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Abstract In a recent paper, Nagata (Int. J. Theor. Phys. 48(12):3532, 2009) claims to derive
inconsistencies from quantum mechanics. In this paper, we show that the inconsistencies
do not come from quantum mechanics, but from extra assumptions about the reality of
observables.
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Quantum mechanics is one of the best tested theories in modern physics, and yet there is
no consensus as to what it means. The reason lies in the fact that, as Feynman eloquently
put, “nobody understands quantum mechanics” [2]. This lack of understanding comes from
the difficulties to interpret even the simplest of the examples, like the two-slit experiment,
in ways that are consistent with the observations and with an underlying ontology that most
consider satisfactory (for distinct approaches, see [3–7]). For example, quantum mechanical
observables do not allow for standard joint probability measures to be defined [8], and if
we assume such probabilities, we derive contradictions [9]. Furthermore, the structure of
observables does not satisfy a classical logic, but instead a quantum one [10]. Thus, an area
of intense interest in the foundations of quantum mechanics is the search for theories that
complete quantum mechanics, such as hidden-variable theories, and give sense to it [6].

In a recent paper, Koji Nagata looked into the possibility that quantum mechanics leads
to contradictions [1]. Though, as mentioned in many of the references above, contradictions
can be derived depending on the assumptions used, Nagata goes further and claim that “there
is a contradiction within the Hilbert space formalism of the quantum theory.” He then con-
cludes that no axiomatization exists for quantum mechanics. In this paper, we clarify some
assumptions made by Nagata and show that the derived contradictions are not part of the
theoretical structure of the theory, but instead are part of metaphysical assumptions about
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the systems. Therefore, the contradictions obtained by Nagata are not an impediment to the
axiomatization of the theory, but instead to a specific worldview.

Let us start with Nagata’s derivation of a contradiction. In [1], a pure state spin- 1
2 system

on the x–y plane is considered. He then goes on to show that if we compute the quantum
mechanical expectation of such state measured in an arbitrary direction n, the expected value
EQM ≤ 1, which implies that |EQM|max = 1. This result is consistent with the fact that, for
his choice of units !/2 = 1, if the system is prepared in the same direction as n, we always
get the same answer as 1. Finally, Nagata shows that if we use a collapsed state and then
compute the expectation, E′

QM ≤ 2, implying |E′
QM|max = 2 (we changed the notation to E′

to avoid confusion with the previous value). Thus, Nagata claims, because |EQM|max cannot
have two different values, we arrive at a contradiction. Before we proceed, we would like to
point out that Nagata’s inequalities do not by themselves imply a contradiction. For example,
the statements b ≤ 1 and b ≤ 2 are not contradictory, as b = 0 is an example that satisfies
them. To prove a contradiction, Nagata would have to construct a system which he could
prove not only is less than 2 but is also greater than 1. Though he did not show such proof,
it in fact exists. But to make clear where the contradiction comes from, we present it below
in a simplified version.

At the core of Nagata’s derivation lies an important feature of quantum mechanics,
namely that if you do not measure something you cannot assume that it has a value. In other
words, assuming values to unmeasured observables leads to contradictions (see [9, 11] and
references therein). Let us analyze the case of a spin- 1

2 system. First, let us see what quantum
mechanics can tell us about this system. If we want to observe its spin in a given direction
m, the associated observable is Ôm ≡ m · σ , where σ is a vector in R3 with the Pauli matri-
ces as components, i.e. σ = (σ̂x, σ̂y, σ̂z). From the properties of the Pauli matrices, it is easy
to show that Ôm has eigenvalues ±1, regardless of the measurement direction. Since m is
arbitrary, let us we pick three distinct directions, e1, e2, and e3, such that e1 + e2 + e3 = 0.
The corresponding observables will be Ô1 ≡ e1 · σ , Ô2 ≡ e2 · σ , and Ô3 ≡ e3 · σ . Quantum
mechanics not only tells us that measuring Ô1, Ô2, or Ô3 yields ±1 values, but it also tells
us that we cannot measure them simultaneously, as they do not commute.

A natural question to ask is the following. Is it possible to assign a value to spin, even
though a measurement has not been performed? To answer this, let us assume that we in-
deed can assign such value (we follow [12, pp. 15–16]). Let P be a vector random variable
corresponding to the actual value of the system’s spin before any measurement. It follows
that if we measure it in a direction m, the outcome of the experiment must be m · P. Now,
quantum mechanics tells us that, regardless of the direction, m ·P will take values +1 or −1.
But, using the vectors we picked before, we have

e1 · P + e2 · P + e3 · P = (e1 + e2 + e3) · P

= 0. (1)

This, of course, leads to a contradiction, as the sum of three ±1 random variables cannot
equal zero.

An analysis of the above example shows the origin of the contradiction. Since quantum
mechanics forbids the simultaneous measurements of Ôk , as they do not commute, it does
not allow us to simultaneously assign values to them. The contradiction does not come from
quantum mechanics, but from the assumption that we can assign values to measurements
that were not performed. But not even assigning values leads to contradiction, if we are
careful. For example, we could assign values to e1 · P and to e2 · P, as long as we assumed
that the P in e1 · P is different from the one in e2 · P, a feature called contextuality [13].
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The above example contains the essence of Nagata’s argument. Computing the value of
a quantity using the quantum mechanical formalism yields different quantities than comput-
ing it from the distribution over the random variables associated with the (non-commuting)
observables in quantum mechanics (his use of values from von Neuman’s projections). The
reason for this discrepancy is that, in the latter case, there is an underlying assumption that
an unmeasured quantity exists independent of the other quantities. This, of course, is not
true, as quantum mechanical variables are contextually dependent from each other, a char-
acteristic stressed by Bohr. We emphasize that this characteristic of quantum mechanics is
not at all disturbing, as it is common to many classical systems [14]. The troubling char-
acteristic comes from a combination of contextuality and non-locality, made famous by the
Einstein-Podolsky-Rosen paper [15] and by Bell’s inequalities [16].

Quantum mechanics is indeed a strange theory. But its strangeness comes not from an
inconsistency of its mathematical structure, but from the metaphysical views it imposes
on us. If we insist on having worldviews where the values of variables exist independent
of the observation, then we will get into contradictions. But, as many authors show, such
contradictions can be avoided by carefully interpreting the meaning of the mathematical
formalism.
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