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1 Introduction

This paper is an extension of the main points I started to discuss during the
Foundations of Mind Conference, organized by Sean O’Nuallain and held in
Berkeley in March 2014. I was fortunate to be invited by Sean to chair a section
where Henry Stapp would talk about his theory of quantum mechanics and the
mind. But Sean also gave me the almost impossible task of criticizing Stapp’s
views. Of course, as soon as I realized that one can criticize without actually
giving a plausible alternative, the task became less daunting. So, the goal of this
paper is to put forth a couple of criticisms of the quantum mind theory and,
perhaps, suggest a possible alternative of what theory could replace at least
certain aspects of it.

Before going on, let me start with a general comment. I do not wish to claim
here that Stapp’s theory of quantummind is without merits. I find it a fascinating
way to think about the mind and its connection to quantum mechanics, a subject
that has fascinated me ever since I was a graduate student and got in touch with
many texts on the subject, including von Neunann’s seminal book [32]. My goal
here is to point out some difficulties that I see with the theory, both from a
conceptual as well as a technical point of view, and to question it as a way to
help with the problem of consciousness. This will be done, hopefully, without
resorting to too many technical arguments, and some liberty will be taken about
some details. I will, however, assume that the reader is familiar with quantum
mechanics and its formalism and notation at the level of standard textbooks,
such as [4].

I organize this paper in the following way. The first part of my argument is
presented in section 2, I discuss the von Neumann approach to quantum mechan-
ics, the backbone of Stapp’s theory. In it, I try to argue that von Neumann’s
views, albeit consistent with empirical evidence, loose their motivation when
viewed from a modern perspective. Motivation, of course, is in the eyes of the
beholder, and in this section I cannot hope but only convince those who were al-
ready skeptical of the quantum-mind theory. However, revisiting von Neumann’s
theory is useful for my more focused criticisms, spelled out in the next section.
In section 3 I quickly introduce some main aspects of Stapp’s theory (detailed
in [22] on this proceedings), as I (hopefully) understand it, and I present two



arguments against it. One argument is more specific to the particular applica-
tion of QZE shown in [22]. The other argument is broader, and questions the
proposed use of QZE to solve the mind/matter problem. In particular, we show
that Stapp’s use of QZE leads to a circularity in his argument, and therefore is
not really a solution to the mind/matter problem. Because this presents serious
difficulties to the proposed model, it makes it the most relevant point in my
paper. Finally, in section 4 I end the paper on a more positive note, giving some
possible alternative approaches that are somewhat in the spirit of what Stapp is
trying to achieve with his theory of the quantum mind.

2 von Neumann’s Approach

Let me start with the overall “historic” argument about the connection between
the mind and quantum mechanics, first put forth by von Neumann himself in
his discussions of the theory of measurement [32]. According to the Copenhagen
interpretation, one of the difficulties of quantum mechanics, first pointed out
clearly by Bohr [1], is the dual nature of the evolution of a physical system.
On the one hand quantum mechanics is deterministic: given the state |ψ0〉 of a
system at time t0, its time evolution is given by

|ψ〉 = e−
i
~ Ĥt|ψ0〉, (1)

where Ĥ is the Hamiltonian operator. Equation (1) uniquely determines the
system |ψ〉 at time t ≥ t0. On the other hand, quantum mechanics, through the
measurement process, is probabilistic: all we can talk about from the |ψ〉 are
the probabilities P (oi) = |〈oi|ψ〉|2 of possible outcomes oi of an experiment O
represented by the observable Ô, such that Ô|oi〉 = oi|oi〉. So, it seems that there
are two different types of incompatible evolution in quantum mechanics, and one
of them is associated to a very special type of interaction: a measurement.

The question posed by the founders of quantum mechanics was the following:
what makes measurements different? To Bohr, a measurement was an interac-
tion with a classical system. This is all good when we are talking about, say,
an electron (clearly quantum) and dark spots on a photographic paper (clearly
classical). But the problem becomes trickier when the measurement device itself
is small: for instance, when we think of atoms as photodetectors, or when we
deal with mesoscopic systems. Some measurement devices are clearly classical,
whereas others are not. So, where is this boundary between classical and quan-
tum physics? This border is what was known as the Heisenberg cut, the point
where anything over it behaves classically.

