
Article

Contextuality and Indistinguishability

J. Acacio de Barros 1,*, Federico Holik 2 and Décio Krause 3

1 School of Humanities and Liberal Studies, San Francisco State University, San Francisco, CA, USA;
barros@sfsu.edu

2 Instituto de Física La Plata, UNLP, CONICET, Facultad de Ciencias Exactas, C.C. 67, 1900 La Plata, Argentina;
olentiev2@gmail.com

3 Department of Philosophy, Federal University of Santa Catarina, Florianópolis, SC, Brazil;
deciokrause@gmail.com

* Correspondence: barros@sfsu.edu
† All authors contributed equally to this work.

Academic Editor: Mariela Portesi, Alejandro Hnilo, and Federico Holik
Version May 15, 2019 submitted to Entropy; Typeset by LATEX using class file mdpi.cls

Abstract: It is well known that in quantum mechanics we cannot always define consistently properties1

that are context independent. Many approaches exist to describe contextual properties, such as2

Contextuality by Default (CbD), sheaf theory, topos theory, and non-standard or signed probabilities.3

In this paper we propose a treatment of contextual properties that is specific to quantum mechanics,4

as it relies on the relationship between contextuality and indistinguishability. In particular, we propose5

that if we assume the ontological thesis that quantum particles or properties can be indistinguishable yet6

different, no contradiction arising from a Kochen-Specker-type argument appears: when we repeat an7

experiment, we are in reality performing an experiment measuring a property that is indistinguishable8

from the first, but not the same. We will discuss how the consequences of this move may help us9

understand quantum contextuality.10
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1. Introduction12

Quantum mechanics does not allow for the simultaneous measurement of complementary13

properties. This is exemplified by the famous case of momentum and position: the experimental setups14

required to measure them are incompatible, which means that they cannot be measured together. This15

fact is expressed in the commutation relation [x̂, p̂] = ih̄, where x̂ is the position and p̂ the momentum16

operators. Non-commuting operators do not share all their eigenvectors, and it is possible to find a17

quantum state that has a sharply defined value for, say, position (e.g., δ(x), where δ is the Dirac function1),18

but whose complementary property is not sharply defined (in the case of δ(x), the momentum can be19

anywhere between −∞ and ∞). So, for complimentary properties it seems that quantum mechanics20

forbids us from prescribing them well-defined values.21

But is it really true that if properties cannot be measured simultaneously then it is impossible to22

assign simultaneous values to them? This was, in fact, the question behind the argument put forth by23

1 Not really a function, but a distribution—see [1]
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Einstein, Podolsky, and Rosen (EPR) [2] in their famous 1935 paper. In it, EPR argued that for special24

two-particle entangled systems, one could know the value of a property in one of its particles without25

actually performing an experiment on it, due to correlations encoded in the entangled wave-function.26

Therefore, for two complementary properties, e.g. momentum and position, though one could not27

measure them simultaneously, one could assign values to them. EPR then argued that the description28

of nature based on the wave-function, which did not include simultaneous values of complementary29

properties, was incomplete. These more "complete" theories, ones that could describe the properties of30

quantum systems from unobservable hidden states, became known as hidden-variable theories, as they31

used hidden variables that themselves would not be directly observable.32

The debate about the existence of hidden variables was intense, and giving a historical account of it33

would go beyond the scope of this paper. However, we want to point out a couple of landmark results that34

challenged this research program. As early 1932, Wigner showed that a joint probability distribution for35

two complimentary properties, in this case momentum and position, consistent with quantum statistical36

mechanics had to have negative values, therefore not being a proper probability distribution [3]. This37

result suggested that an attempt to simultaneously define momentum and position had at least some38

serious technical challenges. Later on, in his famous book on the mathematical structure of quantum39

mechanics, von Neumann proved a no-go theorem for hidden-variable theories which discouraged many40

of pursuing them. However, several decades later, John Bell realized that von Neumann’s assumptions41

were too strong [4], and that the no-go theorem was, in Bell’s own words, “silly.” So silly in fact that,42

before Bell, in 1952 David Bohm [5,6] had already created a hidden-variable theory that accounted for all43

the experimental outcomes of quantum mechanics, thus “disproving” von Neumann’s no-go theorem.44

But the main results challenging the concept of well-defined properties for quantum systems came45

with the theorems of Bell and of Kochen and Specker. Bell showed that locality and well-defined values of46

a quantity before a measurement (realism) was inconsistent with the predictions of quantum mechanics47

[7]. But perhaps more relevant was a no-go theorem by Kochen and Specker (KS) [8]. KS showed that for48

a Hilbert space H of dimension greater than two, it is possible to construct a set of True/False properties49

