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The  literature  on  hidden variables in  quantum  mechanics is now enor- 
mous, and  it  may seem there is little  that is new that  can  be  said. Not 
everything  in the present  article is new,  but several things  are. We have 
tried to collect together a variety of results that go beyond the  standard 
Clauser-Horne-Shimony-Holt  form of the Bell inequalities  for  four  observ- 
ables. 

First, we state,  and sketch the proof, of the  fundamental  theorem of the 
collection we consider: there is a factoring  hidden  variable for a finite  set 
of finite  or  continuous  observables, i.e.,  random  variables  in  the  language 
of probability  theory, if and only if the observables  have a joint  probability 
distribution.  The physically important  aspect of this  theorem is that under 
very general  conditions the existence of a hidden  variable  can  be  reduced 
completely to  the  relationship between the observables  alone,  namely, the 
problem of determining  whether  or  not  they have  a joint  probability  distri- 
bution  compatible  with  the given data,  e.g.,  means,  variances  and  correlations 
of the observables. 

We emphasize that  although  most of the  literature is restricted to no  more 
than second-order moments such  as  covariances and  correlations,  there is no 
necessity to make  such  a  restriction. It is in  fact  violated  in the  fourth-order 
moment that arises in  the well-known Greenberger,  Horne and Zeilinger [Ei] 
three-  and  four-  particle  configurations  providing new Gedanken  experiments 
on hidden  variables.  For our  probabilistic proof of an  abstract  GHZ  result, 
see Theorem 9. 

As is familiar,  Bell’s  results  on  hidden  variables were mostly  restricted  to 
&l observables,  such as spin or polarization.  But  there is nothing  essential 
about  this  restriction.  Our  general  results cover any  finite  or  continuous ob- 
servables (Theorem 1). We also state a useful theorem  (Theorem 7) on  func- 
tions of random  variables,  and give a partial  corollary  (Theorem 8 )  showing 
how such  general  probabilistic  results  are  implicit  in the  reduction of higher 
spin cases to two-valued random  variables  in  the physics literature.  At  the 
end we give various results on hidden  variables for Gaussian observables and 
formulate as the final theorem a nonlinear  inequality  that is necessary and 
sufficient for three  Gaussian  random  variables to have  a  joint  distribution 
compatible  with  their given means,  variances and  correlations. 
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Factorization In  the  literature on  hidden  variables,  what we call the prin- 
ciple of factorization is sometimes  baptized  as  a  principle of locality. The 
terminology is not really  critical,  but  the  meaning is. We have in  mind a 
quite  general  principle for random  variables,  continuous or discrete, which 
is the following. Let XI, . . . , X, be  random  variables,  then a necessary and 
sufficient condition that  there is a random  variable X, which is intended to  be 
the  hidden  variable, such that X1 . . . , X, are  conditionally  independent given 
X, is that  there exists  a  joint probability  distribution of XI, . . . , X,, without 
consideration of X. This is our first theorem, which is the general  fundamen- 
tal theorem  relating  hidden  variables  and  joint  probability  distributions of 
observable random variables. 

Theorem 1 (Suppes & Zanotti [l31 Holland & Rosenbaum [7]) Let n ran- 
dom  variables X I ,  . . . , X,; finite or continuous, be gaven. Then there  exists 
a hidden  variable X such that there is a joint probabality  dastribution F of 
(XI,. . . , X,, X) wath the  properties 

(i) F(xl,. . . ,X, I X) P(X1 5 X I , .  . . ,X, 5 x, I X = X) 

(ii) Conditaonal  independence  holds, i. e.,  for all XI, . . . , x,, X, 

n 

F(% ,x, I X) = n F,(x,IX), 
,=l 

af and only if there is a joant  probabilaty distribution of XI, . . . , X,. Moreover, 
X may be constructed so as to  be determanastic, i. e., the condataonal  varaance 
gaven X of each X, is zero. 

To  be completely  explicit  in the  notation 

F,(x,IX) = P(X, 5 x,lX = X). (1) 

Idea of the  proof. Consider three f l  random  variables X, Y and Z. There 
are 8 possible joint  outcomes (f l ,  f l ,  f l ) .  Let p,,k be  the  probability of 
outcome ( i ,  j ,  k ) .  Assign this  probability to  the value X,,k of the  hidden 
variable X we construct.  Then  the  probability of the  quadruple (z, j ,  k ,  &,k) 

is just p,,k and  the  conditional  probabilities  are  deterministic,  i.e., 

P(X = i, Y = j ,  z = k I X,,k) = 1, 
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and  factorization is immediate,  i.e., 

P(X  = i ,  Y = j ,  Z = k I = P ( X  = i I X,,k)P(Y = j I X,,k)P(Z = k I & , k ) .  

Extending  this  line of argument  to  the  general case proves the  joint  prob- 
ability distribution of the observables is sufficient for existence of the  factor- 
ing  hidden  variable.  From the formulation of Theorem I necessity  is  obvious, 
since the joint  distribution of ( X I ,  . . . , X , )  is a marginal  distribution of the 
larger distribution ( X l  . . . , X , ,  X).  

