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Abstract In this paper we study in details a system of two weakly coupled harmonic
oscillators from the point of view of Bohm’s interpretation of quantum mechanics.
This system may be viewed as a simple model for the interaction between a photon
and a photodetector. We obtain exact solutions for the general case. We then compute
approximate solutions for the case where one oscillator is initially in its first excited
state (a single photon) reaching the other oscillator in its ground state (the photo-
detector). The approximate solutions represent the state of both oscillators after the
interaction, which is not an eigenstate of the individual hamiltonians for each oscil-
lator, and therefore the energies for each oscillator do not exist in the Copenhagen
interpretation of Quantum Mechanics. We use the approximate solutions that we
obtained to compute Bohmian trajectories and to study the energy transfer between
the oscillators. We conclude that, even using the Bohmian view, the energy of each
individual oscillator is not well defined, as the nonlocal quantum potential is not
negligible even after the coupling is turned off.
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1 Introduction

The discussions about the incompleteness of the wavefunction to describe physical
processes dates back to the beginning of quantum mechanics itself. This discussion
is closely related to the possibility of describing quantum mechanical systems from
an underlying realistic model. In 1952, David Bohm showed that such a realistic
model was possible. However, Bohm’s theory had the problem of being nonlocal
(Bohm, 1952a, b). In 1963 John Bell showed that in order to obtain the same results
predicted by quantum mechanics, any realistic theory would have to be nonlocal
(Suppes, 2002). Bell’s result and the failure of using the Copenhagen interpretation
of quantum mechanics to some particular situations, as in for example Quantum
Cosmology, lead to a raised interest in Bohm’s interpretation and in nonlocal realistic
theories (de Barros & Pinto-Neto, 1997).

The subject of reallity and nonlocality has been an interest of Patrick Suppes for
quite a while (Suppes, 2002), in particular for the photon. In fact, one of the authors
of this paper co-published with him a series of papers that layed down the founda-
tional analysis of realistic and local model of photons that could explain the double
slit experiment, the EPR experiment and other phenomena (Suppes & de Barros,
1994a, b; Suppes, Sant’ Anna, & de Barros, 1996; Suppes, de Barros, & Sant’ Anna,
1996). The problem with the Suppes and de Barros model was that it did not have
a consistent theory of photon-counting for single photons, and therefore could not
explain the non-locality of single photons and the GHZ experiment, for example.

In this paper we try to pursue, within Bohm’s model, the question: what is a pho-
ton? We do not follow the standard Bohmian interpretation for bosonic fields (as
can be found in Holland (1993)). Instead, we use the simple interpretation that “a
photon is what a photodetector detects”. One may think of a photodetection as a
transfer of energy from a quantized mode of the electromagnetic field (the photon)
to an atom in its ground state (the quantum photodetector). Therefore, to study this
photodetection we will focus on the process of transfer of energy from the photon to
the photodetector.

To study the exchange of energy in details, we have to choose between two differ-
ent and simple models of a photo-detector: a photo-detector with discrete or con-
tinuous band (Cohen-Tannoudji, 1988). For the purpose of simplicity, we will choose
the former. However, since we are only interested in the aspects of energy transfer
between the two systems, we will make an even further simplification and consider
that the photon and the detector will both be described by a single harmonic oscillator.
Furthermore, during some time !Tint, we will assume that a linear interaction exists
between the two oscillators, and that this interaction is weak. This detection model
is known as an indirect measurement (Braginsky & Khalili, 1992), and has been the
subject of intense research lately as it is directly connected to quantum nondemolition
experiments. As we will see, this “toy model” will allow us to capture some important
features of the entanglement between the two systems.

This paper is organized in the following way. In Sect. 2 we will quickly review the
interaction between two harmonic oscillators for the classical case. This will allow us
to understand how the transfer of energy happens in such case. We then compute
the exact solutions for the quantum mechanical system with interaction (Sect. 3). In
Sect. 4 we apply the results of Sect. 3 to a specific case of exchange of a single quantum
of energy and analyze its outcomes. In Sect. 5 we use Bohm’s theory to interpret the
results obtained. The conclusions are in Sect. 6.
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2 The classical case

Before we go into the details of the quantum mechanical examples, let us begin by
analyzing the classical system of two one-dimensional coupled harmonic oscillators
with the same mass m, elastic constant k, and coupling constant λ, as shown in Fig. 1.
The Hamiltonian for this system is given by (Goldstein, 1980)

H = 1
2m

(
P2

1 + P2
2

)
+ 1

2
k

(
(X1 + d)2 + (X2 − d)2

)

+ 1
2
λ (X1 − X2 + 2d)2 . (1)

To simplify the equations of motion and eliminate the undesirable constant d we can
make the canonical transformation

x1 = X1 + d,
x2 = X2 − d,
p1 = P1,
p2 = P2.

