simplest assumption for a harmonic oscillating source is
to assume that the source can be represented as a function A coswt.
However, there are difficulties with this that are easy to pinpoint.
What we actually want is a probability distribution of emission of
photons from the source. We cannot use a simple cosine function
because it assumes negative values. We also want to stress that
we do not attempt to characterize at this point a detailed stochastic
formulation of the emission of photons by the source, but are content
with having only a temporal expectation density at the source. For
this purpose we could use the function A(1 + coswt).

The difficulty with this function is its asymmetric character
in relation to the nature of the cosine function. Moreover, there is
a more severe conceptual difficulty if we want to define a field from
the expectation density. We would have at points where the ficld is
maximum a zero density of photons.

There is an easy and natural way to symmetrize the problem,
which we shall adopt, namely, the introduction of positive and nega-
tive states, which we discuss from a conceptual standpoint later. In
Sec. 3 the difference in the expected number of positive and negative
states of photons is used to define the electromagnetic field generated
by the source.

So we end up with the following formulation. Let ng(t)dt
be the expected number of photons in positive or negative states
emitted in the interval (¢,¢ + dt), with ¢ > 0. Then we assume, in
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order to symmetrize the expectation density,
A
ng(t) = E—(l % coswt), (1)

with ¢ > 0, where 4 and w are real constants determined by the
oscillating source.

A central aspect of our proposal for a new theory of diffrac-
tion is to revive the Newtonian idea of well-defined trajectories for
corpuscles, or as we would now say, photons. It was central to New-
ton’s theory that when corpuscles of light are unimpeded they travel
in straight lines, as he put the matter at the beginning of Opticks
(1730, p. 2), “Mathematicians usually consider the Rays of Light to
be Lines reaching from the luminous Body to the Body illuminated.”
In particular, we assume that in free space photons move with veloc-
ity cin straight lines. This viewpoint toward trajectories agrees with

the heuristic extension of geometrical optics to “diffraction rays” by
Keller (1962, 1965).

2. DERIVATION OF EXPECTATION DENSITY
IN FREE SPACE

The physical assumptions about photons which we need in
this section, partially anticipated above, are the following.
I. Photons are emitted uniformly in all directions froin a har-
monically oscillating point source.
II. Let ny(t)dt be the expected number of photons in positive or
negative states emitted in the interval %t,t + dt), with ¢t > 0.
Then, we assume (as already stated in (1))

ni(t) = —;—1—(1 + coswt), (2)

with ¢ > 0, where A and w are real constants determined by

the oscillating source.

III. In free space, photons move with velocity ¢ in straight lines
following classical paths.

IV. In the presence of matter a photon has a positive probability
to be scattered or absorbed.

Under these assumptions, the wave-particle duality is elimni-
nated for photons. Individual photons do not have wave properties,
but the nonlocal expectation density, which we now define, does.

General probability concepts. We begin with some basic ran-
dom variables, for which we use spherical coordinates with origin at
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the source.

X(r,6,p,t) = number of photons at point(r, 8, p)at time t,
X4(r,0,p,t) = number of + —photons at point r, 8, p)at time ¢,
X_(r,8,¢,t) = number of ~ —photons at point(r, 8, p)at time .

Note that
Xi(r,0,0,t) + X_(r,0,p,t) = X(r,0,p,1). (3)

At the source. The expected number of photons emitted at ¢
is:

1
E(X4(0,0,0,t)) =n4(t)=A (% + 3 coswt) . (4)
Ezpectation density. In Assumption II we use % + %coswt,

rather than coswt, to have a density that is nonnegative for all t.
Integrating (2) for the interval (0, f?, we obtain the expected number
N4(t) of photons emitted during the period (0,t).

Ny(t)

t
/ -‘i(l + coswt')dt’
0 2
= —g(t + %sinwt).

We note that the expected number N(t) = N4 (t) + N_(t) increases
with ¢, because photons are continually created at the source.