It  is  obvious that  the  construction of X is purely  mathematical. It has 
in itself no physical content.  In  fact,  the proof itself is  very  simple. All the 
real mathematical difficulties are  to  be  found  in giving  workable criteria for 
observables to have a joint  probability  distribution. As we remark  in  more 
detail  later, we still  do  not have  good criteria  in  the  form of inequalities for 
necessary and possibly sufficient conditions  for  a  joint  distribution of three 
random  variables  with n > 2 finite  values, as in higher spin  cases. 

When  additional physical assumptions  are  imposed  on  the  hidden vari- 
able X, then  the physical  content of X goes  beyond the  joint  distribution 
of the observables.  A  simple  example  is embodied  in  the following theorem 
about two hidden  variables. We impose an  additional  condition of symme- 
try on the conditional  expectations,  and  then a hidden  variable  exists  only 
if the  correlation of the two observables is nonnegative, a strong  additional 
restriction  on the  joint  distribution.  The proof of this  theorem is found  in 
the article  cited  with its  statement. 

Theorem 2 ( S u p p e s  & Z a n o t t i  [la])  L e t  X a n d  Y be two-valued   random 
variables, for def ini teness ,  wzth possible  values 1 a n d  -1, a n d  wzth posi t ive  
variances,  z.e., a ( X ) ,  a ( Y )  > O. In additzon,  let  X a n d  Y be exchangeable,  
a. e., 

P ( X  = l ,Y = -1) = P ( X  = - l ,Y  = l). 

T h e n  a necessary  and  suficaent  condataon  that  there  exast   a  hidden  varzable 
X such   t ha t  

E ( X Y  I X = X) = E ( X  I X = X ) E ( Y  I X = X) 

and 
E ( X  I X = X) = E ( Y  I X = X) 

for every  value X (except   possibly   on  a   set  of measure   zero)  zs tha t   the   corre-  
lation of X a n d  Y be nonnegatzve.  
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The  informal  statement of Theorems I and 2, which we call the Factorzxatzon 
Theorems,  is that  the necessary and sufficient condition  for the existence of 
a factorizing  hidden  variable X is just  the existence of a joint  probability 
distribution of the given random  variables  X,. 

Often,  in physics, as in the present  paper, we are  interested only  in the 
means,  variances  and covariances - what  is called the second-order  proba- 
bility theory,  because we consider  only  second-order moments. We say that 
a  hidden  variable X satisfies the Second-Order  Factorzxat ion  Condztzon with 
respect to  the  random variables XI, . . . , X, whose two  first  moments  exist if 
and only if 

(a) E ( X 1  X, 

We then have as  an  immediate consequence of Theorem 1 the following. 

Theorem 3 L e t  n random  varaables   dzscrete   or   contznuous be gzven. If there 
as a joznt  probabzlity  dastributzon of XI, . . . , X,, t hen   t here  as a determznis-  
t ic  hzdden  varzable X such   t ha t  X satzs f ies   the  Second-Order  Factorzxat ion 
Condztzon  wzth  respect  to XI, . . . , X,. 

Locality. The  next  systematic  concept we want to discuss  is  locality. We 
mean by locality  what we think  John Bell meant by locality  in the following 
quotation  from his well-known 1966 paper [2]. 

It is the requirement of locality,  or  more  precisely that  the re- 
sult of a measurement  on one system  be unaffected by operations 
on a distant  system  with which it  has  interacted  in  the  past,  that 
creates  the  essential difficulty. ... The  vital  assumption is that  
the  result B for particle 2 does  not  depend  on  the  setting a, of 
the  magnet for particle 1, nor A on b. 

Although  Theorems l and 2 are  stated at an  abstract level without  any 
reference to  space-time  or  other physical considerations,  there is an implicit 
hypothesis of locality  in  their  statements. To  make the locality  hypothesis 
explicit, we need to use additional  concepts. For  each random  variable X,, we 
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introduce  a  vector M ,  of parameters for the local  apparatus  (in  space-time) 
used to measure the values of random  variable X,.  

Definition 1 (Locality Condition I) 

where k = 1 , 2 ,  corresponding   to   the  first t w o   m o m e n t s  of X, ,  i # j ,  and 
I <  i , j  < n. 

Note that we consider  only M ,  on the  supposition  that  in a given experimen- 
tal  run, only the correlation of X ,  with X, is being  studied.  Extension to 
more variables,  as  considered  in  Theorem  7, is obvious. In  many  experiments 
the  direction of the  measuring  apparatus is the  most  important  parameter 
that is a  component of M,. 

Definition 2 (Locality Condition II: Noncontexuality) The  dzstrzbut ion 
of X i s   i ndependen t  of t he   parame ter   va lues  M ,  a n d  M,, z.e., for al l   func tzons  
g f o r   w h a c h   t h e   e x p e c t a t i o n   E ( g ( X ) )   a n d   E ( g ( X ) I M , ,  M,) are  f inzte,  

Here we follow [II]. In  terms of Theorem 3, locality  in the sense of Condition 
I is required to satisfy the hypothesis of a fixed mean  and  variance for each X,.  
If experimental  observation of X, when  coupled with X, was different  from 
what was observed  when  coupled with X,!, then  the  hypothesis of constant 
means and  variances would be  violated. The  restriction of Locality  Condition 
II must be satisfied in  the  construction of X and it is easy to check that  it is. 