(projection operators in H) that commute in a given context (i.e., that can be simultaneously measured),50

but that no truth value can be globally assigned to them in the totality of contexts. The main reason is that51

the truth value of a property needs to change if we observe it together with one set of other properties52

or with another set (context). This is the idea of contextuality: properties change (in this case, their truth53

values) from one context to another. KS proved that quantum observables (properties) are contextual.54

Contextuality has been a topic of intense research in the foundations of quantum mechanics,55

and it is not our goal to review this literature in detail (see [9,10] for some limited review and56

concepts related). However, it is worth citing that many researchers believe that contextuality holds57

the key to understanding quantum mechanics [10–14], and that quantum contextuality may be relevant58

to contextual systems outside of physics. For instance, bound quantum contextuality, defined as59

contextuality limited by the structure of a quantum lattice, has been successfully used outside of the scope60

of physics, in fields as diverse as cognition [15–17], finance [17,18], and biology [19,20], to name a few.61

That contextuality appears in quantum cognition, for example, should not be surprising, as cognitive62

systems are highly contextual, but quantum-like contextuality may be the result of actual (classical)63

interference of neurons [21,22]. Be that as it may, understanding quantum-like contextuality may be64

important not only for physics, but also for other fields where the mathematical description of contextual65

systems is necessary.66

It is hard to tell what are the origins of quantum contextuality, which is an open question with67

perhaps profound implications to the foundations of physics. However, some proposals were made that68

can account for quantum contextuality. For instance, Bohm’s theory [5,6] explains contextuality by direct69

influences of the context on the outcomes of measurements through a quantum potential. Another way to70
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“explain” contextuality is by recognizing that in quantum mechanics contextual systems can be described71

via negative probabilities [23–26], and negative probabilities may be the result of a violation of von Mises72

principle of stability [27–29] or interference between two different types of particles (such as [30] or [31]).73

Here we attempt a different direction, relating contextuality with indistinguishability of particles2.74

Intuitively, if a property changes from one context to another, this presents a problem, if we think75

about properties in terms of the standard setting, e.g. in terms of classical predicate logic. For example,76

in classical predicate logic the system S has property P if the proposition P(S) has truth value “true.”77

However, for the KS set of quantum observables, it is not possible to assign a truth value to P(S) in a78

consistent way for all contexts. Physicists assume all occurrences of P as being the same P, as if every79

time we were to measure a certain observable, we would measure the same property. This assumption80

carries with it a very strong ontological conjecture, as we will show below. Indeed, we will explore the81

possibility that the standard theory of identity does not applies, and thus, property P cannot be discerned82

in the distinct contexts. From this perspective, the difficulty in defining properties in quantum mechanics83

would originate in the fact that we cannot, from the Hilbert space formalism or even the experimental84

setup, apply the standard theory of identity to properties and particles in different contexts.85

Thus, in this work we present a new look at how to consider properties, that is, to consider a86

formal theory of properties and entities in which they can be seen as not being the same, but still87

being indistinguishable in different contexts. Our proposed theory of indistinguishable properties would88

be slightly different from simply saying that properties are context-dependent, an approach partially89

espoused by Dzhafarov and Kujala in [33] (although these authors have not moved to "non-classical90

ontological" settings, as we do). We will represent properties of particles by indistinguishable predicates in91

different contexts.92

Our main idea runs as follows. Using quasi-set theory, a mathematical theory where we can deal with93

indistinguishable but not identical objects (something we cannot rightly do in standard mathematics,94

as we will see with more details at section 3.1), we can define indistinguishable properties. The intuition95

is that we neither perform “the same” experiment twice, nor measure two indistinguishable properties96

on “a same” quantum system either, but we measure indistinguishable properties (prepared the “same”97

way) over indistinguishable quantum systems. In other words, we need to seriously consider the notion98

of indistinguishability (or indiscernibility) as something distinct from identity (as we shall see, these99

notions are confounded in standard logic and mathematics). Then, with these concepts at hands, we can100

read again the results by KS and realize that the core of their theorem (the "paradox") can be avoided, for101

the contradiction assumes that “the same” properties are measured in “the same” particles in different102

contexts. But, if we realize that we measure indistinguishable properties over indistinguishable particles,103

there will be no surprise in acknowledging that the obtained results may differ. The problem, as we104

intend to develop in this paper in a rough but yet mathematically precise form, is to provide a formalism105

for defining or considering legitimate (and not fake) indiscernible objects and properties.106

Our paper is organized the following way. In Section 2 we detail the contextuality argument used107

by KS in terms of probability spaces, in order to generalize it to more realistic situations where we108

do not need probability-one events. We then re-think the KS concept of contextuality in terms of its109

implication to the concept of distinguishability, and show that an essential component of KS’s proof is110

that the properties they used are assumed to obey the classical theory of identity. Given the motivation for111