With the new variables Eq. 1 rewrites to

H = 1
2m

(
p2

1 + p2
2

)
+ 1

2
k

(
x2

1 + x2
2

)
+ 1

2
λ (x1 − x2)

2 . (2)

The Hamiltonian equations of motion are

ṗ1 = − ∂H
∂x1

= −kx1 − λ (x1 − x2) ,

ẋ1 = ∂H
∂p1

= p1

m
,

ṗ2 = − ∂H
∂x2

= −kx2 + λ (x1 − x2) ,

ẋ2 = ∂H
∂p2

= p2

m
,

yielding

m (ẍ1 + ẍ2) = −k (x1 + x2) , (3)

m m

k kλ

x-d dO

Fig. 1 Identical harmonic oscillators coupled by a spring of constant λ
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and

m (ẍ1 − ẍ2) = − (k + 2λ) (x1 − x2) . (4)

The general solutions to Eqs. 3 and 4 are

√
2ξ+ = x1 + x2 = A cos

(√
k
m

t + θ

)

,

√
2ξ− = x1 − x2 = A′ cos

(√
k + 2λ

m
t + θ ′

)

,

(ξ+ and ξ− are the normal coordinates of the coupled harmonic oscillators) or,
equivalently,

x1 = A
2

cos

(√
k
m

t + θ

)

+ A′

2
cos

(√
k + 2λ

m
t + θ ′

)

x2 = A
2

cos

(√
k
m

t + θ

)

− A′

2
cos

(√
k + 2λ

m
t + θ ′

)

.

We will assume that the two oscillators are initially at rest the first one in its equilib-
rium position (null initial energy, Ei

1 = 0), while the second one is dislocated from its
equilibrium position by a distance D (initial energy given by Ei

2 = (1/2) kD2):

ẋ1(0) = ẋ2(0) = 0,
x1(0) = 0,
x2(0) = D.

The integration constants then read

θ = θ ′ = 0,
A = D,

A′ = −D,

yielding

x1(t) = D
2

[
cos(ωt) − cos

(
ω′t

)]
(5)

x2(t) = D
2

[
cos (ωt) + cos

(
ω′t

)]
. (6)

where we defined ω ≡
√

k/m and ω′ ≡ ω
√

1 + ε, with ε = 2λ/k. Equations 5 and 6
can be written in the following suggestive way.

x1(t) = −D sin
[

(ω − ω′)t
2

]
sin

[
(ω + ω′)t

2

]
, (7)

x2(t) = D cos
[

(ω − ω′)t
2

]
cos

[
(ω + ω′)t

2

]
. (8)
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We will now assume that the interaction constant λ is weak when compared to the
elastic constant k, ε ≪ 1. Then, we can expand ω′ around ε = 0, yielding

ω′ =
√

k + 2λ
m

= ω
√

1 + ε = ω + 2δω (9)

with

δω ≡ ω′ − ω

2
≈ λ

2
√

km
. (10)

Defining

ω̄ ≡ ω′ + ω

2
= ω + δω, (11)

the solutions can now be written as

x1(t) = D sin (δω t) sin [ω̄ t], (12)
x2(t) = D cos(δω t) cos[ω̄ t], (13)

where the dependence on λ of Eqs. 12 and 13 are present in δω and ω̄ through
Eqs. 10 and 11.

The movement of both particles is periodic, with two characteristic frequencies δω
and ω̄. The frequencies δω and ω̄ are known as the normal modes of vibration, with ω̄
being called the higher normal mode and δω the lower normal mode. Both movements
have period τ = 2π/ω̄ and are modulated by a variable amplitude with much greater
period given by τ = 2π/δω. They are π/2 out of phase. We can compute the energy of
the two particles, E1 = p2

1/2m + kx2
1/2 and E2 = p2

2/2m + kx2
2/2. They are

E1(t) = kD2

2
sin 2(δω t)

[
1 + 4

δω

ω̄
cos2(ω̄ t)

]
, (14)

E2(t) = kD2

2
cos2(δω t)

[
1 + 4

δω

ω̄
sin 2(ω̄ t)

]
. (15)

Due to the coupling, the particles exchange energy between themselves periodically,
with period τ = 2π/δω. Each of the oscillators achieve its minimum energy value
when the other have its maximum value. The maximum value of the energy can be a
little bit bigger then kD2/2. This may seem odd, but we must remember that the extra
energy is due to the interaction energy λ(x1 − x2)

2/2 = kε(x1 − x2)
2/4. It is easy to

check that if we add this interaction energy to the sum E1 + E2 we obtain the total
energy of the system

ET = kD2

2

(
1 + 2

δω

ω̄

)
+ O(δω2), (16)

a value that is constant for the whole movement, as we should expect. For more details,
see French (1971) and Symon (1971), where this system and generalizations of it are
analyzed with detail. Of course, as the Hamiltonian is time independent, energy is
always conserved.

It is also interesting to note that the total energy of the system depends on the
coupling constant, as shown by Eq. 16. A quick analysis of the origin of the “extra”
energy shows us that this happens because of the initial conditions chosen. The initial
conditions from which we obtained Eq. 16 have the particle represented by x2 off
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its equilibrium position, whereas the other particle is at its equilibrium position, with
both particles having zero kinetic energy. This initial condition obviously imply that
the coupling spring, with elastic coefficient λ, is also stretched from its equilibrium
position, and therefore has nonzero potential energy at t = 0. If we use other initial
conditions, the “extra” energy due to coupling does not appear. For example, we can
choose both particles at an initial position where all spring have no potential energy
(in our case, x1 = x2 = 0) and one of the particles has some kinetic energy while the
other particle has zero kinetic energy. With this set of initial conditions, the energy
transfer from one particle to the other is the same as before, but no coupling energy
is present in the total energy.

3 Quantum evolution: exact solutions

Now we want to study the quantized version of the resonant spinless one-dimensional
coupled harmonic oscillator presented in the previous section. First we note that the
total Hilbert space H = H1 ⊗ H2 is spanned by H1 and H2, the Hilbert spaces for
particles 1 and 2, respectively. For example, the two canonical variables describing
particle 1 are

X̂1, P̂1 ∈ H1,

with

[X̂1, P̂1] = i–h1̂,

and are therefore represented as

X̂1 ⊗ 1̂2, P̂1 ⊗ 1̂2 ∈ H,

where 1̂2 ∈ H2 is the identity operator. In this way, the Hamiltonian operator for
particle 1, is written as

Ĥ1 = 1
2m

(
P̂1 ⊗ 1̂

)2
+ 1

2
k

(
X̂1 ⊗ 1̂ + d1̂ ⊗ 1̂

)2
.