We embody  these  remarks  in  Theorem 4. 

Theorem 4 L e t  n random  varzables  X I ,  . . . , X ,  be gzven  satzsfyzng  the  hy- 
potheszs of T h e o r e m  2. L e t  M, be the   vec tor  of local   parameters  for measurzng 
X , ,  and  le t   each X i  satzs fy   Local i ty   Condi t ion I. T h e n   t h e r e  is a hidden  varz-  
able X satzsfyzng  Locality  Condztzon I I  and   the   Second-Order   Factorzxatzon  
Condztzon if there is a joznt  probabilzty  distrzbution of XI, . . . , X,. 
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Inequalities for three  random variables. The  next  theorem  states two 
conditions  equivalent to  an inequality  condition given in [l31 for three  random 
variables  having just two  values. 

Theorem 5 Let three random variables X, Y and Z be gaven  wath values 
51 satisfyang the  symmetry condataon E ( X )  = E ( Y )  = E ( Z )  = O and with 
covaraances E ( X Y ) ,   E ( Y Z )  and E ( X Z )  gaven. Then  the followang three 
conditions are equivalent. 

(i) There as a hidden varaable X wath respect t o  X ,  Y and Z  satisfying Locality 
Condataon II and the  Second-Order Factoraxataon  Condataon holds. 

(ii) There as a joant probability distributaon of the  random varzables X ,  Y ,  
and Z compatible with  the  given  means and expectataons. 

(iii) The  random varaables X, Y and Z satasfy the  following anequalataes. 

-1 5 E ( X Y ) + E ( Y Z ) + E ( X Z )  5 1 + 2 M i n ( E ( X Y ) ,   E ( Y Z ) ,   E ( X Z ) ) .  

There  are several remarks to  be  made  about  this  theorem, especially the 
inequalities given in  (iii). For  discussion we introduce  the  standard correla- 
tion,  and  its  standard  notation, for two random  variables X and Y whose 
variances are  not zero: 

E ( X Y )  - E ( X ) E ( Y )  
p ( x 7 Y )  = a ( X ) a ( Y )  7 

where a ( X ) ,  a ( Y )  are  the  standard deviations of X and Y ,  i.e.,  the  square 
roots of the variances: 

a ( X )  = J- 
and 

n2(X) = Var(X) = E ( X 2 )  - E ( X ) 2 .  
First,  the explicit  correlation  notation p ( X ,  Y )  is not  standard  in physics, 
but is necessary  here for comparing various theorems.  The  notation  adopted 
throughout  this  article  conforms  fairly closely to  what is standard  in  math- 
ematical  statistics. 

Physicists  use less general  notation,  because  they  often  assume  certain 
symmetry  conditions  are  satisfied,  e.g., E ( X )  = E ( Y )  = E ( Z )  = O. To make 
these relations  explicit,  keeping  in  mind the earlier  definition of p ( X ,  Y ) ,  we 
have: 
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(i)  Covariance of X and Y = Cov(X, Y) = E(XY) - E(X)E(Y), 

(ii) If E(X) = E ( Y )  = O,  then, clearly, 

Cov(X, Y) = E ( X Y )  

(iii) If X and Y are  random variables whose only  values are rt 1 and E(X) = 
E ( Y )  = O,  then 

Var(X) = Var(Y) = I, 

(i.) If hypothesis of (iii) is satisfied 

which is why in  the physics literature E(XY), with  or  without a  comma 
between X and Y, so commonly  occurs. The  statistical  terminology for 
E(XY) is bivariate  product  moment p11, which we shall  often  simply call 
the  bivariate  product  moment,  without  further  notation. 

Note that with  the  special  symmetry  conditions that E ( X  = E(Y) = 
E(Z)  = O, the inequalities  (iii) of Theorem 5 for 5 1  random  variables  can  be 
written 

Three Counterexamples. To show how special  (iii) of Theorem 5, or the 
equivalent (2) written  in  terms of correlation,  is,  because of the  strong sym- 
metry  assumptions, we now  give three different  examples that do not  satisfy 
these  inequalities. The first is for 5 1  random  variables that  do  not have 
expectations  equal to zero. For this case neither  the  correlations  nor covari- 
ances have  linear  inequalities,  only the  moments E(XY).   The  second  case  is 
for random  variables  with  values -1, O,  1 and zero expectations.  An  example 
is given which is satisfied by the covariances but  not  the  correlations.  The 
third  case is for random  variables  with values -2, O,  2 and zero expectations. 
The  inequalities of (iii) are  not satisfied by the covariances,  which in  this case 
are  equal to  the  expectations  E(XY). 