2 Whether our approach has any bearings on applications of the quantum formalism to social systems is an open question. For
instance, Khrennikov used quantum information thermodynamics to use the theory of lasers in social systems [32]. Of course,
physical lasers follow a Bose-Einstein statistics, so it would be interesting if indistinguishability could tell us something about
social systems.
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thinking about indistinguishability in connection to quantum contextuality, presented in 2.1, in Section 3112

we discuss how we can implement such concepts in a precise way, both ontologically and mathematically113

(as in 3.1). Finally, in Section 4 we show explicitly the connection between quantum contextuality and114

indistinguishability, by constructing an explicit concept of indistinguishable property that does not lead115

to a KS-type contradiction. We end in Section 5 with some conclusions and possible open questions.116

2. KS argument for contextuality117

Let us begin by stating some basic concepts that will help us connect the issue of quantum properties118

with indistinguishability. Let us start by defining contextuality as it is relevant for quantum mechanics:119

from the structure of a probability space. Since the KS theorem works for Hilbert spaces of dimension120

greater than two, it is not necessary, for our purposes, to deal with the mathematical difficulties originated121

by using infinite sample spaces, so here we use only finite sets. Komogorov [34] defined probabilities in122

an axiomatic way as follows.123

Definition 1 (Kolmogorov). The triple P = (Ω,F , p) is a probability space if Ω is a finite set (the sample124

space), F is an algebra over Ω, and p : F → [0, 1] is a function satisfying the following axioms:125

K1 p (Ω) = 1126

K2 p (A ∪ B) = p (A) + p (B), for all A and B in F such that A ∩ B = ∅.127

We represent the outcomes of experiments in terms of random variables, which are measurable128

functions that take numerical values corresponding to such outcomes.129

Definition 2. Let P = (Ω,F , p) be a probability space, and S a finite set of real numbers (corresponding130

to possible experimental outcomes) and T an algebra over S. A random variable A in this probability131

space is a measurable function A : F → S, i.e., a function such that for every T ∈ T , A−1 (T) ∈ F .132

Intuitively, each element of Ω is randomly selected with a probability given by p, and when a133

particular element is selected, the function A produces an outcome in S. The inverse of A produces a134

measurable partition in F corresponding to different values of possible experimental outcomes. When135

representing the outcomes of an experiment, a probability space and a random variable, with its136

corresponding partitions, must then be constructed such that the random variable has the same stochastic137

behavior as the observed experimental outcomes.138

Definition 3. The expectation of an S-valued random variable A, E (A), is

E (A) = ∑
s∈S

sp (A = s) .

The expectation of the product an S-valued random variables A and an S′-valued random variable B,
also called their second moment, is

E (AB) = ∑
s∈S

∑
s′∈S′

ss′p
(
A = s, B = s′

)
.

The expectation of the product an S-valued random variables A, an S′-valued random variable B, and an
S′′-valued random variable C, called their third moment, is

E (ABC) = ∑
s∈S

∑
s′∈S′

∑
s′∈S′′

ss′s′′p
(
A = s, B = s′, C = s′′

)
.
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The fourth moment, fifth moment, etc. are defined in a similar way. The probabilities p (A = s, B = s′),139

p (A = s, B = s′, C = s′′),. . ., p (A = s, B = s′, . . . , Z = sn) are called the joint probability for A and B, A,140

B, and C, etc.141

To understand what is contextuality, we now examine a simple example dating back to Boole, but142

related to the discussions in quantum mechanics by Specker’s parable of the overprotective seer [11]. We143

start with a set of properties, X, Y, and Z, that can be either true or false for each running of an experiment144

about a certain system of interest. In the most general case of interest, such properties could be stochastic,145

and therefore we would need to represent them within the formalism of probability theory. To do so,146

let us consider a set of three ±1-valued random variables3, X, Y, and Z, with “+1” corresponding to the147

property being “true” and “−1” to “false”. Let us further assume that, experimentally, our constraint is148

that we cannot observe the properties X, Y, and Z simultaneously, but we can only observe them one at a149

time or in pairs4. Suppes and Zanotti [35] showed that in such case, there exists a probability space, with150

a corresponding joint probability distribution, for X, Y, and Z if and only if151

−1 ≤ E (XY) + E (XZ) + E (YZ) (1)

≤ 1 + 2 min {E (XY) , E (XZ) , E (YZ)} .

