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Abstract Classical information theory relies on the probabilities that signals appear in
a source. As such, information depends on Kolmogorov’s probability theory. However,
it is well known that some quantum sources are context-dependent, and therefore
may not conform to classical probability theory. For such sources, information can be
defined through von Neumann’s entropy. However, there are possible contextual sources
that are neither quantum nor classical. In this paper we explore a simple example
of one such source, and show that, similarly to the quantum case, the presence of
contextuality increases the amount of information. We also show that, by extending
Shannon’s entropy to accommodate negative quasi-probability distributions, we are
able to provide a measure of informational content that is neither described by Shannon
nor von Neumann’s entropies.

1 Introduction

Information is an fundamental concept not only in engineering, but also in physics. It is
present in statistical mechanics, where the thermodynamical behavior of a system can
be derived from our lack of information about the underlying states of particles in either
a classical or quantum statistics [2]. It is an essential idea in certain interpretations
of quantum mechanics [24]. And it is even considered by some physicists as part of
the underlying fabric of reality, such as in Wheeler’s it-from-bit [47] or D’Arianno’s
derivation of QFT from information [9].

Information is also key in philosophy of language and philosophy of mind [20]. For
example, a very popular view of consciousness is the Integrated Information Theory
[38], known as IIT. As its name reflects, IIT relies on the concept of information, and
posits that consciousness is a specific type of integration of information where the whole
has more information than its parts.

In physics and in engineering, information is usually related to Claude Shannon’s
definition stemming from his mathematical theory of communications [41]. However,
Shannon’s theory requires that the information of a set of sources be computed based
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on the joint probability distribution over the content outcomes of those sources. This
creates an issue in physics, where for certain systems no such joint probability exists
[23], a phenomenon known as contextuality1.

Contextual sources appear in physics as a consequence of the impossibility of mea-
suring all observables simultaneously for a quantum system. For instance, Kochen and
Specker (KS) [31] proved that for quantum systems whose Hilbert spaces have dimen-
sion three or greater, it is possible to construct a set of dichotomic observables (117
in their original paper) and a collection of contexts where some of those observables
could be measured simultaneously but where the totality of them could not. They then
showed that attempting to assign a truth-value to such observables would lead to an
inconsistency, unless the truth-values changed with the context.

This above result from KS implies that we cannot construct a non-negative joint
probability distribution for the observables [11], and therefore cannot use Shannon’s
definition of information. However, for quantum systems, it is possible to define infor-
mation by using von Neumann’s entropy, which is shown to be somewhat equivalent
to Shannon’s [40]. Furthermore, von Neumann’s entropy can be shown relevant to ex-
tensions of the quantum case, when there is an orthomodular lattice for the set of
observables [28].

In this paper, we investigate the concept of information for contextual sources. In
particular, we discuss how Shannon entropy fails to measure the amount of informa-
tion of contextual sources, and how, for some systems, von Neumann’s entropy is not
adequate. To do so, we organize this paper the following way. In Section 2 we pro-
vide a definition of context and context dependency, also known as contextuality. In
Section 3 we show that quantum theory, defined by the algebra of observables on a
Hilbert space, requires a description of properties that are context dependent, i.e. that
quantum observables are contextual. We do this by following a Kochen-Specker-type
argument given in reference [7]. In Section 4 we present Shannon’s entropy, consid-
ered a measure of information for classical systems, and also von Neumann’s entropy,
which measures information for quantum systems. Then, in Section 5 we discuss the
informational content of several sources that are correlated, some contextual and some
non-contextual. We use those examples to show that Shannon’s entropy cannot be used
in a straightforward way to describe the expected amount of information for contextual
systems, a failure that cannot be resolved by resorting to von Neumann’s entropy. We
end with some final remarks and comments in Section 6.

2 Context

In its current and common usage, context comes from linguistics. It means the parts
which are related to a particular text, passage, or speech and that are connected to
its meaning. For example, the statement “cheap dates are great” has very different
meaning if preceded by a conversation about social engagements or by a discussion on
the characteristics and benefits of the Phoenix dactylifera fruits. One could say that
the meaning of the statement changes with the context. But, if we take semantics to be

1 Some readers may associate the lack of joint probabilities to non-locality, as is the case
in Bell’s theorem, but the concept of contextuality is more general, with non-locality being a
particular case of contextuality where the contexts are selected in a space-like way. See, for
example, the discussions about contextuality and non-locality as it relates not only to physics,
but also to psychology, in reference [17].
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valued with respect to truth values of propositions, one could also say that the truth
values changed from context to context: in a given context the statement “cheap dates
are great” may be considered by someone as true, whereas in the other context it may
be considered by the same person as false.

So, how can we define context based on this idea? This definition would be particu-
larly difficult if we considered that sometimes it is not clear how to assign truth values,
particularly as part of speech. For instance, what is the truth value of the statement
“Carlos is a good person”? Even if we ignore the ethical assumptions of establishing the
truth of such statement, the very definition of “good person” is context dependent, and
in a conversation, either with oneself or with someone else, sometimes we are reluctant
to provide definite truth values to such propositions. In another paper [13], we argued
that a possible general way to deal with context comes from probability theory. In this
section, we will present the main idea of representing contexts with probabilities using
a theory known as Contextuality by Default (CbD) [21,22]2.

Let us start with the basic ideas. First, we need a probability space, (Ω,F , p),
where Ω is a sample space, F is a σ-algebra over Ω, and p a function p : F → [0, 1]
satisfying the following properties [32]:

K1. p(Ω) = 1
K2. p (A ∪B) = p (A) + p (B) for A,B ∈ F and A ∩B = ∅.

