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We assume: i )  Photons are clnittecl by llamlollically oscillating 
sources. ( i i )  T \ icy  llave definite trnjcctories. ( 5 )  T h y  have a prob- 
ability of being scattered at a slit. (i.) Detcctors, like sources, are 
periodic. (u) Photons have positive ancl negative states which locally 
interfere, i.e., allnildate each other, when being a\,sorbecl. In  this 
framework we arc able to derive standard diffraction ant1 interfercuce 
results. We thereby eliminate in this approach wave-particle duality 
for plmtons, ant1 give nonparacloxicd answcrs to stallclard qwstions 
about interference. For example, in tlle two-slit experitnent each 
plloton goes  tllrougll  only one slit. 

Key words: plloton, interference, trajectories, stocll~~tic-modcl, QED, 
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in a stanclard mathematical way, the scalar electromagnetic fieltl. 
From a philoso  hical standpoint this reduces the concept of such a 
field to  the pro F) ability distribution of photons. 

Fourth, although our results agree with those of quantum me- 
chanics for optical diffraction, a point again of philosophical interest 
is that we avoid the seeming paradoxes of wave-particle duality. For 
example, does an indiviclual photon sotnehow go tllrou h both  slits 
simultaneously? In our theory, as we spell out  later, t fl e answer is 
negative. 

Our main objective is to clerive diffraction from the assump- 
tion of well-defined photon  trajectories. To do this we start with a 
harmonically oscillating source assuming only knowleclge of the mean 
distribution of emission (Sec. 1). To get a mean probability  tlistrihu- 
tion that is symmetric in the oscillation of the source we introclttce 
positive ancl negative states of photons. These  assumptions are used 
to derive the mean distribution of photons in free space (Sec. 2) and 
to define the electric field  (Sec. 3). When photons pass through a 
slit scattering occurs. The resulting diffraction distribution  on  the 
screen at a given  time is clerivecl (Sec. 4). 

To average over time and derive well-known  cliffraction pat- 
terns, we use  two additional hypotheses. The first is that positive 
and negative photons annildate ench other i n  the: process of absorp- 
tion Gy a detector. Tllc seconcl is that tllc proccss o f  absorption, likc 
the process of enlission, is perioclic. We then derive (Sec. ti) a result 
asymptotically equivalent to  the classical  clefinition of intensity. The 
convergence to an exact equivalence is  rapict. 

We conclude (Sec. 6) with ottr response to a nu~nber of the 
conceptual questions often raised ahollt plloton diffraction pllenom- 
ena. The present article continues ancl consicleraldy extends  the foun- 
dational analysis beglîu in Srtppes ant1 de Barros (1x14). 

There are several aspccts of the research we are  ulltlertaking  to 
be emplmsizecl.  In a general way our approach is to  analyze the main 
empirical pl1enotnens characteristic of quantum elertrotlynaxnics, but 
with a stronger ontological conmitnlettt tlmn that of QED to a purely 
particle tllcory. This vicwpoillt contrasts  sharply with t h !  outo1ogic:d 
conlnlitnwnt to fivltls of I3o11111, Hilcy  ancl  I(nloycrot1 (1O87), Bollm 
m l c l  Hilcy (1OO3) ; d  I(:lluyrr.ou (1004). Of course, our idcas :tre not 

Conceptdly n kcy point for us is to iutrocluce from the very 
lq$lning two  Iiinrls of pllc)tons, or, cquivalcntly, two tliffcrcnt states 
for pllotous, wllicll wc 1al)cl positivc or negutivc. As drcatly re- 
nlarkccl, their introcluction leads to a natural symnlctrization of the 
expcctatiou density of pilotons, ancl also to n local  prixlciple of inter- 
ference. Because only tllc uct excess of  positive or ncgxtivc pllototls is 
observable, it is appropriate to call tllc positivc ant1 wgativc photons 
vi+uzl and tlms not necessarily irltlivitlunlly observable. Althougil 

yet as tilorougllly c!rvclopctl. 



our concept of virtual pltoton is not the sanle as that of QED, wc 
expect  common features to be present in our  subsequent exhlsion 
of the present  work. 