What happens when (1) is violated? To see this, let us consider the extreme case of maximum152

violation of the left hand side of (1): E (XY) = E (XZ) = E (YZ) = −1. It is easy to see that this is153

mathematically (and logically, if we think about truth values) impossible: if X = 1, then E (XY) = −1154

implies Y = −1 with probability 1, which from E (YZ) = −1 we obtain Z = 1, and finally from155

E (XZ) = −1 we get X = −1, a clear contradiction. A contradiction is also obtained for X = −1.156

The above contradiction may lead us to believe that (1) can never be violated. However, this is not157

necessarily the case [21,36,37], as the property X is observed in two different experimental situations: (i)158

X together with Y, and (ii) X together with Z. Since the contexts (experimental conditions) are different, it159

is possible for the property X to change from situation (i) to (ii). When this happens, we call the properties160

X, Y, and Z, or their corresponding random variables, X, Y, and Z, contextual.161

Definition 4. Let A = {A1, A2, . . . , An}, n ≥ 3, be a collection of properties observable in a multitude162

of experimental conditions. This collection is non-contextual if an only if there exists a probability space163

(Ω,F , p) and a collection of random variables, A = {A1, A2, . . . , An}, Ai : F → Ei, on (Ω,F , p), such164

that all observable stochastic properties of A are represented by A. Otherwise, the collection of properties165

A is contextual.166

In other words, a collection of properties {A1, A2, . . . , An}, n ≥ 3, is contextual if and only if no joint167

probability distribution for all random variables Ai representing properties Ai exist in a probability space168

(Ω,F , p).169

As we saw from the example and definitions above, properties are said to be contextual if we cannot170

create a single probability space that consistently represent those properties. To better understand this,171

let us connect Definition 4 to our three random-variable example discussed above. Let us assume that172

we obtained the value X = 1 and Y = −1 in a given experiment. The existence of a probability space173

P assures us that there is an element of F , call f ∈ F , such that X( f ) = 1 and Y( f ) = −1. However,174

3 Random variables where S = {1,−1}.
4 An explicit example using a firefly in a box is provided in [25].
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this very same element, when used in the random variable Z will give either −1 or 1, which would not175

yield the inconsistent anti-correlations E (XY) = E (XZ) = E (YZ) = −1. On the other hand, were176

the anti-correlations experimentally observed, it is clear that the f ∈ F used in one experimental context177

cannot be the same as in another experimental context, as this would result in consistent correlations. The178

very same argument can be used for any inconsistent correlations, such as E (XY) = E (XZ) = E (YZ) =179

−1, E (XY) = E (XZ) = 1 = −E (YZ), etc. In fact, it can be shown (see [38]) that any impossibility of180

obtaining a joint probability distribution amounts to some combination of logical inconsistencies, such as181

the correlations above.182

What is happening in contextual systems is that calling a property Ai in a context the same as183

Ai in a different context is a mistake, as it leads to inconsistencies. A clear approach to resolve those184

inconsistencies, one advocated by Dzhafarov and Kujala, is to label variables according to their context185

[? ]. This approach is called Contextuality by Default (CbD). According to it, we would not have186

only property Ai, but instead, say, at least two different properties, Ai,1 and Ai,2, where 1 and 2187

refer to different experimental conditions (of course, more experimental conditions would require more188

properties). Explicitly, in the X, Y, and Z example, since we have three experimental conditions, the189

properties would be X1, X2, Y1, Y3, Z2, and Z3, and with this extended set or properties, no contradiction190

would appear.191

The three random-variable example above is useful for us to understand the concept of contextuality,
but it is not an example that comes from quantum mechanics. In fact, it is easy to show that for three
quantum observables in a Hilbert space, X̂, Ŷ, and Ẑ, with eigenvalues ±1, if they pairwise commute, i.e.
[X̂, Ŷ] = [X̂, Ẑ] = [Ŷ, Ẑ] = 0, then they are not contextual [11]. Therefore, we cannot get the contextuality
exemplified above from a physical quantum system. To provide a more physically grounded example,
let us examine the famous Kochen-Specker (KS) theorem [8], in the simpler version with 18-vectors
given by Cabello et al. [39]. Here we use a four-dimensional Hilbert space, and as such, we can find
groups of four orthogonal vectors whose corresponding projectors commute. Consider, for instance, the
non-normalized and orthogonal vectors ~a = (0, 0, 0, 1), ~b = (0, 0, 1, 0), ~c = (1, 1, 0, 0), ~d = (1,−1, 0, 0).
Their corresponding projectors can defined as the matrix that projects any vector into the subspace
spanned by them. For example, applying the projector P̂0,0,0,1 associated to~a to the vector (x1, x2, x3, x4)

would yield the vector (0, 0, 0, x4), whereas P̂0,0,1,0 associated to~b yields (0, 0, x3, 0), and so on. Since~a,~b,
~c, and ~d are orthogonal to each other, their projectors commute (e.g. [P̂0,0,1,0, P̂0,0,0,1] = 0), which means
that they correspond to observables that can be measured simultaneously. Furthermore, since the Hilbert
space is four dimensional, it also follows that

P̂0,0,1,0 + P̂0,0,1,0 + P̂1,1,0,0 + P̂1,−1,0,0 = 1̂, (2)

where 1̂ is the identity operator.192
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In a four dimensional Hilbert space, let us consider now the following set of projectors:

P̂0,0,0,1 + P̂0,0,1,0 + P̂1,1,0,0 + P̂1,−1,0,0 = 1̂, (3)