The probability space (Ω,F , p) is just a way to formalize the familiar concept of proba-
bility, where the sample space Ω is simply the set of possible outcomes. For example, if
we throw a die, the set of possible outcomes is Ω = {1, 2, . . . , 5, 6}, and if we throw two
dice, the set is Ω = {(1, 1), (1, 2), . . . , (5, 6), (6, 6)}, where each ordered pair represents
the outcomes of the first and second dice, respectively. The algebra F is a way to talk
about more than one outcome: in the case of a die, we can talk about single outcomes,
such as {1}, or we can talk about combinations of outcomes, such as “{1} or {6}” or
“not {1}”, and the combination of all the logical propositions we can make over the out-
comes of the die would result in an algebra. Finally, p is simply the probability we assign
for each element of F . In the case of the die, we have p({1}) = . . . = p({6}) = 1/6,
if the die is unbiased. We can immediately compute from these, using K2, that the
probability of getting an even number as outcome, p({2, 4, 6}), equals 1/2.

Now that we have a probability space, we can define a very important tool in us-
ing probabilities to describe quantitatively the outcomes of experiments or the truth
values of propositions: random variables. Intuitively, random variables are mathemat-
ical objects, functions to be precise, that have the same outcomes as an experiment
or measurement we wish to model. For example, if we were to model the outcomes
of throwing two dice and then summing their values, we could use a random variable
that can have as possible outcomes the numbers 1, 2, 3, . . . , 12. The random variable
corresponding to this example would be a function R : Ω → {1, 2, 3, . . . , 12}, where
Ω = {(1, 1), (1, 2), . . . , (5, 6), (6, 6)} (all possible outcomes of throwing two dice), de-
fined by R ((i, j)) = i + j. Since the probabilities of each element of Ω is given by
p, one could use the properties of probabilities to compute the distribution of R, i.e.
the probabilities of each outcomes. As importantly, given a data set for an experiment,
we can always ask the reverse question: what are the random variables and their cor-
responding probability space that exhibit the same statistical properties as the data
set.

2 Here we use a simplified version of CbD, which captures some of its main ideas, but is not
as precise and general as the formulation presented in the references.
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Random variables are important because they provide a consistent way of talking
about experimental outcomes, truth values, beliefs, or even about semantics3. What
we mean is that, by assuming an algebra of events, random variables require that the
underlying atomic outcomes (i.e., elements of Ω) provide a consistent description of
the processes behind the observed events. To illustrate this, let us look at an example.
Imagine we have an experiment where we measure two properties of a system. To keep
it simple, let us assume that those properties are binary, i.e., either the system has it
or not. Examples of binary properties would be the tossing of a coin (either it is heads
or it is not), the passing of an exam (either the grade was sufficient or not), or the
success of an offensive play in football (either a goal was scored or not). Let us call
those two properties A and B. Since they are binary, we can represent the outcomes of
those properties by any two numbers, usually {0, 1} or {−1, 1}, where we can assign,
if we wish, 0 or −1 to false and 1 to true. The data from observing A and B would
give us their individual statistical characteristics, e.g. their expectations, which tells us
how often A or B are true, and their joint expectations (if ever measured together),
which tells us how A and B are correlated. With such information, we could create
a probability space with a sample space Ω = {ω00, ω01, ω10, ω11} and the following
random variables:

A (ω00) = A (ω01) = B (ω00) = B (ω10) = 0,

A (ω10) = A (ω11) = B (ω01) = B (ω11) = 1.

Our notation here should be straightforward: ω00 corresponds to A and B being false,
ω10 to A true and B false, and so on. If we chose a probability p in a (Ω,F , p) that
reproduces all the observed expectations and correlations, we created a model of the
experimental outcomes in terms of random variables. This model would allow us to infer
all possible logical questions about elements of Ω, such as what is the probability of
ω00, or “not ω00”, or “ω10 and ω01”, etc. In other words, all possible logical consequences
of the possible values of A and B would be accounted in the statistical model.

Now that we have necessary tools to talk about empirical observations, let us go
back to contextuality, first with a simple example. Imagine we have instead of two, three
binary properties, namely X, Y , and Z. Let us model then with ±1-valued random
variables, instead of 0 or 1, for symmetry. After several observations, we conclude the
following about the statistical properties of the random variables:

E (X) = E (Y) = E (Z) = 0, (1)

and
E (XY) = E (XZ) = E (YZ) = −1. (2)

We do not have the expectation of the product XYZ because we never observe the
three variables simultaneously, but only either by themselves or in pairs.

The first set of expectations (1) tell us that each random variable seems to behave
randomly, with each outcome +1 and −1 appearing in our data table with equal
probability for each. The second set of expectations (2), involving the second moment,
tells us that three random variables are not at all independent. In fact, since the
expectation of their products is −1, it follows that if one of the variables is −1, the
other must be +1. In other words, if we know X, we also know Z or Y. However,

3 See [11,13] for a more detailed discussion of random variables and contextuality as related
to those areas.
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X Y Z XY XZ Y Z

−1 −1 −1 1 1 1
−1 −1 1 1 −1 −1
−1 1 −1 −1 1 −1
−1 1 1 −1 −1 1
1 −1 −1 −1 −1 1
1 −1 1 −1 1 −1
1 1 −1 1 −1 −1
1 1 1 1 1 1

Table 1 All possible values of properties X, Y , and Z and their products.

there is an issue with the above expectations: they lead to a contradiction. To see this,
assume that X = −1, which from the first expectation implies that Y = Z = 1, which
contradicts the observation that YZ = −1. A similar contradiction is reached if we
assume that X = 1.

The reader may at this point argue that expectations (1) and (2) are an impossi-
bility: one should never have an experiment that leads to contradictions. In a certain
sense they would be right, as the contradictions do not come from the expectations,
but from the conclusions we are deriving from our model of the expectations. Notice
that, as mentioned above, the experimental conditions are such that we never observe
all three properties simultaneously, but only two of them. For example, in one obser-
vation, properties may be X = 1 and Y = −1, but this tells us nothing about the
unobserved value of Z. Assuming that the Z would be the same in this condition as in
the other condition leads to the contradiction. In other words, the assumption is that
Z in the context of X is the same as in the context of Y. This is what we mean by
contextuality.