l. SOURCES AND TRAJECTORIES 

It is important within the framework of the ideas we are devel- 
oping to give  sources primacy of place over  fields. There is already  a 
justification of this in classical electromagnetic theory because, given 
tlte sources, the electromagnetic field is uniquely clefi1ml, but giver1 
the field, the sources cannot  be uniquely identified. Of course, our 
reason for stressing the  importance of sources is deeper. We in fact 
want to define the concept of a field and  not m e  it as a primitive 
concept i n  our clcvelopment.  In particular, we want to define the colt- 
cept of field, a , ~  will be clearer later  on, i n  terms of tlte expectation 
density of photons. 

In the present paper we take  a serni-classical approach to 
sources. 111 particular, we açsuole that we have a lllzrmonically os- 
cillating point source of monochromatic light. It clearly does not 
represent a cletailecl theory about how atoms  radiate photons. 

The simplest assumption for a ltarnlonic oscillating source is 
to assume that the source cul  be represented as a function A cos w t .  
However, tlwre are clifficulties with this that are easy to pinpoiltt. 
What we actually want is a probability distribution of emission of 
photons front the source. We cannot use a simple cosine function 
because it assumes negative values. We also want to stress that 
we do not attempt  to characterize at  this point a detailed  stocllastic 
formnulation of the emission of photons by the source, but  are conteut 
with having  only a  temporal  expectation demity at tlle source. For 
this plrpose we could  use the function A( 1 + cos ut). 

The difficulty with this function is its asyxmnetric cllaracter 
in relation to tlle nature of the cosine function. Moreover, therc is 
a more severe conceptual difficulty if we want to clefine n ficlrl from 
tllc expcctatioll density. We would have at points wlwrc tlw f i c + l  is 
xnaximwn a zcro cleasi ty of plmtons. 

Tiltre is n11 easy nrtcl 1ratrlrnl way to  sylmuctrizc the  prolhwl, 
wlliclt we sllnll adopt, llamely, the  introduction of positive and nega- 
tive states, which we discuss from a conceptual standpoint  later. I11 
Sec. 3 the difference in  the expectctl ntltnber of positive and lwgativc 
states of photons is  used to clefine tlte electrolnagnetic field genesatcd 
by tlle  source. 

So we  ent1 up with tlw following fornlulntion. Let rz*(t)tZt 
hc tllc cxpcrterl nwlber o f  pllotons in positive or rlcgativc skatc.s 
emitted ill the intcrval ( t ,  t + d t ) ,  wit11 t > O .  Tllcn we ilssw~c, i n  
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A 
n&) = -( 1 coswt), 2 (1) 

with t > O, where A and w are real constauts  determined by the 
oscillating source. 

A central aspect of our proposal for a new theory of tliffrac- 
tion is to revive the Ncwtouintl idea of well-clefinecl trajectories for 
corpusclcs, or fts wc would  now say, pilotons. It was ccntral  to New- 
ton’s theory that wllen corpuscles of light are unimpeded t h y  travel 
in straight lines, as he put  the  nlattcr  at  the beginning of O p t i c h  
(1730, p .  2), “Mat;llcnlaticinlIs usudly consicler the Rays of Light to 
l ~ e  Lines reaching from the lunlinotls Body to  the Dorly illunliuated.” 
In particular, we assulue that in free space photons move with vcloc- 
ity c in straight lines. This viewpoint toward trajectories agrees with 
the  heuristic extension of geometrical optics  to “diffraction rays” by 
Keller (1962, 1965). 

2. DERIVATION OF EXPECTATION DENSITY 
IN FREE SPACE 

I. 

II. 

III. 

IV. 

nated 

A 
2 

?t&) = -( 1 z t  coswt) ,  

Unclcr these assunlptions, the wave-particle clldity is elilni- 
for photons. Indiviclm.1 plmtons  do not llave wave properties, 

but  the nonlocal expectation density, wl1ic.h we  now define, (loes. 
General probability concepts. We begin with sonle basic ran- 

dom' variahles, for wlzich we use spherical coordinates with origin at 



tllc: sollfc'c'. 