P̂0,0,0,1 + P̂0,1,0,0 + P̂1,0,1,0 + P̂1,0,−1,0 = 1̂, (4)

P̂1,−1,1,−1 + P̂1,−1,−1,1 + P̂1,1,0,0 + P̂0,0,1,1 = 1̂, (5)

P̂1,−1,1,−1 + P̂1,1,1,1 + P̂1,0,−1,0 + P̂0,1,0,−1 = 1̂, (6)

P̂0,0,1,0 + P̂0,1,0,0 + P̂1,0,0,1 + P̂1,0,0,−1 = 1̂, (7)

P̂1,−1,−1,1 + P̂1,1,1,1 + P̂1,0,0,−1 + P̂0,1,−1,0 = 1̂, (8)

P̂1,1,−1,1 + P̂1,1,1,−1 + P̂1,−1,0,0 + P̂0,0,1,1 = 1̂, (9)

P̂1,1,−1,1 + P̂−1,1,1,1 + P̂1,0,1,0 + P̂0,1,0,−1 = 1̂, (10)

P̂1,1,1,−1 + P̂−1,1,1,1 + P̂1,0,0,1 + P̂0,1,−1,0 = 1̂, (11)

where 1̂ is the identity operator in this space. Each line in the set of equations above has four commuting193

observables to whose outcomes we can attribute truth values. The fact that each line sums to one simply194

states that one, and only one, property per line is true.195

The KS contradiction is obtained by assuming a sample space Ω and realizing that for an ω ∈ Ω it is
not possible to assign values for the properties associated to the projectors in a consistent way. To see this,
let us rewrite the projection operator equations in terms of outcomes of experiments, i.e. using random
variables Pi’s taking values 0 or 1 (for “false” and “true,” respectively). These random variables would
correspond to each line in (3)–(11), and would depend explicitly on the element ω of the sample space.
This leads to

P0,0,0,1 (ω) + P0,0,1,0 (ω) + P1,1,0,0 (ω) + P1,−1,0,0 (ω) = 1, (12)

P0,0,0,1 (ω) + P0,1,0,0 (ω) + P1,0,1,0 (ω) + P1,0,−1,0 (ω) = 1, (13)

P1,−1,1,−1 (ω) + P1,−1,−1,1 (ω) + P1,1,0,0 (ω) + P0,0,1,1 (ω) = 1, (14)

P1,−1,1,−1 (ω) + P1,1,1,1 (ω) + P1,0,−1,0 (ω) + P0,1,0,−1 (ω) = 1, (15)

P0,0,1,0 (ω) + P0,1,0,0 (ω) + P1,0,0,1 (ω) + P1,0,0,−1 (ω) = 1, (16)

P1,−1,−1,1 (ω) + P1,1,1,1 (ω) + P1,0,0,−1 (ω) + P0,1,−1,0 (ω) = 1, (17)

P1,1,−1,1 (ω) + P1,1,1,−1 (ω) + P1,−1,0,0 (ω) + P0,0,1,1 (ω) = 1, (18)

P1,1,−1,1 (ω) + P−1,1,1,1 (ω) + P1,0,1,0 (ω) + P0,1,0,−1 (ω) = 1, (19)

P1,1,1,−1 (ω) + P−1,1,1,1 (ω) + P1,0,0,1 (ω) + P0,1,−1,0 (ω) = 1. (20)

Now the contradiction becomes clear: if we add all the random variables on the left hand side (which196

are 0 or 1 valued), we obtain an even number, since each Pi appears twice, whereas on the right hand197

side the sum adds to nine, which is an odd number. However, notice that this contradiction only appears198

because we are assigning the same element ω of the sample space to, say, P0,0,0,1 in (12) as well as P0,0,0,1 in199

(13). This is justifiable by an ontological assumption: if P0,0,0,1 is the property of a system, such property200

exists independent of what other properties we measure with it. However, as KS shows, this assumption201

presents a challenge: in QM, properties are dependent of context.202

Contextuality is not a novel effect, as it is present in many experimental situations outside of203

quantum mechanics, but in quantum mechanics it takes a central role. However, we point out that,204

though the CbD approach is consistent and somewhat resolves the problems associated with properties in205

quantum mechanics, it is not clear to us what quantum ontology it suggests. Furthermore, the formalism206

of quantum mechanics, with properties A being represented by the same Hilbert-space observable207
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regardless of the experimental context, does not clearly distinguish between properties in one context208

or another. So, it is our goal here to provide an alternative approach for quantum properties that is209

consistent with the quantum formalism as well as free of inconsistencies with respect to a classical logic.210

