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1 Introduction 

In this  paper wc continue the foundatlonal study of photons as particles wlthout 
wave properties  (Suppes  and  de Barros (1994a), Suppes  and  de  Barros (1994b)). 
In the earlier work we assumed: ( 2 )  Photons are  emitted by harmonically oscil- 
lating  sources. (iz) They havc definite traJectories. (iiz) They have a probability 
of being scattered at  or absorbed in the near presence of matter. ( t v )  Detec- 
tors, like sources , are periodic. ( v )  Photons have positlvc and  negativc states 
which locally interfere, i .  e. annihilate each other, when being absorbed.  In this 
framework we are able to dcrive standard diffraction and interference  results. We 
thereby  eliminate in this approach wave-particle duality for photons, and give 
nonparadoxical  answers to standard questions about interference. For example, 
in the two-slit experlment each photon goes through only one  slit. 

In the earlier work  we did not construct a stochastically  compiete model of 
the monochromatic harmonically oscillatory point  source, but only assumed an 
expectation  density for the emission of positive and negative photons,  namely 
t ~ * ( t )  = $(lfcoswt)  with t > O. In  the present paper we derive this  equation (see 
(8) in Section 1) as the expectation density in free space-time from a probabilistic 
model of a two-level atom as source, which easily generalizes to N atoms. We also 
can go further  and derive from the model the cross-correlation of two arbitrary 
space-time  points, but we do not include that calculation in this  paper. 

In Section 2 we  look at photons as particles which have, in certain  special 
environments,  ergodic  motion. In particular, we study  the way  in which photons 
having  definite trajectories can move  in ergodic fashion like billiard balls on a 
rectangular  table  with a convex obstacle in the middle. Such billiards are  cdled 
Sinai  billiards after  the Russian  mathematician Ya.G.Sinai. Their  ergodic  moiion 
is  strongly  chaotic. 

Finally, in Section 3 we examine the isomorphism of deterministic and stochas- 
tic models of photon ergodic motions. Here we use important results of D.S.Om- 
stein  and  his colleagues on  the indistinguishability of these two kinds of models 
of ergodic  behavior. 

The positive and negative  photons we introduce  can well be  thought of as 
virtual  photons, for in a detector they locally interfere  with each other,  and  only 
the excess of one or the  other kind is observable (for further  details see Suppes 
and  de  Barros (1994b)). 

P. Weingartner & G. Schurz (Eds.), Law and Prediction in the  
Light of Chaos Research, Lecture Notes in Physics. Berlin: 
Springer-Verlag, 1996, pp. 189-201.
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2 Two-Level Atom as Source 

We have several processes at the source,  which  we initially  treat as a single 
atom.  In  this version we begin by  making time  discrete, with  the time between 
the beginning of successive trials on the order of the  optical period, s. 

Pmcess  I. Pure Periodic Process. On an odd trial a photon in the positive 
state may be emitted or absorbed, and on an even trial a photon in the negative 
state may be  emitted  or  absorbed. This process is defined by the function 

f*(n) = n mod 2, 

where n is the  trial number. Intuitively. we use (1) to make the probability zero 
of an  atom  emitting or absorbing a negative photon  on trial n if 72 is odd,  and 
probability zero for a positive photon if n is  even. This is our periodicity. 

If, on an even-numbered trial,  the atom is in the excited state, which  we label 
1, at  the beginning of the  trial, then there is a positive probability,  but  not in 
general probability 1, of emitting a negative photon, and similarly on odd trials 
for a positive photon. Correspondingly v e  use O as the label for the ground state 

Process II. Exponential  Waiting Times. We use a discrete Markov chain in 
the two states O and 1 to give us in the mean the geometric  distribution of 
waiting for absorption or emission, but with different parameters.  The geometric 
distribution is, of course, the discrete analogue of the exponential  distribution 
in continuous time. The transition matrix is: e 1 1 - c1 c1 

Thus, q is the probability of absorbing a positive or  negative  photon when  in the 
ground state at the beginning of a trial. In our simple model meant for lowenergy 
experiments, e.g., those  dealing with the  optical part of the electromagnetic 
spectrum, we exclude the possibility of multiplephoton  absorption or emission 
on a given trial. The parameter c1 is just  the  probability of emitting a positive 
or negative photon when in the excited state at the beginning of a trial. 