For shortness of notation, we will drop the tensor product and keep in mind that
operators regarding particle 1 act on H1 whereas operators regarding particle 2 act
on H2.

With the simplified notation, the total quantum Hamiltonian operator for the two
oscillators plus the interaction term is

Ĥ = Ĥ1 + Ĥ2 + ĤI

= 1
2m

P̂2
1 + 1

2
k

(
X̂1 + d̂

)2
+ 1

2m
P̂2

2 + 1
2

k
(

X̂2 − d̂
)2

+ 1
2
λ

(
X̂1 − X̂2 + 2d̂

)2
. (17)
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We can now make the following change of variables, similar to the classical case:

x̂1 = X̂1 + d̂,
x̂2 = X̂2 − d̂,
p̂1 = P̂1,
p̂2 = P̂2.

This change of variables obviously keeps the commutation relations between
momenta and positions. Hence, in the coordinate representation we have the
Hamiltonian operator

Ĥ = −
–h2

2m

(
∂2

∂x2
1

+ ∂2

∂x2
2

)

+ 1
2

k
(

x2
1 + x2

2

)
+ 1

2
λ (x1 − x2)

2 . (18)

In analogy to the classical case, we work with the normal coordinates

ξ+ = 1√
2

(x1 + x2) , (19)

ξ− = 1√
2

(x1 − x2) . (20)

This change of variables has Jacobian one, and does not change the normalization of
wavefunctions.

With the normal coordinates, the Hamiltonian is

Ĥ = −
–h2

2m

(
∂2

∂ξ2
+

+ ∂2

∂ξ2
−

)

+ 1
2

kξ2
+ + 1

2
(k + 2λ) ξ2

−, (21)

and is now separable, i.e.,

Ĥ = Ĥ+ + Ĥ−, (22)

where

Ĥ+ = −
–h2

2m
∂2

∂ξ2
+

+ 1
2

kξ2
+, (23)

Ĥ− = −
–h2

2m
∂2

∂ξ2
−

+ 1
2

(k + 2λ) ξ2
−. (24)

Equations 23 and 24 are the well known Hamiltonians for one-dimensional uncoupled
harmonic oscillator with frequencies

√
k/m and

√
(k + 2λ) /m, respectively.

The Schroedinger equation for the system is

Ĥψ(ξ+, ξ−, t) = i–h
∂

∂t
ψ(ξ+, ξ−, t). (25)

To solve Eq. 25 we need to find its eigenfunctions and eigenvalues since they form
a basis for the Hilbert space. The general solution can be written as a superposition
of the eigenfunctions. Hence, we need to find the solutions to the time independent
Schroedinger equation

Ĥψ (l)(ξ+, ξ−) = Elψ
(l)(ξ+, ξ−), (26)
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where l is an index (perhaps a collective index for both oscillators) for the energy to be
determined. Since Ĥ is separable, we can write Eq. 26 as two independent eigenvalue
equations

Ĥ+φ
(n)
+ (ξ+) = Enφ

(n)
+ (ξ+) (27)

and

Ĥ−φ
(n′)
− (ξ−) = E′

n′φ
(n′)
− (ξ−), (28)

where we define

ψ (l)(ξ+, ξ−) = φ
(n)
+ (ξ+)φ

(n′)
− (ξ−), (29)

and

El = En + E′
n′ .

Clearly, l is an index that depends on both n and n′, and for that reason we will write
ψ (n,n′)(ξ+, ξ−) instead of ψ (l)(ξ+, ξ−). The eigenfunctions of Eqs. 27 and 28 are well
known to be

φ
(n)
+ (ξ+) =

( √
mk

π–h22n(n!)2

)1/4

Hn

⎡

⎣
(√

mk
–h

)1/2

ξ+

⎤

⎦ e
−

√
mkξ2+
2–h , (30)

φ
(n′)
− (ξ−) =

(√
m (k + 2λ)
π–h22n′

(n′!)2

)1/4

× Hn′

[(√
m (k + 2λ)

–h

)1/2

ξ−

]

e
−

√
m(k+2λ)ξ2−

2–h , (31)

and its corresponding eigenvalues are

En = –h

√
k
m

(
n + 1

2

)
(32)

and

E′
n′ = –h

√
k + 2λ

m

(
n′ + 1

2

)
, (33)

where Hn are the Hermite polynomials of order n (Bohm, 1989).
The solution to the time dependent Schroedinger equation (25) is obtained applying

the time evolution operator

Û(t, t0) = exp
(
−iĤ(t − t0)/–h

)

on ψ(ξ+, ξ−, t0). Since ψ (n,n′)(ξ+, ξ−) = φ
(n)
+ (ξ+)φ

(n′)
− (ξ−) form a basis for H, we have

ψ(ξ+, ξ−, t0) =
∞∑

n,n′=0

Cn,n′ψ (n,n′)(ξ+, ξ−),

Cn,n′ =
∫ ∞

−∞

∫ ∞

−∞
φ

(n)
+ (ξ+)φ

(n′)
− (ξ−)ψ(ξ+, ξ−, t0) dξ+dξ−, (34)
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and we used the reality of φ(n)
+ (ξ+)φ

(n′)
− (ξ−) in the expression for Cn,n′ . Then,

ψ(ξ+, ξ−, t) = Û(t, t0)ψ(ξ+, ξ−, 0)

=
∞∑

n,n′=0

Cn,n′e−iEnt/–hφ(n)
+ (ξ+)e−iE′

n′ t/
–hφ(n′)

− (ξ−)

=
∞∑

n,n′=0

Cn,n′e−i
(

En+E′
n′

)
t/–h
ψ (n,n′)(ξ+, ξ−),

where e−iĤt/–h = e−iĤ+t/–he−iĤ−t/–h since [Ĥ+, Ĥ−] = 0 and we assumed, for simplicity,
that t0 = 0.