We do so in Section 2.1, where we show how we could use quasi-sets to create random variables that211

can violate inequalities such as (1). In Sections 4.1 and 4.1.1 below we return to the Kochen-Specker212

contradiction in order to see how it can be avoided using qsets.213

2.1. Indistinguishability and contextuality214

Let us now interpret the KS theorem in a different way, using a notion of indistinguishability (or215

indiscernibility) for both particles and properties. The notion of indiscernibility is to be taken as intuitive216

for now, but it shall be made precise in the next sections. Here we aim mainly to motivate the most formal217

sections below.218

Intuitively, our interpretation can be expressed by means of the following question: what if, instead219

of one identifiable particle or property, as we have considered above when we have taken ω ∈ Ω, we220

have an indistinguishable collection of them? Suppose we have a collection of such indiscernible entities221

(as we shall see, we will express this by referring to such a collection as a quasi-set, or just a qset for short).222

Without lost of generality or implying that we are supposing that we can speak of a difference among then,223

by the lack of an adequate word, we shall refer to them as “different.”5 But we must insist that this façon224

de parler can be made rigorous in terms of a quasi-set of indistinguishable objects representing quantum225

systems. So we may reason as if we have a “different” particle or property for each context (that is, one226

counting as different).227

This talk about “difference” is a way of speaking; they are indistinguishable but do not count as one.228

This agrees with the physicists’ jargon, but not with the underlying mathematics (see below). As we have229

said, we have particles or properties in different contexts (seen as sets of properties), but we cannot say230

which particles or properties are in each context, since they are indistinguishable. The above examples231

illustrate the situation: assuming that properties are the same leads to contradictions. Thus, each particle232

is responsible for the outcomes in each contextual measurement.233

The fact that a "different" particle could be involved in a "different" context (an indistinguishable one,234

for the considered properties are also indistinguishable from those of the first context) allows us to have235

different values for indistinguishable particles. This is the fundamental point: we have indistinguishable236

properties (to be defined in the next section) and indistinguishable particles. Take a collection (qset) of237

such properties: this is a context. We may form several contexts this way. Take a particle and one context238

and measure the corresponding properties: we have outcomes. Now take another "indistinguishable"239

context and an indistinguishable particle. Although the properties and the particles are indistinguishable,240

the outcomes may be different.241

3. The ontological thesis and its mathematics242

We emphasized before some peculiarities of quantum systems which may call our attention to a243

deeper look to phenomena such as KS. In this section we attempt to justify our thesis about the ontology244

of these quantum entities, where “entity” is used here as synonymous of “thing”, “object” and other terms245

which refer to the entities we are interested in. Let us first fix some terminology, to be further explained246

in Section 3.1.1. By an individual we informally mean an entity that possesses identity, in the sense of being247

5 As Schrödinger have stressed regarding this subject, “a particle is not an individual. (. . . ) it lacks sameness (. . . ) It is not at
all easy to realize this lack of individuality and to find words for it.” [40] In fact, we need to circumvent the difficulties with
subterfuges of language, by using words like "identity" and "difference" which do not seem to conform with the situations.
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able to be identified as such in a certain circumstance and as the same entity we have had enrolled with248

in another circumstance (e.g. we recognize Mr. Bean when he appears on TV in every instance of his249

appearance).6 Of course this is an ontological thesis, one we tend do accept without further discussion:250

an individual is identical just to itself and to nothing more. This identity is called self-identity, or numerical251

identity, to distinguish it from the relative identity we shall mention below.252

It is important to mention that, in assuming the non-individuals view, we are not positing that there253

are no entities at all, or that all things are merged in a great fuzzy swarm of something. As we shall254

realize soon, these non-individuals can be put apart or isolated. The terminology ‘non-individuals’ might255

not be good, but as we have seen it has a long tradition. It would be better perhaps to call them, as did256

Weyl, individuals without identity (an oxymoron), or something like that, but we shall continue to follow257

the tradition and refer to them as non-individuals.258

In a formal setting, we can say that an individual is something that obeys the laws of the classical259

theory of identity embedded in classical logic (either of first or of higher-order, that is, set theory — for260

details, see [41, Chap. 6]). An individual is different from every “other” individual: there cannot be261

two individuals completely similar, without a difference. If they are two, they must present an internal262

(not spatial) difference, something that today we would think of in terms of intrinsic properties (more263

on this below). This is the famous Leibniz’s Principle of the Identity of Indiscernibles, part of Leibniz’s264

metaphysics which was incorporated in classical logic, standard mathematics, and classical mechanics.265

If we use standard mathematics—say one that can be constructed within a standard framework like the266

Zermelo-Fraenkel set theory—then all entities are individuals: given an a, define the “property” Ia as be267

identical with a as follows: Ia(x) ↔ x ∈ {a} (considering that the unitary set does exist for any a). Then,268

Ia is a property shared only by a, and, by Leibniz’s principle, any other object will be different from a for269

not having this property. This is the core of what we can call classical metaphysics: it is a metaphysics of270

individuals, as in classical mechanics, where by hypothesis any particle can be discerned from any other271