Pmcesses I & II together. The description just given of absorption  and emis- 
sion of photons  is for Process II alone. Combined with the periodicity of Process 
I, we can  write a single matrix,  but one that depends on  whether the trial number 
is odd or even: 

where f+ (n) = 1 if n is odd and O if n is even, and contrariwise for f- (n). 
Asymptotic Distribution of States. The Markov chain  characterized by (2), 

for Q, c1 # O is obviously ergodic, i.e., there exists a unique  asymptotic  station- 
ary  distribution  independent of the initial probability of being in either state. 



Photons, Billiards and Chaos 191 

For computing  this  distribution we can  ignore the distinction betweell the even 
and  odd  numbered  trials, as expanded in (3), and consider 011ly the process 
Characterized by (2). 

The  asymptotic  distribution is just  obtained from the recursion: 

Solving, 
C1 

Po = - co +Cl 
and 

co 
Q +Cl 

Pl = -. 

So. asymptotically, for N atoms,  the expected  numbcr 1x1 t h  ground state is 

Propcrties of Photons. Omitting here polarization  phcnomcna, a photon is a 
3-tuple (w,  c ,  k), where w is the frequency of oscillatlon of tile  source. c is the 
velocity, and f are  the two possible states  already discussed. 

Process III. Direction of Emzssion. We assume  statlsticai  independence from 
trial  to  trial in the direction of emission of photons by a slnglc atom. We also 
assume  that  the probability of direction of emission is spherically  symmetrical 
around  the point  source. For this  analysis we further  restrict ourseives to two 
dimensions  and a scalar field, as is common in the  study, e.g., of optical  inter- 
ference  in the two-slit experiment,  or  the "billiards" case discussed in the  next 
section. 

d. 
C O + C l  

Penodzc Properties of fit (n). Various properties  are needed. 
(i) If 'p is  even, &(n + 'p) = f f ( n ) .  
(ii) If n is  even, f& + 'p) = f* (p), 
( 3  f&¿ + 'p) = f& + 1)fd'p) + Mn)fit(cp + 1). 

This is easy to prove by considering the four cases: n is odd or even, and so is 
(P- 

For r # O, 

P(photon being at (r,6), t)l emission at t')=  &(t - t' - 5,. 
We now compute  the unconditional  probability of emission at t', where grs t .  

is the event of being  in the ground state. 

P(& emission at t') = c P(& emission at t'[ absorption at t") 
t" <t' 

.P(absorption at t") 
= c c P(& emission at t'labsorption at t") 

t 1 1  <t' tIl'<t" 

.P(absorption at t"lgr.st. at t"') P(gr.st. at t''') 
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The continuous analogue of (7) is obvious, where ßo corresponds to co and 
ßl to C l -  

P( & emission at t ' )  = 
i' t" 

J J  
-w -w 

Let us abbreviatc 
varmbles for positive 

l 
f - cos ut'). 

2 

the space-time position as 2 = (T%, B,, t * ) .  Then the random 
and negative photons are defined as: 

Then, since t ,  - t :  = 2, we have 

which is the form of the 
negative photons derived 
atom source. 

expectation density, h* = ,!?(X,(&)), for positive and 
in Suppes and de Barros (1994b), but here for a single- 

3 Photons as Billiards 

We  now  move to  the study of photons as particles executing ergodic motions. Let 
us begin with a rectangular box that has reflecting sides. We assume the classical 
law of reflection, that is, the angle of reflection equals the angle of incidence. An 
ideal laser could execute the periodic motion shown in  Figure 1 in such a box. 
In fact,  in classical mechanics it is always in terms of such motions that billiards 
are used as standard examples of mechanical systems. It is only in the modern 
study of billiards that matters become  much more compiicated. Intuitively it 
is easy to describe how to get such additional complication. We add a convex 
obstacle to  the rectangular box with reflecting sides as shown in Figure 2. 

Now the  path of the photon emitted by an ideal laser executes the motion 
of a photon as a Sinai billiard. Sinai and  other  investigators have studied very 
thoroughly the mechanical motion of a point particle in such a rectangular box 
with a convex obstacle  and  with the collisions of the particle  observing the 
classical law of reflection as well as the law of perfect elasticity. In the case 
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Fig. 1. Periodic photon billiard motion 

of photons we drop the concept of elasticity but have the reflection take place 
without loss of energy. 