We can now finally go back to the original coordinate system x1 and x2, and the
explicit form for the general solution in this coordinate system is

ψ(x1, x2, t) =
√

m
π–h

∞∑

n,n′=0

Cn,n′

(
ω

22n(n!)2

)1/4 (
ω′

22n′
(n′!)2

)1/4

×Hn

[(mω
2–h

)1/2
(x1 + x2)

]
Hn′

[(
mω′

2–h

)1/2

(x1 − x2)

]

× exp
{
− m

4–h

[
ω (x1 + x2)

2 + ω′ (x1 − x2)
2
]}

× exp
{
−i

[(
n + 1

2

)
ω +

(
n′ + 1

2

)
ω′

]
t
}

. (35)

where we defined, as before, ω =
√

k/m and ω′ =
√

k + 2λ/m. The wavefunction
(35) thus describe spinless one-dimensional coupled harmonic oscillators with no
approximation.

4 A simple example

We saw in the classical case that two coupled oscillators can transfer energy to each
other. This was clear with the example where at t = 0 one oscillator had zero mechan-
ical energy while the other one had nonzero potential energy. As time passes, the
mechanical energy of the former is transferred to the latter. It is interesting to study
the quantum mechanical analog to this case, i.e., when one quantum oscillator is in an
excited state and the other is in its fundamental state.

We will consider as the initial wavefunction the following

ψ(x1, x2, 0) =
√

2
π

(√
mk
–h

)

x2 exp

[

−
√

mk
(
x2

1 + x2
2
)

2–h

]

. (36)

The wavefunction (36) is an eigenstate of the Hamiltonian

Ĥ = Ĥ1 + Ĥ2 (37)

without the interaction term ĤI . Clearly, ψ(x1, x2, 0) is separable, i.e., it is possible to
write ψ(x1, x2, 0) = ϕ1(x1, 0)ϕ2(x2, 0). Since Ĥ1 (Ĥ2) acts only in ϕ1(x1, 0) (ϕ2(x2, 0)),
the state ψ(x1, x2, 0) represents a system where the particle described by x1 is in the
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ground state and the particle described by x2 is in the first excited state. So, we can
think of our example as the following. We have initially a system of two harmonic
oscillators, one in the ground state and the other in the first excited state. After t = 0
we suddenly turn on a interaction between the two oscillators, and as a consequence
we expect to have a “transfer of energy” from one oscillator to the other, as it happens
in the classical case. We will now proceed to analyze in details this example.

4.1 Approximate solution

To use Eq. 35 we need to find the coefficients Cnn′ . It is straightforward to compute
the coefficients from Eq. 34 by just using the orthogonal properties of the Hermite
polynomials and by rewriting Eq. 36 in the normal coordinates, yielding

Cn,n′ = √
ω

(
ω

22n(n!)2

)1/4 (
ω′

22n′
(n′!)2

)1/4
√

2
(ω + ω′)

(
ω′ − ω

ω + ω′

)j

×
[√

1
ω

2j!
j! δn′,2jδ1,n − 2

√
ω′

ω + ω′
(2j + 1)!

j! δn′,2j+1δ0,n

]

, (38)

where δij is Kroenecker’s delta.
It is interesting to note that there exists infinite terms of Cn,n′ that are different

from zero. Therefore, if we write down the expression for the time evolution of the
wavefunction after the interaction we obtain an expression with an infinite num-
ber of terms. However, a close look at the Cn,n′ coefficients may shed light on how
to deal with this problem. First we see from Eq. 38 that only the terms C0,n′ and
C1,n′ are nonzero. If we compute the ratio between two consecutive nonzero terms,
i.e., C0,n′+2/C0,n′ and C1,n′+2/C1,n′ we obtain

C0,n′+2

C0,n′
=

(
ω′ − ω

ω + ω′

) √
(n′ + 2)

(n′ + 1)
, (39)

C1,n′+2

C1,n′
=

(
ω′ − ω

ω + ω′

) √
(n′ + 1)

(n′ + 2)
. (40)

We note that both ratios (39) and (40) are proportional to
(
ω′−ω
ω+ω′

)
. Then, if the cou-

pling constant λ is small compared to k (weak coupling) we can make an expansion
of Eqs. 39 and 40 around λ = 0 and obtain, up to first order in λ, that

(
ω′ − ω

ω + ω′

)
= λ

2k
+ O

(
λ2

)
.

We conclude that if λ is small compared to k, as we increase the value of n′, the coeffi-
cients Cn,n′ become less important. Therefore, it is justifiable to keep only a finite
amount of terms in the expression for ψ(x1, x2, t) for small λ. In our example, we will
keep only terms up to first order in λ.
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Since we will be working withλ small, it is convenient now to introduce the following
parameters already used in the classical case

δω = ω′ − ω

2
,

ω̄ = ω′ + ω

2
.