Von Neumann considered this idea of a dual dynamics, one for classical mea-
surement apparatus and another for quantum systems, unsatisfactory [32]. To
overcome this, he treated both the observed system and the measurement appa-
ratus as quantum systems. A measurement consisted thus of something with the
following characteristic. Let Ô be the observable represented by the (quantum-
mechanically described) measuring apparatus O, such that if a system is initially



in the state |oi〉 and the apparatus in the state |0〉 (i.e., the state is represented
by the value of the pointer on the measuring device measuring nothing, the reset
position), then the interaction leads the the following evolution:

|oi〉 ⊗ |0〉 → |oi〉 ⊗ |i〉,

where |i〉 means the apparatus is pointing to the value corresponding to the
outcome oi. This is all fine with states for the system that are eigenstates of the
measurement apparatus. However, if the system is in a superposition of the type

|ψ〉 = c1|o1〉+ c2|o2〉,

|c1|2 + |c2|2 = 1, the interaction with the measurement apparatus leads to

|ψ〉 ⊗ |0〉 → c1|o1〉 ⊗ |1〉+ c2|o2〉 ⊗ |2〉.

Notice that this last equation is not what happens with a measurement process,
where we either get one outcome or the other. Instead, because of the linearity
of quantum evolution, superpositions of the initial state lead to, after an in-
teraction with the measurement device, a quantum superposition of the whole
system. In other words, there is no collapse of the wave function, and therefore,
no “measurement”, in the sense of Bohr, happened. From the linearity of quantum
mechanics, von Neumann observed that the quantum superposition of system
and apparatus could be extended all the way to larger and larger systems. How-
ever, there was one point where unambiguously there was no superposition: the
mind of an observer. This is the case because we never see the superposition of,
say, Schrödinger’s cat dead and alive. So, von Neumann posited that the actual
irreversible aspect of the quantum measurement, the collapse of the wave func-
tion, happens at the mind, thus avoiding the issue of determining Heisenberg’s
cut.

Thus, von Neumann’s idea that the Heisenberg cut, i.e. where does quan-
tum interference is lost and classical outcomes exist, is done in the interaction
between the mind and the systems correlated to the original quantum system
being measured. For example, an atom is detected by a detector, which is then
observed by the researcher’s eyes, which send signals to the brain. At each step,
atom, detector, and so on, we have a chain of entangled quantum systems. It is
not until this chain interacts with the mind (somewhere after the eyes) that a
collapse of the wave function actually happens.

The main motivation for von Neumann to go “all the way up” to the mind
was the lack of clear boundary between the classical and the quantum regimes.
However, as we know from modern environmental decoherence theory1, such
1 Some might point that von Neumann already accounted for decoherence in his book,
as he talks about the possibility for off-diagonal elements of the partial trace of the
density matrix to go to zero because of a measurement process. We clarify that what
we are talking about here is the dynamical theory of decoherence that, for instance,
makes explicit claims about how the off-diagonal terms of the density matrix go
to zero, a result that has practical implications for the construction of quantum
computers. This theory’s predictions have been observed, for example, in mesoscopic
systems [2].



boundary is not as muddled as initially thought [19]. Furthermore, quantum
superposition, the cornerstone of quantum effects, is not the norm for larger sys-
tems, and interference effects associated to such superpositions decay extremely
rapidly even for mesoscopic systems, in accordance with the theory [2].

Now, what does environmental decoherence has to tell us about von Neu-
mann’s quantum mind? First of all, it does not solve the measurement problem,
the main reason that led von Neumann to his interpretation, even if we accept
Bell’s concept of solving For All Practical Purposes (FAPP). Because environ-
mental decoherence still relies on quantum evolution, it still carries all the way
up the same superpositions that have troubled physicists for a century.

Second of all, though decoherence clarifies the Heisenberg cut, it is by no
means a disproof of von Neumann’s theory. Because the underlying dynamics is
still linear, one can argue that quantum superpositions still exist, and that the
“collapse” only happens in the mind2. If not anything else, decoherence probably
makes it impossible to falsify von Neumann’s ideas, as there is no way quantum
coherence can be held up to the, say, brain level [30], in an observable way.

But decoherence does tell us that we can talk about the Moon, for all practi-
cal purposes, even if we have not observed it, and explains why most macroscopic
things behave in a seemingly classical way. So, in a certain sense, it makes von
Neumann’s theory more far-fetched. Notice that von Neumann proposed a solu-
tion to the measurement problem by denying a dual dynamics of quantum and
classical evolution for different systems, but instead by creating a new system,
not subject to the laws of quantum mechanics, that had its own dynamics as
well: the mind. So, it simply replaces a mystery by another mystery, without
adding any explanatory power.

More importantly, decoherence removes the main motivation for von Neu-
mann’s collapse postulate. If we recall, this postulate was introduced (by Heisen-
berg) to deal with the fact that we do not see macroscopic quantum superpo-
sitions. But let us say that we do indeed have, as von Neumann says, a macro-
scopic quantum superposition getting all the way to the mind. Everett’s many
worlds/minds interpretation simply says that our mind makes a selection, among
the many possible, but we still have a superposition [11]. What selection does the
mind make? Not any of the infinite amount of possible experimental outcomes,
but instead such selections that are consistent with the preferred pointer basis of
the involved quantum observables, as given by the decoherence of the quantum
states. So, no need for any special dynamics of the mind outside of the quantum
(or physical) realm.