To emphasize this point, consider that, since the binary properties X, Y , and Z,
are only observed in pairs, each pair provides a context, as following.

Context 1: X and Y
Context 2: X and Z
Context 3: Y and Z

Since we know those variables are contextual, we model then using random variables
that are indexed by their context (see [22] for a more formal procedure). Thus, for
Context 1, we have X1 and Y1, for Context 2, X2 and Z2, and for Context 3, Y3

and Z3. It should now be clear that we have no contradiction, as the X1Y1 = −1
tells us nothing about the values of X2 or Y3. Contextuality is, in this point of view,
manifest by the fact that if we assign for the properties in different contexts the same
random variable – i.e. if we impose X1 = X2 , Y1 = Y3 , and Z2 = Z3 – we reach a
contradiction.

In the above example, we worked with perfect correlations. But we do not need to
have perfect correlations to reach contradictions. For example, consider the assumption
that the properties, X, Y , and Z, are not contextual. What this means is that, if we
were to observe two of those variables, we would be able to assign also a value to the
third one in a way that is consistent with the observations. In fact, if we construct a
data table with all the possible values, we get something like Table 1. A quick glance
at this table shows us that the sum XY +XZ + Y Z is never less than −2. However,
in the contextual example shown above, the sum of the joint pairwise expectations
E (XY)+E (XZ)+E (YZ) equals −3. This observation is at the core of the Suppes-
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Zanotti inequalities [44]

−2 ≤ E (XY) + E (XZ) + E (YZ) (3)

≤ 1 + 2Min {E (X) , E (Y) , E (Z)} ,

which are necessary and sufficient conditions for the non-contextuality of X, Y, and Z

when we assume them to be ±1-value random variables with zero expectation4.
A useful way to think about the non-contextual bounds of the random variables X,

Y, and Z is the following. Imagine that we set, for simplicity, the following constraints:
E (X) = E (Y) = E (Z) = 0, E (XY) = E (XZ) = E (YZ) = ε, and E (XYZ) = β.
Then, it is straightforward to compute that a joint probability exists if and only if ε and
β are within the bounds of a polytope on the plane (ε, β) with the following vertices:
(1, 0), (0,−1), (0, 1), and (−1/3, 0). Any correlations outside of this polytope will not
allow for a proper joint probability distribution.

It is reasonable at this point to ask whether there are some concrete examples
of contextuality. As we mentioned, one could argue that language is contextual [13].
The type of contextuality defined above, in fact, also exists in physics [1,30,39] and in
psychology [8]. Here we want to focus on examples from physics, which is what we will
do in Section 3.

3 Quanta and Context

The world of microscopic phenomena seems to be contextual. But what do physicists
mean when they say this? In this section we will investigate the idea of context in
physics, and its relationship to the intuitive idea of context expressed in Section 2.
Let us start with the famous Kochen-Specker theorem. To understand its origin, let us
examine how properties are described in quantum theory.

Quantum theory, in its most basic interpretation, is about how to compute out-
comes of experiments. This computation is done the following way. First, we start
with the fact that experiments, or, more precisely, measurements done within an ex-
periment, have numerical outcomes (as the length of a rod, or the temperature of an
object). Those possible outcomes are represented in quantum theory by real numbers
associated to vectors: the numbers are the value of the outcome itself, whereas the vec-
tor describes a system with exactly this outcome. We should not think of those vectors
as existing in the real three-dimensional space we live in, but in an abstract repre-
sentational space of physical systems; sometimes this space can be quite large, even
infinite-dimensional. The vector space in quantum theory is a Hilbert space, and it has
additional properties, such as completeness and metric, but these technical details are
not relevant for our purposes.

One of the simplest types of properties, either in quantum physics or outside of
it, are binary properties. Those are properties that are either true or false, such as,
informally, whether “this brand of ice cream is tasty,” “today is cold,” or “my car’s
battery is dead.” A physical property can be “the mass of a body is 1.2± 0.1 kg”, and
if the body’s actual mass lies within the given range, this property is true, otherwise
it is false.

Binary properties in quantum theory are represented by projection operators who
project any vector in the quantum abstract space to its associated vector. If, for a unit

4 If the expectations are not zero, then the right hand side of (3) needs to be modified.
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vector w and a projector P̂ , P̂w = w, then w is an eigenvector of P̂ with eigenvalue
1, and we can say that w has the property P associated to P̂ . For the same projector
P̂ , any unit vector v on the orthogonal space spanned by w will have the property
P̂v = 0, which means that it is an eigenvector of P̂ with eigenvalue 0, and we can
say that v does not have the property P . More interestingly, any linear combination

aw + bv, where a and b are complex numbers such that
√
|a|2 + |b|2 = 1, is not an

eigenvector of P̂ , and we cannot tell whether the system has property P or not if we
do not measure it. However, once we measure the system for property P , we will either
get that P is true or false, and if true the state of the system will “collapse” to w, and
if false to v.

For a more concrete example, imagine a four dimensional vector space C4. The set
of vectors vi, i = 1, 2, 3, 4 are a possible orthonormal basis for this space. Given a
vector vi, we can construct an operator P̂i, such that for any other vector w, P̂iw =
(w · vi)vi, where “w · vi” represents the inner product of w and vi. Another way to
write P̂i is by using the dual of vi, which leads to P̂i = vivi, where vi denotes the dual
of vi. In the quantum formalism, each vi corresponds to a property: if the physical
system we are describing is in a state represented by one of such vectors, then it has
the property associated to it, but not to the others. Again, we could also have a system
represented by any vector that is a normalized linear combination of the base vectors,
i.e.

∑
i civi. Such vectors do not have any of the associated properties to vi’s unless

we actually measure them, causing them to collapse into one of the basis vectors.
This brings us to an important point. Take the vector

∑
i civi. There is a projector

associated to this vector, and therefore a property as well. And since the space is four
dimensional, there are three other properties that are compatible with this vector,
such that if the system has its property, it will for sure not have the others. This new
projectors correspond to new axis for the splitting of the three dimensional subspace,
creating new properties. This idea is behind the proof of the Kochen-Specker theorem
[31], which we will present here in a form shown by Cabello et al. [7].