I t  is worthwhile to analyze the law of reflection more carefully in our theory. 
We give a semiclassical derivation in that we assume the reflecting walls are 
continuous perfect conductors in the sense of classical electromagnetic theorye 
The boundary condition for a scalar field  is that it be zero at the conductor 
surface. We can show  how  we obtain  this result most clearly by returning  to  the 
temporally discrete model introduced at the beginning of Section 1. For a perfect 
conductor we change the basic assumptions as follows.  We modify the transition 
matrix (3) to reflect the assumption that in reflection a photon changes its state 
from positive to negative and vice versa. 

This single change for perfect  conductors  enables us to show that  the defined 
scalar  electric field at the reflecting surface is zero. For a single photon, we have 
at once from the new transition  matrix below that at a point of the surface, 
h+ = h, and therefore & = O. We use here the definition of the field E given  in 
Suppes  and  de  Barros (1994b), i.e., E = We thus replace (3) by the t/h++h-- 
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Fig. 2. Photon billiard motion with a convex obstacle 

matrix 

It follows  from fundamental  results of Sinai (1970) that  the following theorem 
can  be proved. 

Theorem 1 The motaon of a photon  as a Sinai billiard, as  shown m Figure 2, 
is ergodic. 

We can see this even  more clearly by showing the picture of a simulation of the 
motion of a photon as a Sinai billiard. It is intuitively clear that we get then  the 
following corollary from the ergodic motion. 

Corollary 1 The  motion of a photon  as a Sinai billiard is strongly  chaotic. 

We say more about this chaos later,  but remember the chaos is derived here 
from our conception of photons as point particles executing linear trajectories 
between points of reflection. 
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Aleasurement of photons. The chaotic motion of photons is not a topic  usually 
discussed in the many physical discussions of chaos. Why is this? The answer 
is that in terms of observation using, for example,  photodetectors, we can  only 
measure the intensity of a light  source averaged over time. I t  takes about loe9 
seconds  for an  atom to absorb a photon.  In  contrast, a single period of an opti- 
cal  source is about  seconds. Thus a photon that is cmitted by an optical 
source  takes in terms the perlod of the source on average about G orders of mag- 
nitude to be absorbed. This averaging process means that  there is little  hope of 
observing  directly the clmotic  motion of an  individual  photon. These  remarks 
about averaging  apply to  quantum mechanics and classical electromagnetic  the- 
ory of optical  phenornena, as well as to  the probabilistic atom model  developed 
in the previous  section. The average  intensities  predicted by quantum mcchanics, 
by semi-classical application of classicaì electromagnetic  theory, or by the kinds 
of probabilistic computations developed in the previous section are a11 wcrage 
intensities that wlpe out in the measurement process any  evidence of chaos  in 
the  motion of an Individual  photon. 

This rncans that  our stralghtforn-ard “free particle”  theory  of  photons  leads 
directly to a theory of chaos for photons,  but the chaos 1s not obscrvablc by 
standard means. 

4 Deterministic and Stochastic Models 

It is widespread folklore in  discussions of chaos by physicists that most important 
physical examples of chaos are deterministic. On the other  hand,  there is a 
variety of evidence, especially  mathematical  arguments, that czssociated with 
chaos,  particularly in the  strongest chaotic  examples,  are  phenomena that can 
only  be regarded a s  genuinely  random  or  stochastic  in naturc.  It would be easy 
to  argue  that one has  got  to choose either  the  deterministic  or  stochastic view 
of phenomena,  and at least  for a given set of cases, it is not possible to move 
back and  forth in a coherent  fashion. It is this view, also perhaps part of the 
folklore, that we want to  argue very much against  in the present  discussion. We 
shall refer occasionally to  our work on photons, but we  will be  depending much 
more on general  ideas  from  ergodic  theory and in particular  on the  strong kind of 
isomorphism  theorems  proved by Donald Ornstein  and his colleagues. Before we 
turn  to  the details, there  are  one or  two other  points we want to discuss  in a very 
intuitive fashion. For example, if we take a billiard model of the  photon,  or if you 
want, a mechanical particle,  and we consider the deterministic  model  in the case 
of an ergodic  motion, that  is,  one, for example,  where there is a convex obstacle 
as shown in Figure 2, then  there is an empirically  indistinguishable stochastic 
model. The response to  this isomorphism  might be, “Well yes, but for the case 
of ergodic  motion  where the convex object is  present we should choose either the 
simple  Newtonian  model or  in  the case of the photon, the simple  deterministic 
reflection model, really  from  geometrical  optics”.  Because this Newtonian or 
geometrical  optical  model works so well in the nonergodic  periodic  case  when 
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there is no convex object,  it is natural  to  say  that  it is not a real choice between 
the deterministic  or  stochastic models. Because of its generalizability the choice . 
obviously is the  deterministic model. 