3 Stapp’s Quantum Mind

I now turn to Stapp’s approach [21], more specifically his arguments laid out in
[22]. Let us assume that von Neumann’s theory is correct, and that there is a
2 This is possibly the main reason why so many of the proponents of decoherence as a
way to clarify the measurement problem are sympathetic to the many worlds/minds
interpretation of quantum mechanics.



different entity, the mind, that does not satisfy the laws of quantum mechanics,
and is responsible for the classical character of the measurement. Stapp poses
the interesting question of whether such entity could affect the physical world,
a huge problem for the proponents of the mind/brain duality.

Stapp suggests the Quantum Zeno Effect (QZE) [17] as a possible mecha-
nism for the mind to affect matter. In the original QZE, it was shown that if
we continuously observed an unstable particle, this particle would not decay.
However, we can modify this argument, and show that by continuous observa-
tions (or many observations close to each other) we can make a particle change
a quantum state. To use Stapp’s example in [22], let us start with a coherent
state with amplitude α, represented by the ket |α〉. Now, let us perform a simple
yes/no experiment, where the question being asked is whether the system is a
coherent state with amplitude α+∆, where ∆ is small compared to α. Because
coherent systems are not orthonormal, the probability for the state |α〉 to be in
|α+∆〉 is nonzero, and given by

P (|α+∆〉||α〉) = |〈α|α+∆〉|2 ≈ 1−∆2 (2)

for ∆2 sufficiently small. Furthermore, if we make N several successive measures,
each time asking the question with a larger amplitude (by a factor ∆), the
probability of observing α+N∆ is given by

P (α+N∆) ≈
(
1−∆2

)N ≈ 1−N∆2,

and not |〈α|α+N∆〉|2. Thus, making ∆ very small, i.e. by almost continuously
observing a quantum harmonic oscillator in the semi-classical coherent state, it
is possible to increase its amplitude of oscillation.

In [22], Stapp applies this ideas to motor cortex measurements performed by
Rubino, Robbins, and Hatsopoulos [20]. His idea is that in the same way that the
mind causes the collapse of the wave function, the effect of the mind “observing”
a system can make it change its state from |α〉 to |α+N∆〉. I see two problems
with this model, one conceptual and one specific to the application.

The specific problem is more technical in nature, and perhaps not as impor-
tant as the second, so let me talk about it first. Stapp starts with the magnetic
field in what he claims is a computational unit: the minicollumn. Because the
magnetic field is very weak, of the order of pT, it follows that if we model its
oscillations with a quantum harmonic oscillator in a coherent state (as the com-
putations above), it is justifiable to use quantum mechanics, as α is only at
the order of 101. However, why talk about the magnetic field? Given the low
frequencies, the magnetic and electric fields are uncoupled, and the regime is
essentially a quasi-static one [18]. Furthermore, as [20] show, the electric field
involved in the process is at the order of 10 µV, and its energy is about 10
orders of magnitude that of the magnetic field. More importantly, because it is
a much stronger field, it not only is more relevant to understand the processes,
but it is also describable, to a very good approximation, by classical equations,
as one should expect. So, to make his model stick, Stapp would have to clearly



justify the picking of magnetic fields over electric fields, and more importantly,
how such fields, when increased even tenfold, would affect the dynamics of the
brain in a significant way (given that it carries energy that is about 109 times
less than the electric field).

We now turn to the main problem with Stapp’s approach. As we mentioned
above, Stapp starts with a weak magnetic field, modeled by a coherent state,
which is subjected to successive measurements. The mind is seen affect the field
itself through the QZE, a (perhaps measurable) mechanism for the mind/brain
interaction. In other words, if the mind chooses to measure |α + ∆〉, and then
|α+ 2∆〉, then |α+ 3∆〉, and so on, then it can make the amplitude of the field
increase, within a reasonable amount of time, from α to α+N∆.

But what is a measurement of |α + ∆〉 or |α + 2∆〉? In von Neumann’s
formulation, this process is done by the presence of a physical system, i.e., by
some hardware (responsible, as shown by decoherence, for the choice of a pointer
basis). For example, to measure the spin of an electron, we have to produce
a Stern-Gerlach experimental setup before the atoms get to the photographic
place, which then sends photons to the eyes of the observer, that activate neurons
in the brain, and somewhere or somehow finally gets to the mind. But the Stern-
Gerlach setup needs to be there; it cannot be produced by the mind. The same is
true for the QZE. A physical measurement has to be made to affect the system.