Then, if λ is small,

δω = ωλ

2k
+ O(λ2),

and

δω

ω̄
≪ 1.

Keeping only terms up to first order in δω
ω̄ , we have

ψ(x1, x2, 0) =
∞∑

n,n′=0

Cn,n′ψ (n,n′)(x1, x2)

∼= C1,0ψ
(1,0) + C0,1ψ

(0,1) + C1,2ψ
(1,2) + C0,3ψ

(0,3), (41)

where

C10 ∼=
√

2
2

, (42)

C01 ∼= −
√

2
2

, (43)

C12 ∼= 1
2
δω

ω̄
, (44)

C03 ∼= −
√

3
2
δω

ω̄
. (45)

We are finally in a position to write, up to first order, the time dependent wavefunc-
tion for the coupled harmonic oscillators. From Eqs. 41 and 42–45 it is straightforward
to obtain

ψ(x1, x2, t) =
√

1
2π

mω̄
–h

exp
{
−mω̄

2–h

[
x2

1 + x2
2

]}
exp {−2iω̄t}

×
{

2i
(

x1 + x2

[
1
2

− mω̄
–h

x2
1

]
δω

ω̄

)
sin (δωt)

+ 2
(

x2 + x1

[
1
2

− mω̄
–h

x2
2

]
δω

ω̄

)
cos (δωt)

+ 1
2
δω

ω̄
(x1 + x2)

[
mω̄
–h

(x1 − x2)
2 − 1

]
e−i(2ω̄+δω)t

− 1
2
δω

ω̄
(x1 − x2)

[
mω̄
–h

(x1 − x2)
2 − 3

]
e−i(2ω̄+3δω)t

}

+ O(δω2). (46)



360 Synthese (2007) 154:349–370

The wavefunction (46) determines the evolution of the system. We will now proceed
to analyze the system using Eq. 46.

4.2 Marginal probabilities

From Eq. 46 we compute the joint probability density for x1 and x2 as a function of t.
The joint density is simply

P(x1, x2, t) = |.(x1, x2, t)|2,

and keeping terms up to first order in δω we have

P(x1, x2, t) = 1
2π

(
mω̄
–h

)2
exp

{
−mω̄

–h

[
x2

1 + x2
2

]}

×
{

4
(

x2
2 + 2x1x2

[
1
2

− mω̄
–h

x2
2

]
δω

ω̄

)
cos2 (δωt)

+ 4
(

x2
1 + 2x1x2

[
1
2

− mω̄
–h

x2
1

]
δω

ω̄

)
sin 2 (δωt)

+ 2x2
δω

ω̄
(x1 + x2)

[
mω̄
–h

(x1 − x2)
2 − 1

]
A(t)

− 2x2
δω

ω̄
(x1 − x2)

[
mω̄
–h

(x1 − x2)
2 − 3

]
B(t)

− 2x1
δω

ω̄
(x1 + x2)

[
mω̄
–h

(x1 − x2)
2 − 1

]
C(t)

+ 2x1
δω

ω̄
(x1 − x2)

[
mω̄
–h

(x1 − x2)
2 − 3

]
D(t)

}
, (47)

where

A(t) = cos (δωt) cos {(2ω̄ + δω) t} ,
B(T) = cos (δωt) cos {(2ω̄ + 3δω) t} ,
C(t) = sin (δωt) sin {(2ω̄ + δω) t} ,
D(t) = sin (δωt) sin {(2ω̄ + 3δω) t} .

It is interesting to see how the marginal probability distributions for x1 and x2 behave.
Let us recall that the marginals are defined as

P(x1, t) =
∫ ∞

−∞
P(x1, x2, t) dx2, (48)

and

P(x2, t) =
∫ ∞

−∞
P(x1, x2, t) dx1. (49)

Therefore, P(x1, t) dx1 represents the probability of measuring the position of parti-
cle 1 in the interval (x1, x1 + dx1) independently of particle 2. The interpretation for
P(x2, t) is similar.
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From Eqs. 47–49, it is tedious but straightforward to compute (once again up to
first order in δω) such quantities, which read

P(x1, t) =
√

mω̄
–hπ

exp
{
−mω̄

–h
x2

1

}

×
{

cos2 (δωt) + 2mω̄
–h

x2
1 sin 2 (δωt) −δω

ω̄

[[
1
4
−mω̄

2–h
x2

1

]
(3 cos ((2ω̄ + 3δω) t)

− cos ((2ω̄ + δω) t)) cos (δωt) −mω̄
–h

x2
1

[
3
2

− mω̄
–h

x2
1

]
(sin ((2ω̄ + 3δω) t)

− sin ((2ω̄ + δω) t)) sin (δωt)]
}

, (50)

and

P(x2, t) =
√

mω̄
π–h

exp
{
−mω̄

–h
x2

2

}{
sin 2 (δωt) + 2mω̄

–h
x2

2 cos2 (δωt)

−δω
ω̄

[[
1
4

− mω̄
2–h

x2
2

]
(3 sin ((2ω̄ + 3δω) t) + sin ((2ω̄ + δω) t)) sin (δωt)

−mω̄
–h

x2
2

[
3
2

− mω̄
–h

x2
2

]
(cos ((2ω̄ + 3δω) t) + cos ((2ω̄ + δω) t)) cos (δωt)]} ,

(51)

We can compute the values of the marginals (50) and (51) at t = 0 and find that, after
making sure that we use ω as the frequency instead of ω̄, and keeping only terms up
to first order in δω/ω̄, such marginals indeed represent the ones for the ground state
HO and the first excited state HO, as one should expect.