First, for the general  case of H random  variables we have 

E(X) = ZO) E ( Y )  = yo, E (Z)  = zo 
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and 
-1 < XO,YO,XO < 1, 

and  it is straightforward to derive the analogue of (iii) of Theorem 5 for the 
bivariate  product  moments,  as well as  the  corresponding  correlations,  but 
the expressions are  more  complicated  for the correlations. We only give part 
of the  details  here. We generalize  on the derivation given in [13]. We need to 
consider in detail  the eight  probabilities P,,k for i, j ,  k = H .  When referring 
to  the  marginals we use a dot for the missing random  variable. For  example, 

p11. = P(X  = 1, Y = l) 
po1 = P ( X =  -1, z = 1) 

(For ease of typography we use O rather  than -1 as a subscript.) 
We note  immediately  the following equations: 

1 - E ( X Y )  
2 Pl0 +pol. = 

and  correspondingly, 

l - E ( Y Z )  
Pl0 +PO1 = 2 

1 - E ( X Z )  
2 Pl o + po.1 = 

x0 + I 
P 1 = P.11 + p.01 = - 2 
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From these  equations we easily derive 

x0 -yo 1 - E ( X Y )  
Pl0 = 4 + 4  

1 x0 +yo + E ( X Y )  
Pll. = - + 4 4 7 

and  similar  expressions  for pl o ,  ~ 1 . 1 ,  etc. Using these  equations, we may 
t hen derive 

I x0 +yo + E ( X Y )  
Pl10 = - + 4 4 - Pl11 

1 x0 + x0 + E ( X Z )  
Pl01 = - + 4 4 - Pl11 

1 + yo + x0 + E ( Y Z )  
Po11 = - 4 4 - Pl11 

x0 +x0 E ( X Y )   E ( Y Z )  
Po10 = Pl11 - 4 4 4 

- - 

1 x0 + 2 0  E(=) yo + x0 E ( Y Z )  x0 +yo + E ( X Y )  
4 4 + 4  4 + 4  4 4 Poo0 = - - -- - 

- Pl11 

so 
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And as a  generalization of the left-hand  inequality of (iii) of Theorem 5, we 
then have 

E(XY) + E ( Y Z )  + E(XZ)  - 2(x0 +yo + xo) 2 -1. (3) 

This  result is much  simpler than  the corresponding  one  for  correlation. We 
have at  once 

and so 

E(XY) = J a d - p ( X , Y )  + x O Y O .  

Substituting  the  right-hand  side for E(XY), and  the corresponding  expres- 
sions for E(YZ)  and E(X2) yields a rather  complicated  inequality  in  terms 
of correlation, which we shall  not  write  out  here. 

The  next  remark is that (iii) is not necessary  for the  correlations of three- 
valued random  variables  with  expectations  equal to  zero.  Let the  three values 
be I, O,  -1. Here is a  counterexample  where  each of the  three  correlations is 
-1 and  thus  with a sum  equal  to - $, violating (Z), 

There is a joint  probability  distribution  with  the following values.  Let 
p ( ~ ,  y, x) be  the  probability of a given triple of values,  e.g., (1, -1, O ) .  Then, 
of course, we must have  for  all x, y and x 

2 ’  

where x, y and x each  have the  three values I,  O,  -1. So, let 

1 
6 

p(-l, o, 1) = p p ,  -1, o) = p ( 0 ,  l, -1) = p(1, o, -1) = P ( - L  L O )  = P(0, -171) = - 

and  the  other 21 p(x,y, x) = O. Then  it is easy to show that  in  this 
model E ( X )  = E(Y) = E ( Z )  = O,Var(X) = Var(Y) = Var(Z) = f, and 
Cov(XY) = Cov(Y2) = Cov(XZ) = -i, so that  the  correlations  are 

p ( X ,  Y) = p(Y, z) = p(& Z) = -5. I 
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Note that  in  the example  just given the covariances  for the three-valued 
random  variables,  with the  joint  distribution  as  stated,  do  satisfy (iii) of 
Theorem 5. 

For the  third promised  case, it is easy to  construct a counterexample for 
covariances of three-valued  random variables with values -2, O,  2 and expec- 
tations zero. We use the  same  distribution for these new  values: p( -2 ,  O,  2) = 
p ( 2 ,  -2, O) = p ( 0 , 2 ,  -2) = p ( 2 ,  O, -2) = p ( - 2 , 2 ,  O) = p ( 0 ,  -2,2) = i. It is 
easy to see at once that 

4 
3 ’  

Cov(X, Y) = Cov(Y, z) = Cov(X, Z) -- 

and so (iii) of Theorem 5 is not satisfied by these covariances. 
It is a somewhat  depressing mathematical  fact  that even for three  random 

variables with n-values and  expectations  equal to zero,  a  separate investiga- 
tion  seems to be  needed  for each n to find necessary and sufficient conditions 
to have a  joint  probability  distribution  compatible  with given means, vari- 
ances and covariances or  correlations. A more  general  recursive  result would 
be highly desirable, but seems not to  be known.  Such results  are  pertinent 
to  the  study of multi-valued spin  phenomena,  the discussion of which we 
continue after  the  next  theorem. 

