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Abstract

We show one can use classical fields to modify a quantum optics ex-
periment so that Bell’s inequalities will be violated. This happens with
continuous random variables that are local, but we need to use the cor-
relation matrix to prove there can be no joint probability distribution of
the observables.
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1 Introduction

The issue of the existence of hidden variables for quantum mechanics is almost as
old as quantum mechanics itself. However, in 1963 J. S. Bell showed [3, 4] that
if one makes some “reasonable” assumptions about the hidden variables, like
locality and statistical independence of distant measurements, the correlations
for the outcome of measurements for an EPR-like experiment have to satisfy a
set of inequalities. In 1982 Alain Aspect and coworkers showed that quantum
mechanics violated Bell’s inequalities, drawing the conclusion that one cannot
have a local realistic theory that would replace quantum mechanics [5, 6].

Because Bell’s assumptions were considered equivalent to the existence of
an underlying physical reality, it is often said that any classical system satisfies

∗E-mail: suppes@ockham.stanford.edu. To whom correspondence should be addressed.
†Permanent Address: Physics Department, Federal University at Juiz de Fora, 36036-330

Juiz de Fora, MG Brazil. E-mail: acacio@fisica.ufjf.br
‡Permanent Address: Mathematics Department, Federal University at Paraná, C.P. 19081,
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Bell’s inequalities. In this paper we will show that classical fields do not satisfy
Bell’s inequalities, hence classical fields, e.g. electromagnetic fields, are not Bell-
type hidden variables. We do this by showing that a simple experimental setup,
suggested by Tan et al. [1, 2], can be reinterpreted for classical electromagnetic
fields. For this reinterpretation we derive from the classical field properties a
violation of Bell’s inequalities[3, 4, 7], with, at the same time, locality being
preserved in a sense to be made precise.

2 Experimental Setup

The experimental scheme uses two classical coherent sources α1(θ1), with phase
θ1, and α2(θ2), with phase θ2, and a third source to be studied, u(θ), with
unknown phase. The experimental configuration has two homodyne detections,
(D1, D2) being one and (D3, D4) the other, such that the measurements are
sensitive to phase changes in u(θ). The geometry of the setup is shown in FIG.
1. In FIG. 1 BS1, BS2 and BS3 are beam splitter mirrors that will reflect
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Figure 1: Proposed experimental configuration.

50% of the incident electromagnetic field and let 50% of it pass. When the
electromagnetic field is reflected, the mirrors add a phase of π/2 to the field,
while no phase is added when the field passes through BS1, BS2 or BS3. We
will look for correlations between the pairs of detectors (D1, D2) and (D3, D4).

3 Correlation Functions

In this section we compute the correlation functions that violate the inequalities.
We first define the random variables in terms of which we derive the Bell-type
correlations. On this matter we shall be as explicit as possible. Associated to
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the source u(θ) at D1 is the random variable U1(t), whose value at t is just the
value of the classical field at D1, namely,

U1(t) =
1

4
β cos(ωt + θ + π/2), (1)

where β is the amplitude of the field at the source, θ is the unknown phase and
π/2 is a phase gained when u is reflected at BS3.

Probability enters by using the time average to compute the expectation of
U1(t)

2

U2

1
= 〈U1(t)

2〉 = 〈[ 1
4
β cos(ωt + θ + π/2)]2〉, (2)

which is just the standard intensity, but here we treat it probabilistically. In
a similar fashion, associated to the source α1(θ1) at D1 is the random variable
A1(t),

A1(t) =
1

2
α cos(ωt + θ1 + π/2) (3)

and thus

A2

1
= 〈A1(t)

2〉 = 〈[ 1
2
α cos(ωt + θ1 + π/2)]2〉. (4)

At D1, the total field is the random variable F1(t) = U1(t) + A1(t). So, the
intensity of the total field at D1 is just the second moment of F1(t), i.e.,

I1(θ) = F 2

1
= 〈F1(t)

2〉 = 〈(U1(t) + A1(t))
2〉

= 〈U1(t)
2〉 + 2〈(U1(t)A1(t))〉 + 〈A1(t)

2〉, (5)

where we used θ as an argument for I1 to make it explicit that it depends on
θ. We can see that the cross moment in the expression above is the classical
interference term.