To better grasp the behavior of Eqs. 50 and 51, let us plot them as a function of
time. Before plotting, we need to choose the appropriate values for the constants in
the equations. If our system is in atomic scale, it is not reasonable, from a computa-
tional point of view, to use the MKS system. So, we will measure time in femtoseconds
(1 fs = 10−15 s) and distance in Angstroms (1 Å = 10−10 m). If we say that the particles
in the oscillators are electrons, then m = 1 me, where me is the mass of the electron,
then we have

–h = 10 me · Å
2 · fs−1,

and

k = 1 me · fs−2,

and, for the harmonic oscillator,

⟨(!x)2⟩ =
–h

2meω
.

The behavior of the probability density for particles 1 and 2 are found in Fig. 2. The
time interval chosen for the time axis in the graphs was!t = π/δω as this is the value
where cos (δωt) = −1, which is an extreme in the behavior of the marginal densities.
Looking at the graphs we see that particle 1 starts with a marginal density that is
mainly a Gaussian function, whereas particle 2 starts from the product of x2

2 times a
Gaussian. This is because particle 1 is at the ground state and particle 2 is at the first
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excited state at t = 0. However, as time passes there is a swap in the roles of particle 1
and 2, in the sense that at t = π/δω the marginal density for particle 1 resembles that
of particle 2 for t = 0 and vice versa. This is of course due to the interaction between
the two particles. We may think of those densities as showing that, at t = π/δω (more
generally when t = (2n + 1)π/δω) particle 1 is no longer in the ground state, but in
the first excited state, whereas particle 2 is in the ground state.

4.3 Energy expectations

The densities above suggest that there is an energy transfer from one particle to the
other. To see that this is the case, let us compute the energy values for each particle.
First we should note that the system is not in an eigenstate of the Hamiltonian, as
we started from a superposition of different energy states. We define the energy or
particle 1 as

E1 = ⟨Ĥ1⟩,

the energy of particle 2 as

E2 = ⟨Ĥ2⟩,

and the total energy as the sum of the two energies plus the interaction energy

ET = E1 + E2 + ⟨ĤI⟩.

In coordinate representation we have that

E1 =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2 ψ(x1, x2, t)∗Ĥ1ψ(x1, x2, t)

=
∫ ∞

−∞

∫ ∞

−∞
dx1dx2 ψ(x1, x2, t)∗

[

−
–h2

2m
∂2

∂x2
1

+ 1
2

kx2
1

]

ψ(x1, x2, t),

and computing this term we obtain, up to second order in δω/ω̄,

E1 = –hω̄
(

1
2

+ sin 2 (δωt)
)

(1 − δω/ω̄)

= –hω
(

1
2

+ sin 2 (δωt)
)

. (52)

Similarly, for E2 we have

E2 = –hω̄
(

1
2

+ cos2 (δωt)
)

(1 − δω/ω̄) .

= –hω
(

1
2

+ cos2 (δωt)
)

. (53)

If we compare the quantum energies (52) and (53) to the classical expressions (14)
and (15) the resemblance is striking. They are practically the same for δω/ω̄ ≪ 1,
except for a zero energy factor of 1

2
–hω̄ present in the quantum mechanical case. In

fact, the same conclusions can now be drawn from Eqs. 52 and 53, i.e., that due to the
coupling, the particles exchange energy between themselves periodically, with period
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τ = 2π/δω. Each of the oscillators achieve its minimum energy value when the other
have its maximum value. For the interaction energy we compute

⟨ĤI⟩ = 2–hδω. (54)

Then, it is easy to compute the total mean energy

ET = E1 + E2 + ⟨ĤI⟩
= 2–hω̄
= 2–hω + 2–hδω.

This is once again in agreement with the classical case seen above, in the sense that
the total energy is the sum of the energy of each oscillator (keeping into account the
nonclassical zero point energy) without the interaction term plus an interaction term
2–hδω. We must emphasize that even though the quantum expectations agree with
the classical case, this does not mean that individual systems will follow the classical
relations for ET, E1, and E2, as it does not make any sense to talk about those quan-
tities (the system is not an eigenstate of any of them). Only an ensemble of quantum
oscillators will exhibit the correct expectations computed above.

We just saw that the state we used had a term in the total energy 2–hδω that was due
to the coupling between the two oscillators. However, if we remember the classical
case of Sect. 2, with different initial conditions—e.g. x1 = 0, x2 = 0, ẋ1 = v, ẋ2 = 0,
at t = 0—no interaction term is present in the total energy. What about the quantum
case? Do we always have an interaction term present, as in Eq. 54? A short compu-
tation shows that for any initial state that is a combination of Fock states for the two
HO of the form

|ψ⟩ = |n1⟩ ⊗ |n2⟩,

where |n1⟩ and |n2⟩ are eigenstates of two uncoupled HO, the value of ⟨ĤI⟩ψ
(the interaction term) is different from zero.