Let us again consider a four dimensional vector space. Following [7] notation, let
us consider the projectors P̂i as indexed with the subscript i corresponding to the 4
components of the vector in a given canonical basis. For example, P̂0,0,0,1 corresponds
to the projector operator associated to the vector (0, 0, 0, 1). Consider now the following
set of equations.

P̂0,0,0,1 + P̂0,0,1,0 + P̂1,1,0,0 + P̂1,−1,0,0 = 1, (4)

P̂0,0,0,1 + P̂0,1,0,0 + P̂1,0,1,0 + P̂1,0,−1,0 = 1, (5)

P̂1,−1,1,−1 + P̂1,−1,−1,1 + P̂1,1,0,0 + P̂0,0,1,1 = 1, (6)

P̂1,−1,1,−1 + P̂1,1,1,1 + P̂1,0,−1,0 + P̂0,1,0,−1 = 1, (7)

P̂0,0,1,0 + P̂0,1,0,0 + P̂1,0,0,1 + P̂1,0,0,−1 = 1, (8)

P̂1,−1,−1,1 + P̂1,1,1,1 + P̂1,0,0,−1 + P̂0,1,−1,0 = 1, (9)

P̂1,1,−1,1 + P̂1,1,1,−1 + P̂1,−1,0,0 + P̂0,0,1,1 = 1, (10)

P̂1,1,−1,1 + P̂−1,1,1,1 + P̂1,0,1,0 + P̂0,1,0,−1 = 1, (11)

P̂1,1,1,−1 + P̂−1,1,1,1 + P̂1,0,0,1 + P̂0,1,−1,0 = 1. (12)

Because all four projectors in each equation (4) to (12) are associated to orthogonal
vectors, it follows that the sum of the four projectors is the identity operator. In
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other words, projecting a vector into four orthogonal components in a four dimensional
space, gives us the component in each of those directions, and their sum gives us back
the vector we started with. This has a natural interpretation: since each projector
corresponds to a possible property of the system, only one of those properties can be
true at a time for each line.

If we now assume that quantum properties are not contextual for a quantum system,
e.g. the property associated to P̂0,0,0,1 is true both in (4) and (5), this leads to a
mathematical inconsistency. To see this, simply notice that every P̂i in (4)–(12) appears
twice. Since a property can be either 0 or 1, if follows that if we sum all the lines on
the left hand side of (4)–(12) we get an even number. However, if we add the right
hand side, we get the number 9, which is odd, a clear contradiction. As discussed in
Section 2, this contradiction occurs because we assume the properties are the same in
a different context. If we did not assume this, then we would not reach a contradiction.
So, quantum observables are contextual.

Let us end this section with a few remarks. First, notice that the contextuality of
quantum systems is a consequence of the algebra of observables, defined as projectors
in a vector space. This contextuality is state independent, in the sense that it does not
matter how you describe your physical system, it will be contextual. However, there
are sets of observables that exhibit contextuality only for certain physical systems pre-
pared in special ways [3,4]. This is particularly interesting because, for some especially
prepared systems, it is possible to have “contextuality at a distance”, in the sense that
the value of a property P may depend not only on the local choices of experimental
apparatuses, but also on the far away choices of measurement made by other experi-
menters within a time-like interval. This is why quantum mechanics is though of as a
non-local theory.

Our second point is that this type of contextuality seems not only to be unique
to quantum systems, but also to bring non-classically reproducible features that may
be responsible for the effectiveness of quantum computers [45,29]. For example, it is
possible to create a set of inequalities, similar to (3), that shows certain quantum
systems as contextual. For those very same systems, it is possible to simulate the
quantum correlations that lead to a violation of non-contextuality conditions, even in
a non-local way, with classical fields [43]. However, as [34] points out, such violations
are not the same as quantum, and they do not imply contextuality, as the quantum
systems are made of particles, and not of continuum fields.

Finally, we would like to emphasize that, even though quantum contextuality seems
to be special, there exists contextuality outside of quantum physics. As we remarked
in Section 2, contextuality is part of linguistics and pragmatics, psychology [8], and it
also seems to play an important role in explorations of consciousness [18,35].

In the next section we will investigate the concept of information, and then examine
it as it relates to contextuality. We will see that there are some problems associated
to contextuality and information that need to be addressed, and we propose a possible
route to approach this problem.

4 Measuring information

How does one define and measure information? There are many different ways to
measure information, but here we focus on the mathematical theory developed by
Claude Shannon [41]. Shannon started with the idea that the amount of information a
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signal carries is related to how surprising that signal is. The more surprising a signal,
the more information it carries, whereas the more expected and less surprising a signal
is, the less information it carries. For example, the statement “classes will be held as
scheduled tomorrow” is less informative than “classes are cancelled for tomorrow”, as
the latter is the unusual event, whereas the former is so common as to not require,
from most students’ points of view (and for most instructors), constant reminder and
reassurance. Formally, Shannon’s definition of information relies on probability theory,
considered in some interpretations as a measure of our rational expectations [25].