What the mind does is only, according to von Neumann, collapse the wave
function. It does not make a measurement, as the mind does not have a preferred
pointer basis, which is itself provided by the theory of decoherence through super
selection rules [33]. In Stapp’s model, the mind affects matter by measuring first,
say, |α+∆〉, and then |α+2∆〉, and so on. But the choice of measuring |α+2∆〉
instead of |α +∆〉 involves the presence of a physical apparatus that measures
|α + 2∆〉, physically different from the apparatus that measures |α +∆〉. Such
mind may be “observing” this apparatus and making it collapse into one of its
pointer basis, with values “yes” or “no,” but it cannot make the measurement
itself. Thus, we reach the conclusion that, for the measurement to be performed,
there must be a way for the mind to affect matter by selecting a specific appa-
ratus and its corresponding pointer basis (instead of another), and we get into
a circular argument: to solve the problem of how the mind affects matter, we
need to postulate that the mind affects matter. I see this as a serious, perhaps
insurmountable, problem for the current approach.

4 Possible Alternatives

I end this paper with possible alternatives on how to approach the issue of
consciousness (the easy problem, of course). As Stapp mentioned in a private
conversation, one of his motivations for the quantum theory of mind was that
it provides an alternative to human decision making being either random (say,
as modeled by the classical SR behaviorist theory) or deterministic. He claimed
that quantum mechanics, through von Neumann’s interpretation, provided an
third way: how to think about the decision maker as a free agent (thus non-



deterministic) while at the same time not simply coming to decisions by a random
process.

Though either alternative seems almost like a (free?) personal choice on how
one wants to think about the relationship between consciousness and decision
making, I want to provide a fourth way. In between deterministic and stochas-
tic processes, may be stochastically incomplete processes. We know that decision
making is highly contextual, in the sense that the probabilistic processes involved
in many human decisions cannot be appropriately modeled by classical proba-
bility theory [13]. In fact, this stochastic incompleteness is closely related to the
quantum mechanical one, in the sense that certain decision-making processes
can be better modeled by an algebraic structure inspired by quantum mechanics
(see [24,14,10,15,12,3] and references therein). The fact that the mathematical
formalism of quantum mechanics leads to better descriptions of social phenom-
ena led to the term quantum-like and to new areas of research, such as quantum
cognition and quantum finances.

However, as pointed out by many authors [24,14,10,15,12,3], this quantum-
like behavior does not mean that such systems are quantum mechanical. What
is meant here is simply that the underlying dynamics can be described as a
classical one, and yet result in quantum-like effects. In fact, quantum like effects
in the brain can be obtained by simple contextual interference [6,7], based on
models of neural oscillators that reproduces standard SR theory in certain cases
[31,25,9]. This should not be surprising, as realistic models can reproduce the
same outcomes of quantum mechanics, as long as no spacelike events are involved
or if detectors are not 100% efficient (see [23,26,27,28,29] for one such model).

What is at the core of such quantum-like effects is contextuality. One should
not expect social systems to be non-local, as the EPR example, but one should
expect them to be contextual. However, if contextuality is the name of the game,
then perhaps the quantum mechanical apparatus carries too much baggage with
it. For example, one can have stochastically incomplete systems and yet have no
quantum description for them [5]. Furthermore, such systems can be modeled by
neural oscillators, thus leaving open the idea that using a quantum mechanical
description is too constraining. But, more importantly, with alternative descrip-
tions, it is possible to show that further principles can be added, providing a
possible constraint in decision making that is neither quantum nor random [8].
This opens up the exciting perspective of having an approach to decision making
that satisfies Stapp’s criteria, in a certain sense, and is at the same time testable
at the behavioral level.

Let me end with a final general comment about using classical approaches
to understand something that is, in essence, a quantum phenomena, as quan-
tum mechanics is the ultimate theory of Nature. Physics is not only about con-
structing theories, but also models. For example, though classical mechanics is
essentially wrong, one would not use QM in a model for spaceship trajecto-
ries. A quantum model would not only be impractical, but would also not add
anything to the “story,” to our understanding of the issue. In fact, even the sim-
plest attempts to prove the stability of matter from QM have failed miserably



at macroscopic levels (see reference [16] for a review). Models tell us a story
of causal (including probabilistically causal) connections. This is what we call
understanding in physics (e.g., we understand planetary trajectories because we
can tell them from Newton’s gravity). More importantly, classical mechanics is
a good approximation for QM for most macroscopic objects (including not so
macroscopic ones such as neurons). In fact, in many simulations with molecules,
Newtonian mechanics works pretty good. What is fundamental then? QFT?
Should we try to abandon even the view that there are particles in the brain,
and try to model it with fields? Strings? From a pragmatic point of view, we
don’t use theories because they are more fundamental. We use approximations
that allow us to say something about the system in a coherent way, and try
to justify such approximations based on reasonable assumptions and empirical
data. I hope the theory put forth in the section, though classical, may be of help
to elucidate certain aspects of decision making that have eluded explanation.
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