We now derive the space-time expectation density hy(r,6,,1),
spherically symmetric in the radial distance » from the point source,
so we simplify to hy(r,t). For cach ¢, hi(r,t) becomes a probability
density if we divide by Niﬁt)' If a photon is emitted at t',0 < t' < ¢,
then at time ¢ the photon has traveled a distance r, where

t—t' =rfec (6)

For a photon v emitted from the source at time t' < t, we have as
the conditional probability for its position random variable Y{(v) at
time ¢:

PIY(v) = (n0,0)1¥e (1) = (0,0,0)] = g 6ltt— €)= 5. (D)
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We know the expectation density at ¢ of the source:

ng(t') = %(1 + coswt'), (8)
so we have for

ha(rt) = PIYi(v) = (r,8,¢)Ye(¥) = (0,0,0))ns(t)  (9)
the following:

t
hy(r,t) = /(; 8:11‘2 8t — (¢t - —:;-)](1 + coswt')dt'
A

8mr?

(10)

[1+cosw(t — -:;)]

3. DEFINITION OF FIELD

We define the scalar field £, generated by the spherically sym-
metric point source in terms of the expectations of the random vari-
ables X, and X_, or, put another way, in terms of the photon ex-
pectation densities hy and h_,

£ = go(’l+ - h_)

s 11
\/h++h_ ( )

where & is a scalar physical constant. Using (10),

A r
—h_ = _L
hy —h y cosw(t c)

nr?
and A
h+ + h_ = 4—7”'3;
thus, from (11),
A r
E=6& y— cosw(t — z) (12)

Applying the standard definition of average intensity, we get the
expected result:
E2A
= (£2) = S0
1= ()= 24 (13)
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There is a conceptual point to be emphasized in connection
with equation (11). This equation is a definition. It shows how
we define the concept of an electromagnetic field solely in terms of
photons and their expectation density. Hence in the present context
the field has no independent physical reality.

On the other hand, the field £ defined by (11) satisfies the
three-dimensional wave equation

g LOE
£- =35 =0 (14)

which for the spherically symmetric case has the following form in
spherical coordinates

19, ,06. 1%
aor e @ = (15)

where the terms involving  and ¢ are eliminated by symmetry.
It is easy to check that the definition of the field given by (11)

satisfies the wave equation when hy is generalized to an arbitrary
number of spherically symmetric sources. :

4. DERIVATION OF DIFFRACTION THROUGH A SLIT

The standard two-dimensional geometry of the single slit, to
which we restrict ourselves in this and the next section, is shown in
Fig. 1, where for the illustrated path z is the coordinate on the axis
of the slit and y is the coordinate on the screen. We assume as a local
phenomenological model that the probability P:(s) of a scattering
event at any point z of the slit is a decaying exponential function as
we move toward the center of the slit away from the edges,

P,(s) = e 2+ (n(z +a) —n(z)) + e (y(z) = n(x - a)), (16)

where a, A > 0 and

(2) 0 ifx<O
y(z) = .

1 fr>0.
Also P.(3) = 1 — P.(s), where 5 is the event of no scattering at
z. The parameter A will be a function of the barrier and can be
estimated from experimental data.
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Fig. 1. Typical path in single-slit diffraction.

We define p;(y|s) as the conditional probability that a photon
scattered at z arrives at y on the screen and p,(y|3) as the conditional
probability that a photon not scattered at z arrives at y. We note

first that (dy +dy)
T
Pa(yl3) = 8y — =—3—), (17)

which is just the geometrical shadow.
Second, we assume a cosine law for forward scattering

pz(yls) = cz cosf (18)

and we neglect any backward scattering. From Fig. 1 it is clear that

[ |z
e —. 19
4 + drctan a (19)

Returning again to Fig. 1, let At = —t' be the time for the photon
to go from the source S to y. We then have

vet- (A deJom @) =gt @)

Using (9) and (20) and integrating across the slit the various condi-
tional probabilities already defined, we get as a general expression

0 = arctan

i) = 50 [ IawlIPe(s) + paulO) P mallt, 2, ).
(21)
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Using (8) and (16)-(21), we obtain as the explicit expression for
diffraction through a single slit

hatnt) = 5 [ @0+ a) ()

F eHE= () — (z a)))]

+ cos(arctan (—;l; + arctan {%‘-){1 + cosw [t - %(‘ [z2 + d3
e+ )] }dz

A a
+ [ (1= P+ a) - (=)

- e M= (y(2) ~ n(z ~ a)))

-6y - ————z(d'djr dg)){l

:}:cosw[t — :1:-(\/3:2 +d} + 4/(y — z)? +d§>] }dz.