The question remains as to whether it is possible to find an initial state that has an
interaction term that is zero. A good guess would be to take both HO in a coherent
state at t = 0, since it is a state that has many of the characteristics of a classical system
(Cohen-Tannoudji, Diu, & Laloe, 1977). It is easy to show that it is indeed true that
for the state

|ψ⟩ = |α⟩ ⊗ |β⟩,

where

|α⟩ = e− |α|2
2

∞∑

n=0

αn
√

n!
|n⟩,

and similar for |β⟩, the expected value of the interaction energy at t = 0 is zero if α
and β have an appropriate phase relation. It is left up to the reader to find out this
phase relation and a set of initial conditions for a classical system which reproduces
the expectations in the quantum mechanical case.
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5 The Bohmian interpretation

Before we analyze the transfer of energy from a Bohmian point of view, let us quickly
review Bohm’s interpretation of quantum mechanics. Let us begin with the causal
interpretation for the case of the Schrödinger equation describing a single parti-
cle. In the coordinate representation, for a non-relativistic particle with Hamiltonian
Ĥ = p̂2/2m + V(x̂), the Schrödinger equation is

i–h
∂.(x, t)
∂t

=
[

−
–h2

2m
∇2 + V(x)

]

.(x, t). (55)

We can transform this differential equation over a complex field into a pair of coupled
differential equations over real fields. We do that by writing . = R exp (iS/–h), where
R and Sare real functions, and substituting it into Eq. 55. We obtain the following
equations.

∂S
∂t

+ (∇S)2

2m
+ V −

–h2

2m
∇2R

R
= 0, (56)

∂R2

∂t
+ ∇ ·

(
R2 ∇S

m

)
= 0. (57)

The usual probabilistic interpretation, i.e. the Copenhagen interpretation, under-
stands Eq. 57 as a continuity equation for the probability density R2 for finding the
particle at position x and time t. All physical information about the system is con-
tained in R2, and the total phase Sof the wave function is irrelevant (except for some
topological phases). In this interpretation, nothing is said about Sand its evolution
Eq. 56.

However, examining Eq. 57, we can see that ∇S/m may be interpreted as a veloc-
ity field, suggesting the identification p = ∇S. Hence, we can look to Eq. 56 as a
Hamilton–Jacobi equation for the particle with the extra potential term

Q = −
–h2

2m
∇2R

R
,

where Q is the so called quantum potential. Thus, since Bohm’s interpretation iden-
tifies p with ∇S, from the differential equation p = mẋ = ∇Swe may compute its
solutions and obtain the trajectory of the quantum particle. Therefore, in Bohm’s
interpretation both momentum and position are quantities that are ontologically well
defined.

For our case of two coupled-HO, the configuration space has two variables, x1 and
x2, representing the positions of particles 1 and 2, respectively. For two particles, the
nonlocality of Bohm’s interpretation becomes evident as the Schrödinger equation
becomes

i–h
∂.(x1, x2, t)

∂t
=

[

−
–h2

2m1
∇2

1 −
–h2

2m2
∇2

2 + V(x1, x2)

]

.(x1, x2, t), (58)
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where ∇2
i is the Laplacian operator with respect to the coordinates of particle i. If we

follow the same transformation as before, we can obtain the following equations.

∂S
∂t

+ (∇1S)2

2m1
+ (∇2S)2

2m2
+ V −

–h2

2m
∇2R

R
= 0, (59)

∂R2

∂t
+ ∇1 ·

(
R2 ∇1S

m1

)
+ ∇2 ·

(
R2 ∇2S

m2

)
= 0. (60)

The nonlocality comes from the fact that, even if the potential V(x1, x2) is local, it is
possible that the quantum potential given by

Q = −
–h2

2m1

∇2
1 R
R

−
–h2

2m2

∇2
2 R
R

is nonlocal, depending on the form of R. This characteristic is necessary, as proved by
Bell, if Bohm’s theory is to recover all quantum mechanical predictions.

Using Eq. 46 it is straightforward to compute the phase S(x1, x2, t) from the
expression

S(x1, x2, t) = −–h arctan
[
−i
.(x1, x2, t) −.(x1, x2, t)∗

.(x1, x2, t) +.(x1, x2, t)∗

]
.

After some long and tedious algebra we obtain

S(x1, x2, t) = −–h arctan
(

SA(x1, x2t)
SB(x1, x2t)

)
,

where

SA(x1, x2, t) = 4 cos (2ω̄t)
{(

x2
1 sin (δωt)2 − x2

2 cos (δωt)2
)

sin (2ω̄t)

+ x1x2 sin (δωt) cos (δωt)
}

,

and

SB(x1, x2, t) = (x2 cos(2ωt) cos(δωt) + x1 sin (2ωt) sin (δωt))2 ,

where we kept all terms in (δω/ω̄) t but we neglected terms in δω/ω̄.
From S(x1, x2t) we obtain the differential equation that describes the trajectories

of particles x1 and x2 as

dx1

dt
= 1

m
∂S(x1, x2t)

∂x1
= −

–h
m

x2 cos (δωt) sin (δωt)
x2

1 sin 2 (δωt) + x2
2 cos2 (δωt)

(61)

and

dx2

dt
= 1

m
∂S(x1, x2t)

∂x2
=

–h
m

x1 cos (δωt) sin (δωt)
x2

1 sin 2 (δωt) + x2
2 cos2 (δωt)

. (62)

We can see that the trajectories follow a set of differential equations that are cou-
pled and nonlinear. It is interesting to notice that if δω = 0 we recover the standard
Bohmian result that in the case of no interaction each HO is in an eigenstate and
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therefore both particles are at rest. However, if δω ̸= 0, we obtain at once that, after
the change of variables

t′ = δω

δω′ t, (63)

x′
1 =

√
δω

δω′ x1, (64)

x′
2 =

√
δω

δω′ x2, (65)

the differential Eqs. 61 and 62 are form invariant with respect to a change in the
coupling constant from δω to δω′. This invariance is illustrated in Figs. 3 and 4, where
typical Bohmian trajectories were computed for both particles. The solutions shown in
Figs. 3 and 4 were obtained numerically using a 7th–8th-order continuous Runge–Kuta
method.