We can compute I1 directly from the expression for U1(t) and A1(t) in the
following way

I1(θ) = lim
T→∞

1

T

∫ T

0

[
1

2
α cos(ωt + θ1 + π/2) +

1

4
β cos(ωt + θ + π/2)]2dt, (6)

which is

I1(θ) =
1

32
β2 +

1

8
αβ cos(θ − θ1) +

1

8
α2. (7)

In similar fashion, we can compute for the other three detectors,

I2(θ) =
1

32
β2 − 1

8
αβ cos(θ − θ1) +

1

8
α2, (8)

I3(θ) =
1

32
β2 − 1

8
αβ sin(θ − θ2) +

1

8
α2, (9)
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and

I4(θ) =
1

32
β2 +

1

8
αβ sin(θ − θ2) +

1

8
α2. (10)

The intensities obtained are conditional on θ. To obtain the unconditional
intensities we assume a uniform distribution for θ and integrate the expressions
for all possible values of θ. Not only is θ unknown, but the phase would vary
randomly for repeated runs of the experiment. If θ were a coherent source with
fixed θ, Bell’s inequalities would not be violated [8].

The unconditional intensities I1, I2, I3, and I4 for the detectors D1, D2, D3,
and D4 are

I1 =
1

32
β2 +

1

8
α2, (11)

I2 =
1

32
β2 +

1

8
α2, (12)

I3 =
1

32
β2 +

1

8
α2, (13)

I4 =
1

32
β2 +

1

8
α2. (14)

We can see from (11)–(14) that the intensities are the same for all detectors,
and are similar to those given by Walls and Milburn [2] in the case of a classical
source.

We now start computing the covariance between intensities in the homodyne
detectors. The covariance we are interested in is between (I1−I2) and (I3−I4).

Cov(I1 − I2, I3 − I4) =
1

2π

∫ 2π

0

[(I1(θ) − I2(θ)) × (I3(θ) − I4(θ))]dθ

− 1

2π

∫ 2π

0

(I1(θ) − I2(θ))dθ × 1

2π

∫ 2π

0

(I3(θ) − I4(θ))dθ. (15)

It is straightforward to show from (7)–(10) and (15) that

Cov(I1 − I2, I3 − I4) = − 1

32
β2α2 sin(θ1 − θ2). (16)

In order to compute the correlation we have to know the variance of the
random variables (I1 − I2) and (I3 − I4), which are defined as

Var(I1−I2) =
1

2π

∫ 2π

0

(I1(θ)−I2(θ))
2dθ−

[

1

2π

∫ 2π

0

(I1(θ) − I2(θ))dθ

]2

=
1

32
β2α2

(17)
and

Var(I3−I4) =
1

2π

∫ 2π

0

(I3(θ)−I4(θ))
2dθ−

[

1

2π

∫ 2π

0

(I3(θ) − I4(θ))dθ

]2

=
1

32
β2α2.

(18)
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Finally, we are in a position to compute the correlation between the two random
variables (I1−I2) and (I3−I4). This is done in the standard way, by just dividing
the covariance by the squareroot of the variances:

ρ(I1 − I2, I3 − I4) =
Cov(I1 − I2, I3 − I4)

√

Var(I1 − I2) Var(I3 − I4)
, (19)

and we have the following expression for the correlation

ρ(I1 − I2, I3 − I4) = − sin(θ1 − θ2), (20)

which we may rewrite as

ρ(θ1, θ2) = − sin(θ1 − θ2). (21)

4 Violation of Bell’s Inequalities

We are now in a position to show that we can violate Bell’s inequalities. We
may now choose angles θ1, θ2, θ′1, and θ′2 such that we obtain at once, for the
four correlations ρ(θ1, θ2), ρ(θ1, θ

′

2
), ρ(θ′

1
, θ2) and ρ(θ′

1
, θ′

2
) a violation of Bell’s

inequalities in the form due to Clauser, Horne and Shimony [9], by choosing the
four angles such that

θ1 − θ2 = θ′
1
− θ′

2
= 60o, (22)

θ1 − θ′
2

= 30o, (23)

θ′
1
− θ2 = 90o. (24)

In particular,

ρ(θ1, θ2) − ρ(θ1, θ
′

2) + ρ(θ′1, θ2) + ρ(θ′1, θ
′

2) =

−
√

3

2
+

1

2
− 1 −

√
3

2
< −2. (25)

However, in the case of continuous random variables, which is what we have
in the present context for intensity, or differences of intensity, failure to satisfy
Bell’s inequalities in the Clauser, Horne and Shimony form does not imply that
there can be no joint distribution of the four random variables compatible with
the four given correlations. In fact, it is easy to show that for selected values of
the two missing correlations, there does, for this example, exist a joint proba-
bility of the four random variables compatible with the four given correlations.
What is required in the general case, as opposed to that of discrete ±1-values,
to test for the existence of a joint distribution, when means and correlations
are given, is that the eigenvalues of the correlation matrix are all nonnegative.
This extends the earlier result of [10] for discrete ±1 values. Because of the
freedom to select arbitrarily the two missing correlations in the Clauser, Horne
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and Shimony form of Bell’s inequalities, we have not been able to construct an
example using − sin(θi − θj) for the correlations that has at least one negative
eigenvalue for all possible values of the missing correlations.