But  this  argument  can  run  too  far  and  into  trouble when we turn to a wider 
set of cases. On  the  samc line we would be  pushed to argue that  the only  kind 
of complete  physical  model for quantum rncchanics must be a determmistic  one, 
for example the kind  advocated by Bohm, but  the evidence once we turn  to 
quantum mechanical  phenornena seem far from persuasive for selecting as the 
uniquc  intuitively  correct model the  dctcrministic  one. Here  there is much to 
be  said for choosing the stochastic model, which is much closer  in spirit  to 
the  standard  interpretation of classical quantum mechanics. Our  pomt.  without 
going into  details at this  juncture, is that whether wc intuitively believe the 
model  should  be deterministic or  stochastic will vary  with thc particular phvsical 
phenomena we are considering. What is fundamental is that independent of 
this variation of choice of examples or experiments is that when we do llave 
chaotic  phenomena,  especially when wc have crgodic phenomena. then wc are 
in a position to choose  either a determmistic or stochastic model. \Then such a 
choice bctween different models has  occurred  previously in  physics-and it  has 
occured  repeatedly  in a variety of examples,  such as free choice of B frame of 
reference  in  Galilean  relativity,  or choice bctween the Heisenbcrg or  Schroedinger 
representation  in  quantum mechanics-, the  natural move  is toward R more 
abstract  concept of invariance. What is especially interesting  about  the  empirical 
indistinguishability and  the resulting abstract invariance in the present case, is 
that  at the  mathematical level the different kinds of models are  inconsistent, 
that  is, the  assumption of both  the  deterministic  and  the stochastic model leads 
to a contradiction  when fully spelled out. On the  other  hand, i t  leads to  no 
contradiction at the level of observations, as we shall see in an  important class 
of ergodic cases. 

Entropy and measure-theoretic  zsomorphism. In  order  to look at the  entropy 
of appropriate processes, we begin with  some of the simplest examples. Without 
much thought  it  is  clear  that  the simplest  example  is a Bernoulli process with 
a finite  number of alternatives  and  discrete  trials. We shall call a finite discrete 
Bernoulli  process any  stochastic process with the following features. It is a prob- 
ability  space  with a transformation  namely a quadruple (n, S, p, T) satisfying 
the following assumptions:  There is a finite set S and a probability  measure p ,  
on S such that  CrES p ,  = 1 and where Z is the  set of integers, R = SZ, 3 is 
the  product  a-algebra  on 0, p is equal to  the  product measure on R, and T is 
a left  shift on C2 which  means that if z, y are in 0 and for every n y,,l = zn, 
then T(x)  = y. We say more about  the shift T below. Notice that in this defi- 
nition x and y are  doubly infinite  sequences, that is, they  are sequences going 
from n = -ca to n = 00 and  the  product measure  guarantees that we have 
independence  from  trial to  trial.  Continuing  with our Bernoulli example, and 
having it  in  the back of our minds,  but  not  restricted to  it ,  if  we have a stochas- 
tic process  defined in  terms of a doubly  infinite  sequence of random  variables, 
. o . , X-1, Xo, X1,. . . , X,, -. . then we define the entmpy rate as the following 
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limit, if i t  exists, for a finite sequence of random variables. 

and for the independence that is the strong  feature of the Bernoulli process we 
have at  once 