Note tllat 

is: 

E(,Y*(O, o, o, t ) )  = n & )  = A (f f. f roswt) * (4) 

' A  N * ( t )  = J1: 1 f C0SWt')dt' 

= -(E A k - 1 sill ut). 

2 w 

t - t' = t ' / C .  ( G  1 

1 t' 

4 7r9.2 C 
P [ y , ( v )  = (r,8,$9)I&+) = (O,O,O)j = --a[(t - t ' )  - -1. (7) 
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We know the  expectation  density at t' of the source: 

A 
2 

n*(t') = -( 1 f: coswl'), 

the following: 

!&&(r, t )  = 

- - 

3. DEFINITION 

1' j+-#' - ( t  - - ) ] ( l  f: c0swt')dt' 
r 
C 

1' A (10) 
-[l A cosw(t - -)l .  
$ m 2  C 

OF FIELD 

We define the  scalar field E,  generated by tlle spherically sym- 
metric point source in terms of tlle expectations of the random vari- 
ables X+ ant1 X - ,  or, put another way, in terms of the  photon ex- 
pectation densities h+ and h - ,  

A f' 

4nr2 C 
h+ - it- = - cosw(t - -) 

and 

thus, from ( 1  l) ,  

f' 

C 
cosw(t - -). 

Applying the  standard definition of average intensity, we get the 
expected result: 



There is a conceptual point to  be emplmsizecl in connection 
with equation (11). This equation is a definition. It shows how 
we define t he concept of an electromagnetic field  solely in  terms of 
photons and their expectation density. Hence in  the  present context 
the field has no independent physical reality. 

On the  other  hand, the field E defined by (11) satisfies the 
three-dimensional wave equation 

which for the spherically symmetric case has the following form in 
spherical coordinates 

where the terms involving 8 ant1 'p are eliminated by  syxnnletry. 
It is easy to  check that the definition of the field given by (1 1)  

satisfies the wave equation when h* is generalizet1 to an arlitrary 
number of spherically symmetric sources. 

4. DERIVATION OF DIFFRACTION THROUGH A SLIT 

The  standard two-chensional geonwtry of the single slit,  to 
which wc restrict ourselves i n  this ancl the next section, is sllowtl ill 
Fig. 1, wllerc for the illustratcct pat11 x is the coorclinate on tllc axis 
of the slit ant1 y is the  coordinate on the screen. We assume as r?, local 
phenomellological nlodel that  the probability Pz (s) of a scat  tering 
event at any  point z of the slit is a decaying exponmtial function as 
we move  toward the center of the slit away  from the cdgcs, 

where n,  A > O a~ltl 



S 
Fig. 1. Typical path in single-slit diffraction. 

We define p t ( y l s )  as the conditional probability that a photon 
scattered at z arrives at y on the screen and p,(~&' as the conditional 
probability that a photon not scattered  at x arrives at y. We note 
first that 

which  is just the geometrical shadow. 
Seconcl, we assume a cosine  law  for forward scattering 

PZ(Y(S) = c2 cose (18) 
and we neglect  any backward scattering. From Fig. 1 it is clear that 

Returning a ;tin to Fig. 1, let At = t - t' l x  the time for the  photon 
to go from t a e source S to y. We theu have 

t' = t - -d( C 1 + d m )  = g(t,x,  y). (20) 

Using (9) and (20) and integrating across the slit the various condi- 
tional probabilities already defined, we get as a general expression 

I r a  



Using (8) and (16)-(21), we obtain as the explicit expression for 
diffraction through a single slit 

- ëA‘”-”’(,](X) - q(” - ff))) 

422) 
We now introtluce several approxixnations for connputational 

purposes: (i) since z is small, we ap xoxinlate 8 by arctan( l y l / d 2 ) ;  
(i i)  we assume that cos 8 varies slow 1 y coxnparecl to cos wg(t , r ,  y)) 
since UJ >> 1; (iii) Pz(s) = 1 for all points z of the slit. I sing  these 
approximations, we obtain from (22) 
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(24) 
By using a second-order Taylor expansion of z arouncl O ,  i.e., by 
using the linear and quaclratic terms of the expansion, we obtain from 
Maple's sytnbolic colnputation program an a~qxoxi~nate expression 
for (23) in terms of the standard Fresnel integrals: 

c2 A Y 
4a d2 

h*(y, t) = - cos(arctan -) 

. B =  

r =  

k =  

C(X) = 

S ( x )  = 



classical cliffraction integral derived ill Sor~l~llerfeltl (1964). By rising 
his approximations we ca11 clerive his result. 