Bell’s original  inequality. We  now return  to  Theorem 5 for another look 
at  the inequalities  (iii), which assume E(X) = E(Y) = E ( Z )  = O. How do 
these  inequalities  relate to Bell’s well-known inequality [l], written  in  terms 
of the  bivariate  product  moments, 

1 + E ( Y Z )  >I 
Bell’s inequality is in  fact  neither 
of a joint  probability  distribution c 

E(XY) - E ( X Z )  I?  (4) 

necessary  nor sufficient for the existence 
)f the  random  variables X, Y and Z with 

values &l and  expectations  equal to zero. That  it is not sufficient is easily 
seen from  letting  all  three covariances  equal -i. Then  the inequality is 
satisfied,  for 

1 1 1 

1 - f >I -1 - (-1) I 
2 -  2 2 

i.e., 
l 
2 -  
- > o, 
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but,  as  is clear  from  (iii) there  can  be  no  joint  distribution  with  the  three 
covariances equal to --i, for 

Secondly, Bell’s inequality is not necessary.  Let E(XY) = i, E(XZ) = 
-i, and E(YZ) = -i, then (4) is violated,  because 

I I  I 
I - - < I  - - (--) 1 ,  

2 2  2 

but (iii) is satisfied,  and so there is a joint  distribution: 

1 1 1  1 1 1  
2 2 2 -  2 ’  2 ’  2 

- I L - - - - -  < 1 + 2Min(- -- --), 

I.e., 
1 
2 -  

-I 5 -- < o .  
Bell derived his inequality for certain cases  satisfied by a local  hidden- 

variable theory,  but  violated by the  quantum  mechanical  covariance  equal  to 
- cos O,, . In  particular,  let OXY = 30°, OXZ = 60°, OYZ = 30”) so, geometri- 
cally Y bisects X and Z. Then 

1-5- ( -- :),>l--. fi 2 

Bell’s Inequalities  in the CHSH form. The  next  theorem  states two 
conditions  equivalent to Bell’s  Inequalities  for  random  variables  with  just  two 
values. This  form  is  due to Clauser  et  al. , [ 3 ] .  The equivalence of (ii)  and 
(iii) was proved by Fine [4]. 

Theorem 6 (Bell’s Inequalities) L e t  n random  varzables  be gzven  satzs- 
fyzng  the  localzty  hypothesis of T h e o r e m  4.  L e t  n = 4, t h e   n u m b e r  of r a n d o m  
variables,  let  each X, be dzscrete with values  fl, l e t   t h e   s y m m e t r y   c o n d i t i o n  
E ( X , )  = O ,  i = 1,. . . , 4 be satzsfied,  let X1 = A, X2 = A‘, X3 = B, X4 = B’, 
wzth  the  covarzances E(AB), E(AB’),  E(A’B) a n d  E(A’B‘) g z v e n .   T h e n  
the  fol lowing  three  condzt ions  are  equivalent .  
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(i) T h e r e  as a h idden   var iable  X sat is fyzng  Local i ty   Condi t ion II  and   equat ion  
(a)  of the  Second-Order  Factorixataon  Conditaon  holds.  

(ii) T h e r e  i s  a  joant  probabzlzty  dastribution of t he   random  var iab le s  A, A‘, 
B a n d  B‘ compatible wzth the   g iven   means   and   covarzances .  

(i;;) The   random  varzab le s  A, A’, B a n d  B’ sat is fy   Bel l ’s   inequalz t ies  zn t h e  
CHSH f o r m  

-2 5 E(AB) + E(AB’) + E(A’B) - E(A’B’) L 2 

-2 5 E(AB) + E(AB’) - E(A’B) + E(A’B’) 5 2 

-2 5 E(AB) - E(AB’) + E(A’33) + E(A‘B’) 5 2 

-2 5 -E(AB) + E(AB’) + E(A’B) + E(A’B’) 5 2 

It is worth  emphasizing that  in  contrast  to Bell’s  original  inequality (4), the 
CHSH inequalities  with  four  random  variables give necessary and sufficient 
conditions  for the existence of a  joint  probability  distribution. 

It will now be shown that  the CHSH inequalities  remain  valid  for  three- 
valued random  variables,  (spin 1 particles).  Consider a spin-l  particle  with 
the 3 state observables, A(a, X) = +l, O ,  -1, B(b, X) = $1, O ,  -1. X is a  hid- 
den  variable  having  a  normalized probability  density, p@). The  expectation 
of these  observables is defined as, 

E(a,  b )  = / ABp(X)dX. 

We have suppressed the variable  dependence  on A and B for clarity.  (Note 
that in this discussion we follow the  notation of physicists,  especially  as used 
by Bell, rather  than  the  standard  notation of mathematical  statistics for 
expectations,  including covariances.)  Consider the following difference, 

IE(a, h )  - E(a, b’)I = 1 / A[B - B’]p(X)dXI. 

Since the  density p > O and (Al = l, O we have the following inequality, 



Similarly we have the following inequality, 

The  term in square brackets is equal to 2 in all cases except when B and B’ 
are  both equal to zero, in which  case the right-hand side vanishes. With  this 
and the normalization condition for the hidden variable density we have the 
same inequality  as the spin-; CHSH inequality, 

Note that we could create a stronger inequality by adding the function 
2( lE(a ,  b ) (  - l ) ( ( E ( a ,  b / ) (  - 1) to  the left-hand side. 