(13) 
By a similar line of argument for a finitestate discrete hlarkov chain we get for 
its  entropy  rate  the following  expression: 

a 3 

Note that of course for the hlarkov process always C, p,, = 1. 
In the ergodic literature  there has been an intense study of how the  entropy 

rate of a process relates to the measure-theoretic isomorphism of processes. (Ter- 
minology differs in the literature; what we call entropy rate is often just called 
entropy, but  there  are several different but closely related concepts of entropy, 
and the differences are not just a matter of terminology.) For that purpose we 
need an explicit definition of isomorphism. Let us first begin with a standard 
probability  space (0, S, P), where it is understood that 3 is a a-additive alge- 
bra of subsets of L? and P is a a-additive  probability measure on S. We now 
consider a mapping T from R to Q. We say that T is measurable if and only 
if A E 3 + T-' A = (w : Tw f A }  f S, and even more important, T is 
measure preserving, that is, P(T-'A) = P(A). T is invertible if the following 
three  conditions hold: (i) T is 1 - 1, (ii) TL? = l?, and (iii) If A E S then 
T A  = (Tu : w E A) E S. It  is the measure preserving shift T introduced  above 
that is important. Intuitively this  property corresponds to  stationarity of the 
process-a time  shift does not affect the probability laws of the process. 

We now characterize isomorphism of two probability spaces on each of which 
there is given a measure-preserving transformation, whose domain and  range 
need only be subsets of measure one, to avoid uninteresting complications with 
sets of measure zero that are  subsets of Q or Q'. Then we say (fi', S, P, T) is 
isomorphic in the measure-theoretic  sense to (Q', S', P', T') if and only if there 
exists a function cp: no 3 where 0 0  f S, G?; E S', P(L?o) = P(Qb) = 1, and 
cp satisfies the following conditions: 

(i) cp is 1 - 1, 
(ii) If A C In0 & A' = cpA then A E 3 iff A' E S', 

a n d i f A e S  
P(A)  = l''(A'), 

(iii) TOO E Q0 & T'Q; 5 06, 
(iv) For any w in Q0 

cp(T0) = T'cp(w). 
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To show how recent fundamental  results are  about  the relation  between  en- 
tropy  rate  and measure-theoretic  isomorphism, it was an  open  question  in the 
1950s whether  the two finite state  discrete Bernoulli processes B( 1/2,1/2) and 
B(1/3,1/3,1/3) are isomorphic. (The notation  here should be clear B(1/2,1/2) 
means  that  the probability for the Bernoulli  process with two outcomes  on  each 
trial is that for each trial  the  probability of one  alternative is 1/2 and of the 
other l./2)* The following theorem clarified the  situation. 

Theorem 2 (Kolmogorov  (1958),  Kolmogorov (1 959) and Sznaz (1959)). If two 
finite-state, dzscrete  Bernoullz or Markov  processes  have  different  entropy  rates, 
then  they are not isomorphzc zn the  measure-theoretzc  sense. 

Then  the question became whether or  not  entropy is a complete  invariant for 
measure-thcoretic isomorphism. The following theorem was proved a few ycars 
later by Ornstein. 

Theorem 3 (Omstezn  (1970)). If two  finzte-state, dzscretc Bcrnoullz processes 
have  the  same  entropy rate then  they arc zsomorphzc zn the  mcasum-theorctic 
sense. 

This  result was then soon easily extended. 

Theorem 4 A n y  two zneducible,  statzonary,  finzte-state, dzscrete Markov pro- 
cesses are zsomorphic zn the  measure-theoretzc sense  zj and only if they  haue  the 
same  penodicity and  the same  entropy  rate. 

We then  obtain: 

Corollary 2 An irreduczble, statzonary,  finite-state dzscrete Markov  process is 
zsomorphic zn the measure-theoretzc to  a finite-state dzscrete Bernoulli  process 
of the  same  entropy rate i j  and only if the  Markov process 2s apenodic. 

We can go further in terms of photons and billiards  with the concept of 
measure-theoretic isomorphism. To keep things in the context of finite-state  dis- 
crete processes, we can form a finite partition of the free surface  on the billiard 
table, as shown  in  Figure 3. This  constitutes a finite  partition of the  space 
of possible  trajectories for the  photon or billiard and we correspondingly make 
time  discrete  in  terms of movement from one  element of the  partition to another. 
With  these constructive  approximations, the following theorem has been  proved: 

Theorem 5 (Gallavotti and Ornstein (1974)). With the discrete approximation 
of the  continuous  flow  just described above, the  discrete  deteministic  model of 
the  photon or billiard is  isomorphic in the  measure-theoretic  sense  to a finite- 
state  discrete  Bernoulli process model of the  motion of the  photon or billiard. 
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Fig. 3. Finite  partition of the billiard table with convex obstacles 

should  be noted that instead of this theorem we could  have stated a theorem 
)r  continuous  time and such  results are  to be found in the  paper by Gallavotti 
nd Ornstein. What  the Gallavotti and Ornstein theorem shows is that  the 
iscrete mechanics of billiard balls is in the measure-theoretic sense isomorphic 
o a discrete Bernoulli analysis of the same phenomena.  However, i t  is to be 
mphasized that in order to claim that intuitively the two kinds of analysis are 
ndistinguishable from observation we  need stricter concepts. 