(22)

We now introduce several approximations for computational

purposes: (i) since z is small, we approximate 6 by arctan(|y|/d2);

ii) we assume that cos varies slowly compared to cos(wg(t, 7,y))

since w 3> 1; (iil) Pz(s) = 1 for all points z of the slit. Using these
approximations, we obtain from (22)

A
hi(y,t) = % cos(arctan ‘;-‘—/—2

[ fremae- (s oo+ )|

(23)
The correspoudinﬁ expression for two slits with width d of the central
barrier is easily obtained from (23):
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_ o4 v
hy(y,t) = i cos (arctan dz)

{/j*" {1 icos“{t - %(\/”2 +df +y/(y - 22 +d§)}}d:c
+f_j—a {1 ﬂ:cosw[t - %(\/x2 +dl 4y - o)+ dg)”dm}_

24
By using a second-order Taylor expansion of z around 0, i.e.,( l)})'
using the linear and quadratic terms of the expansion, we obtain from
Maple’s symbolic computation program an approximate expression
for (23) in terms of the standard Fresnel integrals:

A
hi(y,t) = %(—l— cos(arctan dl

{20 Ji;((sink)S(,/;};(ﬂ — 2ay)) - (cos k)C(,/é%(ﬂ ~ 2a7))

+ (sink) S(,/éi,‘,’;w +2ay)) + (cos k) C(\/é—j‘j—;(ﬂ +2an)l},

(25)
where
21 g2
azw(hdw____ \/y+d) (26)
__ wy
A= cV/y? +d,?
w1 d?
==\osgtoo——7%3 ] 28
T=% (2(11 2(y? + d%)i) (28)
iz
k=w(——-+a), (29)
v
C(xz) =/ cos(—;[z2)dz, (30)
0
S(z) = / siu(gzz)dz. (31)
0

A similar approximation in terms of Fresnel integrals for equation
(24) is also directly computable by Maple, but the expression is com-
" plicated, so we omit it. The integral of equation (23) is similar to a
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classical diffraction integral derived in Sommerfeld (1964). By using
his approximations we can derive his result.

5. ABSORPTION OF PHOTONS

There are two important conceptual assumptions we now in-
troduce. They are essential to our analysis of absorption, but were
not required for the derivation of 522), i.e., of the expression at the
screen of the expectation density hi(y,t). These new assumptions
are required for a proper formulation of the second-order effects that
are characteristic of absorption, as classically measured by the square
of the field, averaged over time.

First, we assume that the absorber, or photodetector, itself
behaves periodically with a frequency w. Thus, the probability pa
of absorbing a photon is, independent of y:

pa = c3(1 + cos(wt + ¥)), (32)

where 1 is an arbitrary phase that can be randomized.

Second, we assume a local principle of interference. As already
remarked, during the process of absorption positive and negative
photons cancel each other in pairs, so the effective absorption in a
short interval is the net surplus, if any, of either positive or negative
photons.

We simplify the analysis, without loss of conceptual content,
by analyzing two point sources, which we can think of as an approx-
imation to two slits. So we have from the two coherent point sources
at y and ¢

K (y,1) = B(y)(1 % cos(wt + @1(y))), (33)
hE(y,t) = B(y)(1 % cos(wt + p2(y))), (34)

and
ha(y,t) = by, t) + 1P (v, 1). (35)

Because only the relative phase is observable, without loss of gener-
ality we may set ¢y(y) = 0 and ¢y(y) = (p(y{.

We show that for two point sources differing by an arbitrary
phase ¢, the time-averaged imbalance of expected number of posi-
tive and negative photons absorbed converges rapidly to the classical
intensity of the defined field. First, the expected number E(#4) of
cach type of photon absorbed is the time-averaged product:

E(#+) = (hx(t)pa(2)). (36)
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The averaging is required because an absorption of an individual
photon by an atom of a photodetector takes on average several orders
of magnitude longer than the mean optical period of the photons,
both theoretically and experimentally (Nussenzveig, 1973).