Higher Spin Cases. For higher spins we can proceed analogously and 
derive the following inequality which must be satisfied for spin j particles, 

IE(a,  b)  - E ( a ,  b’)I + IE(a’, b)  + E(a’ ,  b / ) )  5 2 j .  

If we define normalized observables, v the original CHSH inequality will 
need to  be satisfied for local hidden variable theories,  although  stronger in- 
equalities could be  constructed. 

In Peres’ work  on higher spin particles the observable is  defined  by a 
mapping from the, 2 j  + l-state, J,  operator  to a  two-state  operator [lo]. 
Under this mapping it was  shown that Bell’s inequality is violated for certain 
parameter  settings of the detectors. 

The  mapping from many values to &l, as used by Peres and  others is 
justified probabilistically by the following theorem, which provides a way 
of avoiding deriving separate inequalities for each of the higher spin cases 
(n > 2). 
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Theorem 7 L e t  X1, . . . , X, be n random  varaables  with joant  probabili ty das- 
tributaon F(x1, . . . , Zn). L e t  f l ,  . . . , f k  be f inate-valued  measurable  fune- 
tzons  of   the   random  variables  XI, . . . , X,, with y1 = fI(x1, . . . , X,) . . . , yk = 
f k ( q ,  . . . , Zn) e T h e n   t h e r e  zs a f u n c t i o n  G(yl, . . . , y k ) ,  u n z q u e   u p   t o   s e t s  of 
measure   zero ,   tha t   de termanes   the  p in t  probabili ty  dastributzon  of   the  random 
variables YI,.  . . ,YI, that  are  functzons  of  XI,.  . . ,X,. 

Idea of the  proof: We only  sketch the proof for  a  simple  finite  case to avoid 
technical details, for the underlying  idea îs very intuitive. 

Let X, Y and Z be &l random  variables  with a joint  distribution.  Let A 
and B be  random variables that  are  functions of X, Y and Z. In  particular, 
let 

A =   f ( X , Y ) =   X + Y  
B = f (Y,Z)  = Y + Z. 

Then it is easy to see that range of values of A and B is {-2, O,  2}. More 
importantly,  the  joint  distribution of A and B is easily computed  from  the 
joint distribution of X,Y and Z. Of the  nine possible triples of values  for the 
joint distribution, we show four,  the  remaining five are very  similar: 

P ( A =  -2 & B = -2) P(X -1 & Y = -I & Z -1) 
P ( A = - 2 & B = O )   P ( X = - I & Y = - I & Z = I )  
P(A = -2 & B = 2) = O 

P(A = O & B = O) = P((X = -1 & Y = l &  Z = -1) or 
( X = l & Y = - l & Z = l ) )  

The following partial converse of Theorem 7 is really what is implicit  in 
the  reduction of higher  spin cases to  just two  values, rather  than  Theorem 7 
itself. For  simplicity of formulation we restrict  the  statement of the  theorem 
to four random  variables, using the familiar  notation of Theorem 6, and 
also restrict  the  functions  to  functions of a single random  variable,  with  the 
additional  constraint  that  the  functions  have only the values &l. 

Theorem 8 L e t  A,  B, A’,  B’ be random  varaables  wzth means ,   var iances  
and  covariances  gzven,  but with n o   a s s u m p t i o n  of a joint   d is tr ibutaon.   Let  
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fA, f B ,  f& fB1 be finite-valued  measurable functions of the respectave ran- 
dom  variables  and let the functions have  only  the  values H .  If there as no 
joint distribution of fA(A),  fB(B), f& (A'), and fB1 (B') compatable with 
the means, variances and covariances of the functional random variables, 
then  there is no joint distrabution of A, B, A',  B' compatable with the gaven 
means,  variances and covariances. 

GHZ Probabilistic Theorem. Changing  the  focus, we now consider an 
abstract version of the GHZ  gedanken  experiment. All arguments known 
to us, in  particular  GHz's [5] own argument,  the  more  extended  one  in [6] 
and  Mermin's [g] proceed by assuming the existence of a deterministic hid- 
den  variable  and  then  deriving a contradiction. It follows immediately from 
Theorem 1 that  the nonexistence of a hidden  variable is equivalent to  the 
nonexistence of a joint  probability  distribution for the given observable  ran- 
dom  variables. The  next  theorem  states  this  purely  probabilistic  GHZ  result, 
and,  more  importantly,  the proof is purely  in  terms of the observables,  with 
no consideration of possible  hidden  variables. 

Theorem 9 (Abstract GHZ version) . Let A,, , By2, CP3, D,, be an in- 
finate family of hl random  variables,  with ( p z  a periodic  angle or phase, 
O 5 p; 5 2n, and let  the  following  condation  hold: 

Then the  finate  subset of random varaables Ao,  Bo, Co, Do, A,, A;, C;, D; 
does not  have a joint probability  distrabution. 