5. ABSORPTION OF PHOTONS 

There. are two important conceptual a s s u ~ ~ q ~ t i o ~ ~ s  we now i n -  
troduce. They are essential to our analysis of absorption,  but were 
not required for the derivation of 22), i.e., of the expression nt t h  
screen of the expectation density I L&, t ) .  Tllesc new (?ssunq>tio~ls 
are rcquirctl for a proper formulation of the seconcl-order effccts tllnt 
are characteristic of absorption, as classically nleasuretl by the squnrc. 
of t he field,  averaged  over time. 

First, we assume that  the al>sorber, or pl'otodctcctor, itsvlf 
bellavcs  periodically with c2 frequency w .  T~ILIS, the prolmbility p~ 
of absorbing a plloton is, inrlcpentlent of y: 
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The averaging is required because an atsorptiou of an intlividual 
photon by an atom of a photodetector  takes on average  several  orders 
of magnitude longer than  the mean optical period of the photons, 
both theoretically and experimentally (Nussenzveig, 1973). 

From (32)-(36), we obtain 

We now observe for T >> l/w , where o M 10’5d-’ , 

and T l T  f 1 cos2 ccltdt = J/, cos2(wt f y)&. (39) 

Using (37), (38) and (39), we obtain 

Defining the field at the fixecl point y,  using (II) ,  we have 

c; = € ~ d - s ( c o s w t  + cos(wt f y)) .  (42) 

Comparing (41) and (43 we see that for fixed phase difference cp of 
the two  sources we get t I lat the intensity of the field is proportional 

r ’  to the expected total number of photons, i.e., E(#+) + E(#-). 
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We  now consider two special cases, one of positive ant1 olle of 
negative interference. If 9 = O in (Irl), so that  the two sources have 
the same phase, then 

If cp = T ,  the case of negative interference, then 

So in this case we get a classical case of complete destructive intcbr- 
ference  where  no photons are cletectecl, but by using 011ly our p r c l y  
local priuciple of interfcrcrlce. 

Wc arc now in  a position to explain one of the most seemingly 
paradoxical aspects of tlle  two-slit experilnent. How  ca11 it be, so the 
paradox goes, that by closing one slit (or turning off one source), 
the number of detected photons increases (Feynman, 1085)? Our 
answer  is simple, as can be seen from (45). When one slit is closed 
we eliminate the destructive local interference. So, with only one  slit 
open, the expected nunlber of photons cletectcd is B c ~ ,  wllerc3il*s7 :L! 
we have shown, with both slits ope11, the expected m d x x  is O .  

6. SOME STANDARD QUESTIONS AND  ARGUMENTS 
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photon, in our sense, annihilating each other. In other words, the net 
excess of positive or negative photons is zero. As is apparent from 
the explanation,  the  total number of photons, positive or negative, 
does not correspond to  the  total number of observable events, which 
is another reason to call our positive and negative photons  virtual. 
Other  aspects of photon interference are discussed in Suppes and de 
Barros (1994). 

3. How can the intensity at a point on the screen be increased 
by closing one of the two slits? See our answer after Eq, (45). 

4. Without waves,  why do particles hit  the screen outside the 
geometrical shadow? In  terms of the basic assumptions of this paper, 
the answer is clear. The  scattering of photons by the  matter of the 
barrier can change their  trajectories to lie outsicle of the shadow. 

5. Does an individual photon ever go through both slits si- 
multaneously? No. Since our basic assurnption is that photons have 
a well-defined trajectory,  our negative answer is obvious. Of course, 
our analogue of a wave concept, the expectation density, can, and 
generally will, be simultaneously nonzero at both slits. 
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