Another possibility is obvious. Bell’s original paper [3] used three rather
than four random variables, and, put in terms of this letter, he showed that the
correlations for the three angle differences derived from θ1, θ2, and θ3 violated
the following inequality, necessary for the existence of a joint distribution of
three discrete random variables with values ±1:

ρ(θ1, θ2) + ρ(θ1, θ3) + ρ(θ2, θ3) ≥ −1. (26)

To violate (26) we choose three angles θ1, θ2 and θ3, with

θ1 = 0, (27)

θ2 = 45o, (28)

θ3 = 90o, (29)

and, using equation (21), the correlation matrix is





1 −
√

2/2 −1

−
√

2/2 1 −
√

2/2

−1 −
√

2/2 1



 . (30)

It is a direct computation to show this matrix has both positive and neg-
ative eigenvalues, so that it is not nonnegative definite. The eigenvalues are
(
√

5 + 1)/2, (−
√

5 + 1)/2 and 2. Therefore, there can be no joint probabil-
ity distribution for the three random variables compatible with the correlations
given in (30). From results in [11] and [12] there can then be no hidden variable
that factors out the correlations conditionally, i.e., there can be no λ such that
for the three random variables X(θ1), Y (θ2) and Z(θ3), we have

E(XY Z|λ) = E(X |λ)E(Y |λ)E(Z|λ), (31)

since there is no joint probability distribution of X , Y and Z compatible with
the given correlations. In particular, θ = λ cannot serve as a Bell-type hidden
variable for a classical field described by (1).

Finally, we note that even though (26) was violated by the angle values in
(27)-(29), this inequality is not a satisfactory general test for existence of a joint
distribution, as the following shows. Let θ1 = 0, θ2 = 30o and θ3 = 45o. Then
it is easy to check that inequality (26) is violated, but the eigenvalues of the
correlation matrix are all nonnegative, and so a joint distribution exists.
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5 Measurement and Photon Counts

Because classical field theory is a deterministic theory, our introduction of expec-
tations and probabilities might be questioned. Our response is that the strength
of a classical field at a space-time point cannot be measured, as was emphasized
long ago by Bohr and Rosenfeld in a famous paper in 1933 [13]. As they pointed
out, classical field strength cannot be represented by true point functions, but
by average values over space-time regions. This is exactly what we have done in
introducing random variables and their expectations. The casual reader might
claim that we should do an analysis of coincidence counts with photocounters.
This makes no sense in the case of classical fields, where the number of photons
arriving at the same time at each detector is incredibly large. What makes sense
is not discrete but continuous measurement of intensity.

Despite that, we are going to use the previous result to model discrete photon
counts in such a way that they violate Bell’s inequalities. For this, we define two
new discrete random variables X = ±1 and Y = ±1. These random variables
correspond to nearly simultaneous correlated counts at the detectors, and are
defined in the following way.

X =

{

+1 if detector D1 triggers a count
−1 if detector D2 triggers a count

(32)

Y =

{

+1 if detector D3 triggers a count
−1 if detector D4 triggers a count.

(33)

To compute the expectation of X and Y we use the stationarity of the process
and do the following. First, let us note that

I1 − I2 = NX · P (X = 1) − NX · P (X = −1), (34)

where NX is the expected total number of photon counts at D1 and D2 and
P (X = ±1) is the probability that the random variable X has values ±1. The
same relation holds for

I3 − I4 = NY · P (Y = 1) − NY · P (Y = −1). (35)

To simplify we put as a symmetry condition that NX = NY = N , i.e., the
expected number of photon counts at each homodyne detector is the same. But
we know that

I1 + I2 = N · P (X = 1) + N · P (X = −1) = N, (36)

and
I3 + I4 = N · P (X = 1) + N · P (X = −1) = N. (37)

Then we can conclude from equations (7)—(10), assuming maximum visi-
bility, that