In his famous paper [41], Shannon used probabilities to define the average amount
of information. Let X be a source, whose output can be any of the events in a set of
N possibilities {x1, x2, . . . , xN}, and let p (xi) be the probability that xi is observed
(i.e. the less probable xi is, the more surprising it should be to see it). Shannon de-
fined the amount of information associated to an observation of xi as log2 p (xi), and
consequently the average amount of information of the source X would be

H (X) = −
N∑
i=1

p (xi) log2 p (xi) . (13)

H (X) is known as Shannon’s entropy of source X.
The use of log2 in (13) is related to the choice of using as the unit of information a

“yes-no” statement that can be coded by a single binary bit, 0 or 1. To understand the
intuition behind it, imagine the case where N = 2. In this case, we have X as either
x1 and x2, and all we needed is a bit to code which was observed. Now, in the case
where p(x1) = 0 and p (x2) = 1 (or, similarly, p(x1) = 1 and p (x2) = 0), there are no
surprises: we always get x2 (or x1). Since log2 1 = 0, it follows that in this case the
source’s information is zero. The more interesting case is when we have no idea which
one, x1 or x2, will occur, and the maximum information we can gain is when both are
equiprobable. For the equiprobable case, p (x1) = p (x2) = 1/2, and log2 1/2 = −1,
which implies that H (X) = 1. We can do the same reasoning for N = 4, N = 8,
N = 16, etc, and we will find that when all outcomes are equally probable the entropy
is 2, 3, and 4, respectively, which is exactly the number of bits that are required to
code each one of the outcomes. In other words, by using the information as log2 the
entropy in (13) gives us the average information in units of bits.

Shannon’s information is extremely useful in the cases mentioned above, as well as
for engineering applications. For example, one of Shannon’s main result was a theorem
showing that, for a source X with entropy H (X), there exists an optimal coding for
each outcome of the source that allows a representation of signals from X with H (X)
bits or more. This is a non-trivial result, and has profound consequences in signal
transmission, coding, and signal compression.

Despite its success, Shannon’s information cannot be used indiscriminately, without
some changes, for all types of collections of sources. To see this, let us consider the
case of two sources that are perfectly correlated, e.g. a source S1 whose outcomes are
isomorphic to the tossing of a coin, and another source S2 whose outcomes are exactly
the same as S1, i.e. S1 = S2. It is clear that if we look at S1, it will seem that its
entropy is 1, and the same for S2, and we can naively conclude that their collective
information is greater than 1. However, because they are correlated, this would be
a wrong conclusion: combined their information content is 1. So, for a collection of
sources the amount of information they generate does not depend on their individual
entropy, but on a different measure based on their joint probability. We shall examine
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this in more detail later, but we emphasize that there are collections of contextual
sources that do not have joint probabilities. This is the case, for instance, of some
entangled quantum sources [5,23].

So, let us consider now quantum systems. A property O of a system S is repre-
sented, in quantum theory, by a Hermitian operator Ô on a Hilbert space H, which
are generalizations of the projection operators discussed in Section 3. For this reason,
Hermitian operators are called observables. The state of the system itself is represented
by a vector in H or by a density operator, defined as an observable that is positive
semidefinite and has trace one. States that can be represented by vectors are called
pure states, whereas states that must be represented by a density operator (thus having
no equivalent in terms of a vector representation) are known as mixed states. For ex-
ample, for the normalized vector w ∈ H representing a pure state, the density operator
associated to it would be ρ̂w = wω, where ω is the dual to w. It is easy to prove that
a density operator ρ̂ is in a pure state if and only if it is idempotent, i.e. ρ̂ρ̂ = ρ̂, with
the implication following from ρ̂w.

While all states represented by a vector in H are pure states, the density operator
allows for other states that are not pure. Consider two linearly independent and nor-
malized vectors, w1 and w2. The density operator defined by ρ̂M = c1w1ω1+c2w2ω2

is not idempotent, but it is positive semidefinite with trace one when we choose
c1 + c2 = 1. As such, ρ̂M has an important physical interpretation: it is how we
represent the state of a physical system when we do not know whether it is in the pure
state w1 or w2, with ci being the probability of the system to be in state wi. In other
words, the density operator representation allows us to include an uncertainty about
the state of the system we are describing, and systems that are not in a pure state (i.e.
no uncertainty about the state) are said to have mixed states.

Thus, the density operator formalism provides a more general framework to describe
quantum systems than the vector formalism: it allows the computation of all quantities
available in the vector formalism, plus the same quantities where the state is not known,
in a way consistent with classical probability theory. As an example, imagine a three
dimensional Hilbert space where a possible basis for it is ei, i = 1, 2, 3. In the vector

formalism, the expectation
〈
P̂i

〉
=
∣∣∣P̂iw∣∣∣2 of the observable P̂i, where P̂i = eiεi is a

projector, and where εi is the dual of ei, give us the probability of observing a system
in the pure state w as having the property Pi. This same expectation can be computed
by using the expression

〈
P̂i

〉
= Tr

(
ρ̂wP̂i

)
. For the case where we have ρ̂M , as defined

above, the linearity of the trace gives us that
〈
P̂i

〉
= Tr

(
ρ̂M P̂i

)
= c1Tr

(
ρ̂1P̂i

)
+

c2Tr
(
ρ̂2P̂i

)
, or, equivalently,

〈
P̂i

〉
= c1

〈
P̂i

〉
1
+ c2

〈
P̂i

〉
2
. We can interpret this last

expression as saying that the expectation of Pi is the weighed expectation for each of
the two states composing the mixture. Similarly, for any observable Ô, it follows, by
the linearity of the trace, that

〈
Ô
〉
= Tr

(
ρ̂Ô
)
.

Let us now go back to the idea of measuring information for quantum systems. The
quantum system itself can be thought as being a source of information, equivalent to a
source X in classical communications theory. For a state ρ̂, its von Neumann entropy
[46] is defined as

S = −Tr (ρ̂ log ρ̂) . (14)

To see the relationship between (14) and (13), let us examine the case where we have
three binary properties, represented by a three-dimensional Hilbert space with an or-
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thonormal basis ei, i = 1, 2, 3. The observable P̂i = eiεi have binary outcomes 0 or 1.
If the state of the system is given by ρ̂ =

∑
i ciwiωi, it follows that S = −

∑
ci log ci,

which is exactly the same as the Shannon entropy formula if we remember that ci is a
proper probability for having the system with state wi.