(even of the similar species) by their trajectories at least.7272

Ontologically speaking, the formalism of non-relativistic quantum mechanics (QM) is compatible273

with more than one view (see [41] for an extensive discussion). This is termed the underdetermination of274

the metaphysics by the physics (ibd., §4.5). There are two main ontological views that have been developed275

in the literature. The first is the Received View (ibid., p.135), for it has its origins with the forerunners of276

QM, specially Schrödinger, Heisenberg, and Weyl. This is the view which starts with the idea that, in the277

quantum realm, particles (and, of course, other quantum systems) lose their individuality, since in most278

situations we cannot identify them as individuals anymore. For example, Schrödinger said that279

“[We are] compelled to dismiss the idea that (. . . ) a particle is an individual entity which280

retains its ‘sameness’ forever. Quite on the contrary, we are now obliged to assert that the281

ultimate constituents of matter have no ‘sameness’ at all.282

(. . . )283

I beg to emphasize this and I beg you to believe it: It is not a question of our being able to284

ascertain the identity in some instances and not being able to do so in others. It is beyond285

of doubt that the question ‘sameness” of identity, really and truly has no meaning.” [40,286

pp.117-8], [41, p.119]287

6 David Hume, in his Treatise on Human Nature, has cast doubts even on this view, for according to him there is nothing except
pure habit that assures us that the Mr. Bean of today is the same Mr. Bean of some days before.

7 It is interesting to note that, although being of the same species and thus partaking all their intrinsic properties, two classical
particles are regarded as distinct. Some, like Heinz Post, say that they present a ‘transcendental individuality’ beyond their
attributes, but this is to push metaphysics too far – see [41].
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Weyl (and Heisenberg) goes in the same direction, writing, for instance, that “photons (. . . ) are288

individuals without identity" [42, p.246], [41, §3.7], using a confusing terminology, since individuals are289

entities which do have identity. Unsurprisingly, this view has also been called the non-individuals view.290

The second view considers quantum particles as individuals, similar to classical particles, thus291

associating QM to a “classical” ontology, taking quantum entities as individuals on pair with their292

“classical twins.” In this view, we need to impose particular restrictions to the states particles may be in:293

either symmetric or anti-symmetric states for ordinary particles, but not other states formed by particle294

permutations corresponding to paraparticles [41, §4.1.2]. For example, Bohm’s interpretation of QM starts295

from the supposition (a metaphysical one) that particles are individuals as well.296

Here we pursue the non-individuals view. Our reasons can be stated in two different ways. The297

first is that most interpretations of QM seem to favor this view instead of the view of quantum entities298

as individuals. Second, as we shall summarize soon, there are situations where it makes no sense to299

claim that the involved systems can have the characteristics of individuals as posed above. For instance,300

there is no way of discerning between two entangled particles, or among the particles/atoms that form a301

Bose-Einstein condensate.302

The important analogy for our purposes may be this. Take a chemical reaction, such as methane
combustion:

CH4 + 2O2 → CO2 + 2H2O. (21)

There are four Hydrogen atoms in the methane molecule, and no differentiation among them is possible.303

After the reaction they are part of the two water molecules. But, which ones are where? It is impossible304

to say. The same can be said about the four Oxygen atoms. If we were able to discern then, we would be305

introducing some additional property (a quantum number) of the elements that chemistry says they do306

not possess. It is in this sense that we speak of non-individuals: we have “entities,” quantum entities for307

the lack of a better expression, but according to us they should be taken as devoid of identity. It is this308

view we wish to explore.309

But physics, and its ontology, need to be described mathematically. How can we describe our310

objects without identity conditions? Of course we cannot use standard mathematics, for the objects it311

describes, as mentioned above, are individuals, and the only way to consider non-individuals in this312

framework would be by confining them within a non-rigid structure, that is, a mathematical structure313

having automorphisms other then the identity function. Let A = 〈A, Ri〉 be a structure, being A a314

non-empty set and Ri an n-ary relation over the elements of A, where i range over a set of indexes.315

An automorphism of A is a bijection h : A→ A such that Rk(x1, . . . , xn)↔ Rk(h(x1), . . . , h(xn)) for every316