From (32)-(36), we obtain

T
E(#+)= Ej-fi/ (24 cos wttcos(wt+¢))(1+ cos(wt +1p))dt. (37)

We now observe for T 3> 1/w, where w = 10"%s71,

T
%—?/0 coswidt = 0 (38)
and
1 (T 1 [T
?/ cos® wtdt =~ T_/ cos?(wt + y)dt. (39)
0 0
Using (37), (38) and (39), we obtain
|E(#+) — E(#-)|

Bey
[ A ———

T
R 5 |/ 2(cos wt cos(wt + ) + cos(wt + ¢) cos(wt + 1p))dt|
0

= Bes|costh + cos(yp — ).
(40)
Randomizing between the two corresponding phases of ¥ = ¢ and

¥ = 0 in the absorber, we see from (40) that the outcome is the
same, namely,

|E(#+) — E(#-)| = Bey(1 + cosp). (41)

Defining the field at the fixed point y, using (11), we have

&= EoVB(coswt + cos(wt + ). (42)

Squaring £ and averaging over time, we obtain the intensity I at a
point y:

I~ E2B(1 + cos ). (43)
Comparing (41) and (43? we see that for fixed phase difference ¢ of

_ the two sources we get that the intensity of the field is proportional
< to the expected total number of photons, i.e., E(#+) + E(#-).
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We now consider two special cases, one of positive and one of

negative interference. If ¢ = 0 in (41), so that the two sources have
the same phase, then

|E(#+) — E(#-)| = 2Bcs. (44)
If ¢ = m, the case of negative interference, then
[E(#+) — E(#-)| =0. (45)

So in this case we get a classical case of complete destructive inter-
ference where no photons are detected, but by using only our purely
local principle of interference.

We are now in a position to explain one of the most secemingly
paradoxical aspects of the two-slit experiment. How can it be, so the
paradox goes, that by closing one slit (or turning off one source),
the number of detected photons increases (Feynman, 1985)? Our
answer is simple, as can be seen from (45). When one slit is closed
we eliminate the destructive local interference. So, with only one slit
open, the expected number of photons detected is Bcj, whereas, as
we have shown, with both slits open, the expected number is 0.

6. SOME STANDARD QUESTIONS AND ARGUMENTS

It is instructive to see how the concept of photons with def-
inite trajectories leads to nonparadoxical answers to the standard
questions raised about diffraction and interference, especially in the
context of quantum mechanics.

1. Where are the waves? In the theory of photons proposed
here an individual photon does not have wave properties. The ex-
pectation density does, for it inherits the wave properties of the
oscillating source.

2. Interference with one photon at a time? Yes, but. Given
sufficient time T a very low intensity beam will produce the same
pattern of diffraction or interference as a very strong beam for a
short time T'. The required computation of the times T and T' is
straightforward in principle: The same expected number of photons
should be emitted from sources with differing intensities for the two
periods of time. But for extremely low intensity beams the =xpected
density is a poor approximation to the real phenomena.

In principle, we can explain the paradox of a single photon
interfering with itself. The “single photon” of the paradox is the
abservable event at a detector. The destructive interference that
leads to no observed event is explained by a positive and negative
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photon, in our sense, annihilating each other. In other words, the net
excess of positive or negative photons is zero. As is apparent from
the explanation, the total number of photons, positive or negative,
does not correspond to the total number of observable events, which
is another reason to call our positive and negative photons virtual.
Other aspects of photon interference are discussed in Suppes and de
Barros (1994).

3. How can the intensity at a point on the screen be increased
by closing one of the two slits? See our answer after Eq. (45).

4. Without waves, why do particles hit the screen outside the
geometrical shadow? In terms of the basic assumptions of this paper,
the answer is clear. The scattering of photons by the matter of the
barrier can change their trajectories to lie outside of the shadow.

5. Does an individual photon ever go through both slits si-
multaneously? No. Since our basic assumption is that photons have
a well-defined trajectory, our negative answer is obvious. Of course,
our analogue of a wave concept, the expectation density, can, and
generally will, be simultaneously nonzero at both slits.
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