To show this, we need not even consider something as complicated as the 
)illiard example but consider only a first-order Markov process and a Bernoulli 
)roces  that have the  same  entropy  rate  and therefore are isomorphic in the 
nemure-theoretic sense, but it is also easy to show by very direct  statistical tests 
vhether a given sample path of any  length, which is meant to approximate an 
nfinite sequence, comes from a Bernoulli process or a first-order Markov process. 
rhere is for example a simple chi-square test for distinguishing between the 
,wo. ft  is a test for first-order versus zero-order dependency in the process. The 
malysis is statistical  and of course cannot be inferred from a single observation, 
lut  the  data are usually decisive even for finite sample paths  that consist of no 
nore than 100 or 200 trids. 

To spell out  the details of this test, let n&) denote the observed number of 
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cases (for several possible runs)  in state z at t - 1 and  state J at t .  Further,  let 

J t 3 

The hlarkov  character of the sequence of position  random  variables, or of 
other sequences of random  variables, may bc  tested  directly  without recourse 
to theoretical  details of the process. We can  test  the null hypothesis that  the 
outcomes of trials  are  statistically  independent  (zero-order  process)  against the 
alternative hypothesis that  the process is a first-order  hfarkov  chain by comput- 
ing  the sum 

' J  N 

where n, = EZ n,, , Ar = n,,, and n,, and n, arc as defined above.  Again, 
X 2  has  the usual hmiting  distributlon  with (n2 - l)* degrees of freedom. (A 
Bayesian modification of this  test is easily given.) 

A second null hypothesis is that  the process is a first-order hlarkov chain 
against  the hypothesis that  it is a second-order  chain.  Rejection of the null hy- 
pothesis in this case would mean that  the position  probabilities  can  be  predicted 
better by observing the two immediately  preceding  positions rather  than  simply 
the single  immediately  preceding one, and so on for n + 1st-order VS nth  order. 
Similar chi-square tests  can  bc formulated for stationarity. 

Congruence. To obtain a stricter sense of isomorphism it is natural  to impose 
a geometric  conditon,  especially for a wide variety of physical examples of ergodic 
systems.  Here we follow Brnstein  and Weiss (1991). Let Q > O and  iet x = 
(Q, S, P, T) and x' = (Q', Y ,  P', T') bc two spaces  isomorphic  under p in the 
measuretheoretic sense. Then x and x' are a-congruent if and only if there is a 
function g from 0 to a metric  space  (with d the  metric)  and a function g' from 
0' to  the  same metric  space  such that for any w in 0, d(g(w),gl(cp(w))) < CL 
except for a set of measure < a. 

Intuitively the parameter (Y reflects our  inability  to measure physical quanti- 
ties, inlcuding  geometric  ones,  with  infinite accuracy. What is significant is that  
a-congruence  for  small cy, can  be proved for Sinai  billiards, and  thus  photons 
in a Sinai billiard box. And when Q is chosen at the finite  limit of our mea- 
surement accuracy, the Newtonian  mechanical and a Markov process  model of a 
Sinai billiard are observationally  indistinguishable, as they  are  a-congruent. 

Stated informaliy, we then have the fundamental  result. 

Theorem 6 Using  the  discrete  approximation described just before Theorem 5, 
the  discrete  deterministic  model of the  photon or billiard is observationally in- 
distinguishable f i o m  a finite-state  discrete  Markov  model of the  motion of the 
photon or billiard. 

It is  important  to  note  that Theorem 6 is  not  true if the Markov  model is 
replaced by a Bernoulli model. The observable  dependencies  discussed  above, 
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and  for which a chi-square  test was stated, rule out  the Bernoulli model as a 
candidate for being  &-congruent to  the deterministic billiard model. 
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