Proof: We note  first,  as  an  immediate consequence of (5), 

The proof proceeds by deriving  a  contradiction  from  the  supposition of the 
existence of a joint  probability  distribution. Because conditional  probabil- 
ities are used repeatedly, we must check the given condition in each  such 
probability  has  positive  probability.  Let s,, i = 1, . . . , 4  be +l or -1. One of 

283 



the 16 products of the four  signs must have positive  probability,  in the sense 
t hat 

P(A0 SI, Bo = ~ 2 ,  Co = ~ 3 ,  Do = ~ 4 )  > O. (6) 

(We do  not need to know whether each s, is +l or -1.) Then since the angles 
sum to O, the  product 

SIS2S3S4 = -1. (7) 

We also can infer at  once  from (5) and (ii) 

since (5) ensures that  the condition  in (8) has positive  probability. Using (i) 
now, by a  similar argument 

and  from (5) and  familiar  facts  about  probability-l  propositions (see  Lemma 
1 of the  Appendix), we may  add Co = s 3  to  the condition (9) to  obtain 

Using (i)  and (5) again 

And so, using  Lemma 2 of the  Appendix  and (10) and ( I l ) ,  we infer 

By an  argument  just like that of (9) - ( l a ) ,  we also  infer 

Dividing the  equation of (12) by that of (13), we get 

and since the  random  variables have  only  values +I and -1, we may  rewrite 
(14)  as: 

P(CoD0  C;D; I Bo 3 2 ,  CODO ~ 3 ~ 4 )  1 (15) 
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From (15) and  Lemma 3 of the  Appendix we get 

P(C;D; ~ 3 ~ 4  I Bo ~ 2 ,  CODO ~ 3 ~ 4 )  = 1, 

and so immediately we may infer from (5) and (16) 

P(B0 S Z ,  C$D; ~ 3 ~ 4 )  > O, 

Then  from ( i )  and (17) 

and finally from (15) and (18) and  Lemma 5 of the  Appendix 

P ( A ,  = - ~ 2 ~ 3 ~ 4  I Bo ~ 2 ,  CODO = ~ 3 ~ 4 )  1. 

bviously, (8) and (19) together yield the desired contradiction. 

Gaussian random variables. A fundamental  second-order  theorem  about 
finite sequences of continuous  random  variables  is the following: 

Theorem 10 L e t  n cont inuous   random  varaables  be gaven,   le t   their   means,  
variances  and  covariances  all   exist   and be finate, wzth al l   the   variances  nonzero.  
T h e n  a necessary   and   su f iczent   condz tzon   tha t  a joant   Gausszan  probabalatg 
dzstrabutaon of t h e  n random  varzables  exists,   compatable with the   gaven   means ,  
varaances  and  covaraances, as tha t   the   e igenvalues  of the   correlat ion  matrax 
be nonnegatave. 

A thorough discussion and proof of this  theorem  can  be  found  in Loève [ S ] .  
It is important  to  note  that  the hypothesis of this  theorem is that each  pair 
of the  random  variables  has  enough  postulated for there to exist  a  unique bi- 
variate  Gaussian  distribution  with  the given pair of means  and  variances  and 
the covariance of the  pair. Moreover,  if, as  required  for a joint  distribution of 
all n variables, the eigenvalues of the correlation  matrix  are  all  nonnegative, 
then  there is a unique  Gaussian  joint  distribution of the n random variables. 

We formulate  the  next  theorem  to  include cases like Bell’s inequalities 
when not  all  the  correlations  or covariances are given. 
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Theorem II L e t  n contanuous  random  varaables be gzven   such   t ha t   t hey  
satzsfy  the  localzty  hypothesis  of   Theorem 4 ,  le t   their   means  and  varaances 
exist  and be finate, wath al l   the   variances  nonzero,   and  le t  m 5 n(n - 1)/2 
covariances be g i ven   and  be finate. Then   the   fo l lowang  two  condi t ions   are  
equavalent. 

(i) There  zs a joant  Gaussian  probabili ty  distrabutzon  of   the n r a n d o m  vara- 
ables  compatable with the  gzven  means,   varaances  and  covarzances.  

(ii) G i v e n   t h e  m 5 n(n - l ) / 2  covarzances,   there  are  real   numbers   that   may 
be asszgned to   the   misszng   corre la t ions  so that   the  completed  correlat ion 
matrix   has  eagenvalues   that   are   al l   nonnegat ive .  

Moreover,  ( i )  or (ii) implaes  that  there is a hadden  variable X satasjying 
Localzty  Conditzon II and   the   Second-   Order   Factor ixa taon   Condz tzon .  

The proof of Theorem 11 follows directly  from  Theorem 10. 
Using Theorem 10, we can also derive a  nonlinear  inequality  necessary  and 

sufficient for three  Gaussian  random variables to have a joint  distribution. 
In the  statement of the  theorem p ( X ,  Y) is the  correlation of X and Y .  