It is important to compute, in Bohmian theory, the quantum potential Q defined as

Q = Q1 + Q2

where

Q1 = −
–h2

2m
1√

P(x1, x2, t)
∂2√P(x1, x2, t)

∂x2
1

and

Q2 = −
–h2

2m
1√

P(x1, x2, t)
∂2√P(x1, x2, t)

∂x2
2

.

Fig. 3 Bohmian trajectories for two CHO. The trajectories correspond to ω̄ = 1 fs−1, δω/ω̄ = 0.01,
x1(0) = 0, and x2(0) = −1. The solid line represents the trajectory of x1(t) whereas the dashed line
represents that of x2(t). The scale for the ordinates is in Å and the time scale is in fs
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Fig. 4 Bohmian trajectories for two CHO. The trajectories correspond to ω̄ = 1 fs−1, δω/ω̄ = 0.005,
x1(0) = 0, and x2(0) = −

√
2. The solid line represents the trajectory of x1(t) whereas the dashed line

represents that of x2(t). The scale for the ordinates is in Å and the time scale is in fs. We can observe
that the trajectories are identical to the ones shown in the previous Figure, except for the coordinate
scales, a result consistent with Eqs. 63–65.

It is straightforward to compute

Q1 = –hω̄ − 1
2

mω̄2x2
1

+ 1
2

–hω̄
x2

1 sin 2 (δωt) − x2
2 cos2 (δωt)

x2
1 sin 2 (δωt) + x2

2 cos2 (δωt)

− 1
2

–h2

m
x2

2 cos2 (δωt) sin 2 (δωt)
(
x2

1 sin 2 (δωt) + x2
2 cos2 (δωt)

)2 , (66)

and

Q2 = –hω̄ − 1
2

mω̄2x2
2

+ 1
2

–hω̄
x2

2 cos2 (δωt) − x2
1 sin 2 (δωt)

x2
2 cos2 (δωt) + x2

1 sin 2 (δωt)

− 1
2

–h2

m
x2

1 sin 2 (δωt) cos2 (δωt)
(
x2

2 cos2 (δωt) + x2
1 sin 2 (δωt)

)2 , (67)

which yields

Q(x1, x2, t) = 2–hω̄ − 1
2

mω̄2
(

x2
1 + x2

2

)

− 1
2

–h2

m

(
x2

1 + x2
2
)

sin 2 (δωt) cos2 (δωt)
(
x2

2 cos2 (δωt) + x2
1 sin 2 (δωt)

)2 . (68)
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We are now in a position to compute the total Bohmian energy for each one of the
particles,

E1 = K1 + V1 + Q1

= –hω̄ + 1
2

–hω̄
x2

1 sin 2 (δωt) − x2
2 cos2 (δωt)

x2
1 sin 2 (δωt) + x2

2 cos2 (δωt)
,

E2 = K2 + V2 + Q2

= –hω̄ − 1
2

–hω̄
x2

1 sin 2 (δωt) − x2
2 cos2 (δωt)

x2
1 sin 2 (δωt) + x2

2 cos2 (δωt)
,

where Ki = 1
2 m

(
dxi
dt

)2
is the kinetic energy of particle i (obtained from the guidance

Eq. 61 and 62) and Vi is the potential for particle i (neglecting terms in δω/ω̄).
The total energy for the system is just the sum of the individual energies, yielding

ET = E1 + E2 = 2–hω̄,

the same value as the expected energy of the system.

6 Conclusions and final remarks

This work was motivated by a simple model that tries to capture the main character-
istics of the interaction between a photon and a photodetector. It should be clear that
our model does not touch many of the complications that exist in the QED models of
photon and photodetector interaction, and therefore should be taken with a grain of
salt and should be considered only a starting point to the many questions related to
the concept of a photon. Our main purpose was to try to understand how the process
of transfer of energy from the quantized electromagnetic field to an atom in a pho-
todetector happens. For this, we used Bohm’s interpretation of quantum mechanics
for two coupled harmonic oscillators, given that Copenhagen’s interpretation can say
very little about the processes that are not eigenstates of observables.

The expressions obtained for E1 and E2 involve an interaction term that makes
it impossible to distinguish what part of the energy belongs to the particle x1 and
what part belongs to the particle x2, except for some particular values of t. In the
Copenhagen interpretation of QM it does not make any sense to talk about the
energy of each oscillator for all t, as the oscillators are in a quantum superposition and
are not in an eigenstate of its Hamiltonian operator. In Bohm, it will not make any
sense to talk about the energy of each oscillator for all t, since the quantum potential
creates an interaction between the two oscillators that is of the same order of the other
terms in the hamiltonian. Therefore it does not make any sense in the Bohmian theory
to say that the energy of the photon was transfered to the photodetector (except for
very special values of t).

However, the Bohmian interpretation gives an ontological explanation for the
indefiniteness of the energy of each particle. Even with the interaction turned off,
there is still a quantum nonlocal interaction between the oscillators given by the
quantum potential and, in fact, one oscillator is not isolated from the other. This
indicates that a real measurement has not yet occurred. It seems to us that in order
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for a measurement to take place, a more elaborated description of the photodetec-
tion process involving a thermal bath or a macroscopic description must be used. In
such case, we expect that the quantum potential will vanish and no further nonlocal
interaction will be present after the measurement.
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