Despite their similarities, there are important differences between quantum and
classical entropies. For instance, Shannon’s entropy was recovered for orthogonal pro-
jection measurements, but if ρ̂ was a proper mixture of non orthogonal projectors, this
conclusion would not follow. In this paper we will not explore in detail these differ-
ences, and the interested reader is referred to [40]. However, we will point out that
it is possible to prove an equivalent to Shannon’s coding theorem for von Neumann’s
entropy [40], showing that the similarities between those two measures of information
are not coincidental. In fact, in reference [28] the authors argued that for a general or-
thomodular lattice, which includes more restrictive algebras such as a Boolean one, the
natural measure of informational content is von Neumann’s entropy, with Shannon’s
entropy emerging as the measure for classical-like situations.

In this section we presented two ways of measuring information: Shannon and von
Neumann entropies. We also discussed the similarities between then, and how we can
think of Shannon as a particular case of von Neumann in special cases. In the next
section we will explore the concept of context-dependent properties, and how they
create a problem for descriptions using classical probability theory. We will use the
example in the next section to argue about issues on the definition of information for
contextual systems.

5 Information and Context

Let us examine the difficulty of defining information for contextual random variables
by looking at some examples. Consider two random variables, X and Y, valued as
either +1 or −1 , and both having equal probability of yielding as outcomes either
+1 or −1. In other words, each of them looks random. If we were to use Shannon’s
entropy [41] to compute the amount of information H for each one of them separately,
we would find that

H (X) = −px log px − px log px (15)

= −1

2
log

1

2
− 1

2
log

1

2
=

H (Y) = 1.

In (15) we are using the simplifying notation that px = p (X = 1), px = p (X = −1),
where the line over x means a negative outcome and no line means a positive outcome.
The values of H in (15) are telling us that each source has one bit of information,
and we might want to conclude that both X and Y would have, combined, two bits of
information.

However, the conclusion that X and Y carries two bits of information may be
incorrect. This is because examining each source separately could be misleading. If we
have two sources, X and Y, and they are independent, then the information carried by
both sources is simply the sum of each of the sources. But if they are not independent,
then their combined information is smaller. For example, if X and Y were perfectly
correlated, i.e. E (XY) = 1, then knowingX implies knowingY and vice versa, and the
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Fig. 1 Joint entropy of X and Y as a function of the correlation α.

information contained in the pair would not be two bits, but instead one bit, because
of the redundancy. The same conclusion would be arrived if X and Y were perfectly
anti-correlated, i.e. E (XY) = −1.

But how can we compute the amount of information from two sources that are
neither independent nor perfectly correlated? To do so, we can consider X and Y as
a pair, and use their joint probabilities. In this case, instead of using as outcomes
−1 and 1 for each variable separately, we can use all possible outcomes for the pairs,
namely xy, xy, xy, and xy (following the notation introduced above). Assuming that
E (XY) = α, it follows that

pxy + pxy + pxy + pxy = 1, (16)

pxy + pxy − pxy − pxy = 0, (17)

pxy − pxy + pxy − pxy = 0, (18)

and
pxy − pxy − pxy + pxy = α. (19)

Equation (16) is simply the statement that the probabilities of all possible events needs
to sum to one (Axiom K1 in Section 2). Equations (17) and (18) are a consequence of
the zero expectations for X and Y, since each outcome +1 and −1 are equiprobable,
whereas (19) is a consequence of E (XY) = α. The solution to (16)–(19) is

pxy = pxy =
1

4
(1 + α) , (20)

pxy = pxy =
1

4
(1− α) , (21)

and is non-negative for all values of −1 ≤ α ≤ 1. We can use ((20)) and ((21)) to
compute the Shannon entropy of those two variables, resulting in

H (X,Y) = −1

4
(1 + α) log

(
1

4
(1 + α)

)
− 1

4
(1− α) log

(
1

4
(1− α)

)
.

The behavior of H (X,Y) is shown in Figure 1. From Figure 1, we can see that if the
correlation α is zero, we get maximum information, as expected, whereas the minimum
information is when X and Y are perfectly correlated (α = 1) or anti-correlated
(α = −1).
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Let us now examine the case where we have three±1-valued random variablesX,Y,
and Z with zero expectation and with correlations E (XY) = E (XZ) = E (YZ) = ε.
The corresponding equations set by the expectations are

pxyz + pxyz + pxyz + pxyz + pxyz + pxyz + pxyz + pxyz = 1, (22)

pxyz + pxyz + pxyz − pxyz − pxyz − pxyz + pxyz − pxyz = 0, (23)

pxyz + pxyz − pxyz + pxyz − pxyz + pxyz − pxyz − pxyz = 0, (24)

pxyz − pxyz + pxyz + pxyz + pxyz − pxyz − pxyz − pxyz = 0, (25)

pxyz + pxyz − pxyz − pxyz + pxyz − pxyz − pxyz + pxyz = ε, (26)

pxyz − pxyz + pxyz − pxyz − pxyz + pxyz − pxyz + pxyz = ε, (27)

pxyz − pxyz − pxyz + pxyz − pxyz − pxyz + pxyz + pxyz = ε, (28)

We now have seven equations set by the correlation and eight variables, which makes
this system of equations underdetermined. An additional equation can be set, without
loss of generality, by fixing the (sometimes unobservable) triple moment E (XYZ) = β,
−1 ≤ β ≤ 1, which leads to the extra equation

pxyz − pxyz − pxyz − pxyz + pxyz + pxyz + pxyz − pxyz = ε. (29)

The solution to equations (22)–(29) is

pxyz =
1

8
(1 + β + 3ε) , pxyz = pxyz = pxyz =

1

8
(1− β − 3ε) (30)

pxyz = pxyz = pxyz =
1

8
(1 + β − 3ε) , pxyz =

1

8
(1− β + 3ε) , (31)

and we can see that some of the p’s may be negative for certain values of ε and β. The
non-negative solutions correspond to non-contextual cases, whereas negative solutions
are contextual.