Theorem 12 L e t  X ,  Y a n d  Z be three  Gaussaan  random  variables   whose 
means,   variances  and  correlatzons  are  gaven,  and  whose  variances  are  nonzero. 
Then   t here   ex i s t s  a Joint   Gaussian  dis tr ibutzon  of  X, Y a n d  Z (necessarily 
unaque)  cornpatable wzth the  gzven  means,   varzances  and  correlataons af and 
only  zf 

The proof comes directly  from  the  determinant of the  correlation  matrix. 
For a matrix  to  be non-negative  definite the  determinant of the  entire  matrix 
and all principal  minors  must  be  greater than  or  equal t o  zero, 
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Including the conditions for the minors we have, 

The  last  three  inequalities  are  automatically satisfied  since the correlations 
are  bounded by &l. 

Simultaneous  observations  and  joint  distributions. When observa- 
tions are  simultaneous  and  the  environment  is  stable  and  stationary, so that 
with repeated  simultaneous  observations  satisfactory frequency data  can  be 
obtained,  then  there  exists a joint  distribution of all of the  random  variables 
representing the  simultaneous  observations.  Note  what we can  then con- 
clude from the above: in all  such cases there  must  be,  therefore, a factorizing 
hidden variable  because of the existence of the  joint  probability  distribution. 
From this  consideration  alone,  it follows that  any of the  quantum mechanical 
examples that violate Bell’s inequalities  or  other  criteria for hidden  variables 
must be  such  that  not  all  the  observations  in  question  can  be  made simul- 
taneously. The extension of this  criterion of simultaneity to a satisfactory 
relativistic  criterion is straightforward. 

1 Appendix 
We prove here  several  elementary  lemmas  about  probability-l  statements 
used in  the proof of Theorem 9. 

Lemma 1 I f P ( A  I B )  = 1 und P(BC)  > O then P ( A  I BC) = 1. 

Proof. Suppose, by way of contradiction,  that 

Now from (22)  and  the definition of conditional  probability, we have at once 

P(ABC) < P(BC) .  (23 )  
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Adding P(ABC) to  both sides of (23) and simplifying we have 

P(AB) < P(BC)  + P(ABC). (24) 

We now take  conditional  probabilities  with  respect t o  B ,  and divide  both 
sides of (24) by P( B), for by the hypothesis of the  lemma, P (B) > O, and 
thus we obtain 

P(A  I B )  < P(C 1 B )  + P(AC I B ) ,  
but 

and by the hypothesis of the  lemma 

P(A  I B )  = I, 

whence we have  derived the  absurdity  that 1 < I. Thus  the  lemma is estab- 
lished. 

Lemma 2 Let X and Y be two random variables with a joint distribution, 
and  let 

(iii) P(Y = c I A) = 1. 

Then 
P ( X  = Y 1 A) = 1. 

Proof. Let 

B = { w :  X(W) = C }  

c = { w : Y ( w )  =c}  
D = { w  : x(w) = Y@)} 

Suppose  by way of contradiction that 

P ( D  1 A) < 1. 
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Then 
P({w : X(w)  + Y ( w ) }  I A )  > O .  

And so 
P({w : X ( w )  # c or Y ( w )  # c}  I A) > O .  

Without loss of generality, let 

P({w : X ( w )  f c} 1 A) > O. 

Then 
P ( B  I A )  > O ,  

and  this  contradicts  (ii). 
We also need a sort of converse of Lemma 2. 

Lemma3 I f P ( A & X = c ) > O a n d P ( X = Y I A & X = c ) = l t h e n  

Proof. By  hypothesis 

P ( X = Y & A & X = c ) = P ( A & X = c ) .  

Consider now the  left-hand side: 

{w : X ( w )  = Y ( W ) } & { W  : X ( w )  = c} = {w : X(W) = c & Y ( w )  = c}  
= {W : X ( W )  = C} n {W : Y(u)  = C}, 

and so 
P ( X = Y & A & X = c ) = P ( Y = c & A & X = c ) ,  

and  thus, 
P ( Y  = c & A & X =  C) = P ( A & X =  C), 

whence 
P ( Y = c I A & X = c ) = I .  

We can also prove a kind of transitivity for conditional  probabilities that 
are 1. 

Lemma 4 If P ( B )  > O ,  P(C)  > O ,  P ( A  I B) = 1 and P ( B  I C )  = 1, then 
P ( A  I C )  = I .  
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Proof. By  hypothesis  and  Lemma 1 

P ( A  I BC)  = 1, 

so 
P(ABC)  = P(BC)  

but by hypothesis 
P(BC)  = P ( C ) ,  

so 
P(ABC)  = l'(C), 

and  thus 
P(AB I C )  = 1, 

whence 
P ( A  I C )  = 1. 

Finally, we also  use the following, 

Lemma5 I f P ( A & Y = d ) > O , P ( A & Z = d ) > O ,  and 

( i )P(X = C I A & Y  = d )  = 1, 

(i i)P(Z = Y I A & Z = d )  = 1, 

then 
P ( X = c ( A & Z = d ) = I .  

Proof. By  Lemma 3 and (ii) 

P ( A & Y = d I A & Z = d ) = l  

So, by transitivity  (Lemma 4) & (i) 

P ( X = c I A & Z = d ) = l  
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