Ed(X |θ) =
I1 − I2

I1 + I2

= cos(θ − θi), (38)
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Ed(Y |θ) =
I3 − I4

I3 + I4

= sin(θ − θj), (39)

where Ed represents the expected value of the counting random variable. It is
clear that if θ is uniformly distributed we have at once:

E(X) = Eθ(Ed(X |θ)) = 0, (40)

E(Y ) = Eθ(Ed(X |θ)) = 0. (41)

We can now compute Cov(X, Y ). Note that

Cov(X, Y ) = E(XY ) − E(X)E(Y )

= Eθ(Ed(XY |θ)) − Eθ(Ed(X |θ))Eθ(Ed(Y |θ)) (42)

and so

Cov(X, Y ) =
1

2π

∫

2π

0

Ed(XY |θ)dθ

− 1

2π

∫ 2π

0

Ed(X |θ)dθ × 1

2π

∫ 2π

0

Ed(Y |θ)dθ. (43)

In order to compute the covariance, we also use the conditional independence
of X and Y given θ, which is our locality condition:

Ed(XY |θ) = Ed(X |θ)Ed(Y |θ), (44)

because given θ, the expectation of X depends only on θi, and of Y only on θj .
Then, it is easy to see that

ρ(X, Y ) = Cov(X, Y ) = − sin(θi − θj). (45)

The correlation equals the covariance, since X and Y are discrete ±1 random
variables with zero mean, as shown in (40) and (41), and so Var(X) = Var(Y ) =
1. It follows at once from (45) that for a given set of θi’s and θj ’s Bell’s inequal-
ities are violated.

6 Locality

Much of the discussion involving Bell’s theorem is connected to locality. For that
reason, we will prove in this section that the scheme presented in this paper is
local in one precise sense. We follow [7]. Locality requires the following:

E(X |θ1, θ2, θ) = E(X |θ1, θ). (46)

It is obvious that (46) follows immediately from subtracting (8) from (7), and
observing the result does not depend on θ2, and similarly for the other cases
of random variables Y and Z. Equation (46) says simply that whatever is the
result of the measurement at one homodyne detector, it must depend only on
θ, the hidden variable, and the phase associated to this particular detector, and
cannot be influenced by the phase at the other detector.
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7 Proposed experiment.

The experiment proposed in [1] supposes a single photon source that is split into
the two homodyne detectors. Tan et al. also analyze the classical case and get
no violation of Bell’s inequalities. However, they assume a weak coherent source
with randomized phase as the classical analogue of their single photon source.
This would be equivalent to having a classical thermal source, where coherence
would not be a strong feature. In our experiment we suppose that this source
is not only classical, i.e., with high intensity, but also that it is coherent with
the phase unobservable and varying randomly on repeated runs. The different
source used here, as opposed to that used in [1] implies that the expectations
given by (7)–(14) are computed in a different way than in [1]. Here we first
integrate with respect to t and them integrate with respect to θ. It is easy to
supply a source that would fit our requirements. This would be, for example,
a radio source, a microwave, or a laser source, all with unstabilized phases.
To realize this experiment, one must also use two additional coherent sources
with stable known phases and with the same frequency as the nonstabilized
source. If a data table is then built that keeps track of all the measured values
on the detectors, we can compute the correlations and see a violation of Bell’s
inequalities, or do the stronger test using the 3-variable version and the matrix
(30).

8 Final Remarks

There are several remarks that we must add in order to clarify some points.
First, when using classical fields the number of photons is overwhelmingly

large. For that reason, we would not need to compute any photon count corre-
lation. What we measure is intensity. On the other hand, Bell’s inequalities are
not enough to show that we do not have a joint probability distribution for clas-
sical fields, because they assume a continuous range of values. That is why we
computed the correlation matrix, showing that for this case a joint probability
distribution does indeed not exist.

Another point is that intensity of classical fields does not satisfy the basic
assumption made by Bell, because it can take an infinite range of values; Bell
considered spin measurements that can take only two possible values. To show
that this does not present any constraint, in Section V we did an analysis of
photon counts, which can only take, as in Bell’s assumptions, two discrete values.

Finally, the last point. One can argue that if classical fields violate Bell’s
inequalities, then, since they are classical, Bell’s theorem must be wrong, and
we must show why it is wrong. We did not show that Bell’s theorem is wrong.
We just showed that a classical field is not a Bell-type hidden-variable. What is
wrong is the preconception that anything classical must satisfy Bell’s hypothesis.
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