Before we compute the entropy based on the joint probability for X, Y, and Z, it
is useful to consider some special cases. First, let us examine the perfectly correlated
system. In this case, ε = 1, and knowing one of the random variables, sayX, is sufficient
to completely determine all other variables. Therefore, we should expect the entropy
for this system to be one bit. The other interesting case is when ε = 0, and X, Y,
and Z are uncorrelated. At first, it may seem that, because the three variables are
uncorrelated, the total entropy for X, Y, and Z should be three. However, the entropy
also depends on the triple moment. For example, if E (XYZ) = ±1, even though the
variables are pairwise uncorrelated, there is a global correlation between them that
reduces the amount of information from three to two bits, since knowing X and Y

gives us Z. But if, in addition to the pairwise correlations, we have E (XYZ) = 0,
then we need three bits5. The third interesting example is when ε = −1/3, the lower
bound of (3). For this case, from (30) and (31) it follows that non-negative solutions
exist only if β = 0, i.e. there is no global correlation, and the triple moment does not
give us any extra information. Given that the correlations allow us to explain at most

5 We point out that a system X, Y, and Z of random variables where the pairwise expecta-
tions are zero and the triple moment is not can be physically realized in quantum mechanics
[15].
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H

ε

Fig. 2 Entropy H (X,Y,Z) for E (XY) = E (XZ) = E (YZ) = ε and E (XYZ) = 0 as a
function of ε. The maximum of 3 bits occurs when ε = 0.

1/3 of the other variables, it is reasonable to assume that the information should be
more than two bits, but not as high as 3, when all variables are uncorrelated.

A quick examination of Shannon’s entropy applied to the probabilities in (30) and
(31) shows that our conclusions for ε = 1, ε = 0 and β = 0, and ε = −1/3 are
corroborated, as the entropy for ε = 1 is 1, for ε = β = 0 it hits a maximum at 3 bits,
and for ε = −1/3 is approximately 2.6 bits. A plot of the entropy H as a function of ε
(for the maximal entropy case when β = 0) is shown in Figure 2. Figure 2 shows the
informational content of X, Y, and Z only for the interval −1/3 ≤ ε ≤ 1, as outside
of this interval equations (22)–(29) have negative solutions, and Shannon’s entropy is
not defined. But just because we cannot apply Shannon’s entropy, it does not mean
that X, Y, and Z have no informational content outside of the probability polytope.
It just means that Shannon’s entropy, as currently defined, cannot measure it.

How can we approach this problem? First, let us examine the case when ε = −1. A
casual analysis could conclude, as in the perfectly correlated example, that the amount
of information should be just one bit: if we know X we know Y and Z. However, as we
saw before X in the context of Y cannot be the same as in the context of Z. So, because
of this contextuality, the information content should be at least two bits, perhaps more.

To investigate this in more detail, let us imagine that, instead of X, Y, and Z, due
to the contextuality we have the following random variables: XY, XZ, YX, YZ, ZX,
and ZY. The observed expectations are E (XY) = E (XZ) = E (YX) = E (YZ) =
E (ZX) = E (ZY) = 0 and E (XYYX) = E (XZZX) = E (YZZY) = −1. We
can see that the index for each variable indicates their context. For example, XY

is the variable X in the context of being observed with Y. So, we moved from an
initial system with three properties to a new system with six. Furthermore, because we
have six variables, we would need 26 = 64 equations to uniquely determine the joint
probability distribution for those variables. But such equations are unavailable, as we
only observe the marginals given by the individual and pairwise expectations.

Because of the correlations, we can reduce the XY, XZ, YX, YZ, ZX, and ZY

system of random variables from six to three. This suggests that the informational
content would be three bits. However, as in the case of three variables, higher moments
are not defined. If we impose different values of higher moments, ones that are not
consistent with the observed marginals, we could imagine an expansion to the necessary
number of random variables, thus increasing the amount of information of the system
even beyond 3 bits.
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In other words, if we were to draw from the case of two variables, it is not unrea-
sonable to expect that the maximum value for the entropy would be achieved when the
higher moments were less correlated. Thus, highly pair-wise correlated sources that are
contextual may have more information than non-contextual correlated ones. In fact, a
highly correlated contextual set of sources can have more information than the same
number of sources when completely uncorrelated.

5.1 Information and Negative Probabilities

We now end this discussion with a possible description of contextual information in
terms of non-standard probabilities. For the above three-variable example, we may
always construct a joint pseudo-probability distribution that is consistent with the ob-
served expectations. This can be done either with upper and lower probabilities (as
in [42,16,27]) or with negative probabilities (see [10,14,11]). Here we will use nega-
tive probabilities, as they provide a more convenient computational tool than upper
probabilities, in particular for quantum physics (see [36,37]).

“Negative probabilities” were introduced by Dirac in his famous Bakerian Lectures
[19], in the context of quantum field theory. Though the name negative probabilities
may be misleading, as only some probabilities of atomic events may be negative, but
no observable probabilities may be negative, this terminology is widely used in physics.

Let (Ω,F , p∗) be an extended probability space, defined as satisfying axioms K1
and K2 (see Section (2)) but with p∗ : F → R. We call p∗ negative probabilities, as it
satisfies the same axioms as Kolmogorov probabilities, except that the non-negativity
requirement is relaxed, which means that probabilities measures of the atomic elements
can take negative values. A more formal definition of negative probabilities, one that
takes into account only the observable marginal probabilities, can be found in reference
[11], and the interested reader is referred to it.

As above mentioned, the term, negative probabilities, may be misleading, for the
following reasons. First, as mentioned, negative probabilities are not necessarily neg-
ative. It is usually the case that, for all atomic elements in Ω, some probabilities are
non-negative and others are negative. A quick examination of ((30))-((31)) shows this
to be the case for ε = −1. Second, it is never possible to observe a negative probability.
Though for ωi ∈ Ω it is possible to have p∗ (ωi) < 0, the observable elements of F ,
corresponding to the experimental random variables, never have negative probabilities.
In fact, the Boolean sub-algebras of observables are always compatible with a proper
probability measure. So, even though the term used in physics is negative probabilities,
it may be more appropriate to call them signed probabilities, as those mathematical
objects are known in measure theory [26]. Here we will follow the physics tradition and
call p∗ negative probabilities.

Let us use negative probabilities to define an extension of Shannon’s entropy for
contextual systems. We start with the extended entropy SNP for p∗ as given by the
following expression6,

SNP = −
∑
ωi∈Ω

∣∣p∗ (ωi)∣∣ log2 ∣∣p∗ (ωi)∣∣ . (32)

6 The idea of using something similar to ((32)) was first suggested informally to the author
by Patrick Suppes on the context of quantum information, but he did not pursue this idea.
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Fig. 3 Surface plot of SNP as a function of ε (horizontal axis) and β (vertical axis). Lighter
regions correspond to less entropy, whereas darker regions to more entropy.

The idea of using the absolute value of the negative probabilities comes from using the
expression A =

∑
ωi∈Ω |p

∗ (ωi)| as a measure of how contextual a probabilistic system
is [10]. If A = 1, this means that there is no contextuality, since A =

∑
ωi∈Ω p

∗ (ωi),
which implies that p∗’s are non-negative. However, if A > 1, then the system is contex-
tual, and the further A departs from one, the stronger the contextual relations between
the variables. So, it is not unreasonable to use |p∗ (ωi)| as a measure of how “surprising”
some outcome is, given its close connections to proper probabilities.

From equation ((32)) we can see that SNP is exactly the same as Shannon’s en-
tropy for cases when p∗ is non-negative. In other words, when a proper joint probability
distribution exists, SNP = H. It should also be clear that, whenever we have contextu-
ality, the quantity

∑
|p∗ (ωi)| is greater than one, which means that the entropy may

increase, as expected from our examples.
In Figure (3) we show a graph of three ±1-valued random variables X, Y, and Z

with zero expectation, correlations E (XY) = E (XZ) = E (YZ) = ε, and triple mo-
ment E (XYZ) = β. There are several characteristics of this graph that are interesting.
First, we can clearly see the non-contextual polytope as the quadrilateral defined by the
vertices (−1

3 , 0), (0, 1), (0,−1), (1, 0), as the boundary has lower entropy, as expected.
We can also see from the figure that the minimum value for the entropy is 1, which
occurs when ε = 1 and β = 0, as discussed above. Still within the classical bounds,
the region shown has maximum entropy when ε = β = 0, consistent with our analysis
above. More interestingly, as can be seen from Figure (4), the maximum entropy is
reached when ε = −1 and β = 0, as was predicted by our random variable argument.
So, it seems that the entropy with negative probabilities, as defined by ((32)), may
provide a consistent measure of informational content for contextual sources.

6 Final Remarks

In this paper we discussed issues related to measuring the informational content of
contextual sources. This is an important subject, as it has been argued, for example,
that contextuality is a key resource for quantum computation [45,29]. But, more inter-
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Fig. 4 Cross section of SNP as a function of ε and for β = 0. We see a local maxima at ε = 0
and a global maxima at ε = −1, where SNP = 4.

estingly, contextuality is a key concept in quantum physics, and perhaps what makes
quantum mechanics different from classical mechanics [6].

In our discussion, we provided a simple example of a contextual set of sources, and
we showed that this set of sources may provide more information when it is contextual
then when it is not. For instance, when two of the three sources are perfectly anti-
correlated, this correlation reduces their informational content to at most two bits, if
they are non-contextual. However, if they are contextual, the informational content
of the three variables may be as high as three bits. More interestingly, the maximum
informational content that three non-contextual sources can have is 3 bits, whereas,
as we argued above, contextual sources can have upwards of 4 bits. In other words,
contextuality leads to more information. This result should not be surprising. If we
think about the meaning of contextuality, it is exactly that a source depends on the
context; what we thought were the same sources in two different contexts (or more)
were actually two different (and perhaps uncorrelated) sources.

We also showed that we can provide a measure of informational content by ex-
tending Shannon’s entropy to negative probabilities. This new entropy reduces to the
classical Shannon entropy for systems with a proper joint probability distribution,
but can be used for regions outside of the classical probability polytope. Our analy-
sis showed that the entropy SNP based on negative probabilities give results that are
consistent with a simplified contextuality-by-default description of the sources.

We believe our result unveils interesting applications of negative probabilities to
the study of contextual information, not only of quantum information. Furthermore,
it opens up several questions that are worth exploring. For example, if SNP is a good
representation of the informational content of a system, then it should be possible to
prove a Shannon coding-type theorem for negative probabilities. Also, it would be in-
teresting to explore the relationship between SNP and von Neumann’s entropy, which
we know is related to Shannon’s, but can also be applied to certain contextual systems.
Finally, as we mentioned, von Neumann’s entropy cannot be used in situations such
as our three random-variable example, as in a Hilbert space description three pairwise
commuting observables have a common base, and therefore a joint probability distri-
bution. Therefore, it is an open question whether SNP can be used for applications
outside of physics, such as in psychology, linguistics analysis, or consciousness stud-
ies. For example, in consciousness studies a popular approach, known as Integrated
Information Theory [38], faces issues with contextuality [12,35].
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We emphasize that negative probabilities do not provide the most general treatment
for measuring information of contextual sources. For example, negative probabilities
require that random variables in different contexts are consistently connected (what is
called in physics “no-signaling”) [36]. A more general approach should probably come
from an expanded set of contextual random variables, as it is proposed in Contextu-
ality by Default (CbD). CbD can deal with random variables whose mean values vary
from context to context (i.e. they are inconsistently connected) [33]. However, because
of the extra variables, it is not clear how to deal with information for contextual vari-
ables within this approach, and probably a strategy using CbD will need to impose
symmetries or utilize minimization principles. Accordingly, negative probabilities re-
duce significantly the number of required equations for describing contextual sources,
as compared to CbD, thus imposing lots of additional symmetries that may not be
satisfied by certain systems. The connection between information with negative proba-
bilities and information using CbD, as well as the limitations of negative probabilities,
are topics that needs to be explored further.
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