Rk. Of course the identity function is an automorphism, and if it is the only one, the structure is called317

rigid or not-deformable. Two elements a, b ∈ A are A-indiscernible if there is an automorphism h such that318

h(a) = b, otherwise, they are A-discernible. For instance, i and −i are indiscernible in the structure of the319

field of complex numbers, for the application which associates a complex number to its conjugate is an320

automorphism.321

So, in considering non-rigid structures, we can talk about indiscernible objects and perhaps even322

about non-individuals. But there is a fallacy here in the case of non-individuals: the indiscernible objects323

are in fact fake non-individuals, for they act as such only inside of the structure. From the outside, that is,324

from the point of view of the whole set theory, which by hypothesis we assume is the mathematical basis325

of our physical (or ontological) theory, we can see that they are individuals. But we always can go outside326

of a structure, as da Costa and Rodrigues [43] proved in a theorem: in the scope of standard set theories327

like Zermelo-Fraenkel, every structure can be extended to a rigid one. This means that even if from inside a328

structure we cannot distinguish the elements, from the outside we always can. For example, we know329

that i 6= −i, but we cannot realize that from inside the structure of the complex numbers. This is why330
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we say that the entities described by classical mathematics are individuals, and this is the reason why331

we need to pursue a different, non-classical, mathematical setting, if our aim is to deal with legitimate332

non-individuals. This is what we consider next.333

3.1. Indistinguishability and quasi-sets334

To motivate the mathematical framework, we start by describing informally the notion of335

indistinguishable properties we use in this paper. Later on, this notion will be formally described in336

the theory of quasi-sets (or qset theory for short). We shall be speaking informally of “indistinguishable” (or337

“indiscernible”) things, as well as of “identical” and “different” things. These concepts must be taken,338

at this stage, in their intuitive sense—the theory will make them precise. Our first discussion of those339

basic concepts may seem nonchalant, but we ask you, the reader, to be forgiving with us at this stage,340

for we need to bring your attention for some details which in the standard setting are assumed as quite341

obvious, but which need to be taken if we are to have truly indistinguishable things.8 In the subsequent342

discussions we need the following the definitions:343

Indistinguishable things. Indistinguishable things are things that share all their properties. For example,344

two photons prepared in the same state in a cavity cannot in any way be distinguished.345

Relative indistinguishable things. Relative indistinguishable things are things which partake some346

attributes, those relative to which they are indistinguishable. Classical Newtonian particles, for347

instance, may be indistinguishable with respect to all their attributes (e.g., mass, charge, etc), but348

are distinguishable by their trajectories.349

Identical things. Identical things are the very same thing. Again, from classical physics, a particle at time350

t1 is identical to the same particle at time t2.351

Different things. Different things are things which present a difference, an attribute of its own which352

confers it an identity not shared by any other entity.9 An example would be two classical particles353

with different masses, i.e. one with mass m and another with mass M 6= m.354

3.1.1. “Another” electron and the motivation for the theory Q355

Let us consider the case of a Helium atom in its fundamental state. This atom has two electrons,356

and if we measure their spins in a certain direction z, we will find one “up” and another “down.” But357

nothing allows us to distinguish between the electrons: we cannot say which is which, and in fact this358

question may even be meaningless. In the quasi-set theory Q, we may speak of, say, a qset X as having359

q-cardinal equal to 2, but still having its elements indistinguishable. Talking about X replaces talking360

about anti-symmetric functions (in the case of electrons), but the conclusions are the same: there is361

nothing in Q that enables us to distinguish between two elements of X. So, this partially captures what362

the standard view of indistinguishability in QM says.363

As we have emphasized, we need to speak of the another electron in the He atom. This is, again, a364

façon de parler. In order to make this precise, we need to consider the notion of difference, that is, the very365

notion (theory) of identity needs to be considered (as difference is the negation of identity). The informal366

idea of identity that interests us here is that of numerical identity: a thing has (numerical) identity if it367

counts as one, that is, if it has an identity card, something which even if only in principle enables us to368

8 There are two main lines of assumptions which define the theories conferring identity to an object: the substratum theories,
which postulate the existence of something beyond the properties of an entity, and bundle theories, which say that the
characteristics of the objects, including its identity, are done by some of its attributes. The discussion involving these views,
mainly related to quantum mechanics, can be seen in [41].

9 We are avoiding any compromise with substance, haecceities and so on [41]
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discern it from any other thing in whatever situation, even if it is mixed with other similar things of the369

same kind. We say that such an entity is an individual. Sometimes we cannot make the difference explicit370

due to lack of experimental accuracy or other empirical difficulties, but the possibility exists in principle.371

This is what happens with classical particles and with all entities considered by standard mathematics.372

In classical physics, two particles of the same kind may be indistinguishable relative to all properties373

(relative identity, not numerical identity), but their positions in space and time discern them one from each374

other in any situation. All impossibility in making the distinction must be regarded as an epistemological375

ignorance, but they do present identity, they are ontologically distinct things. Identity makes sense in this376

classical realm.377

Classical logic, standard mathematics, and classical physics were built with this informal notion of378

identity in mind, which we suppose (this is of course a metaphysical thesis) also applies to objects in our379

surroundings. Identity as such is well summarized by Leibniz’s Principle of the Identity of Indiscernibles:380

if we have two things, each one presents a property not shared by the another. Conversely, if they present381

all their properties as common, that is, if they are indistinguishable, then they are the very same object,382

in the sense that there is not more than one object, just one. The use of these terms in physics and383

in philosophy vary. Identity in quantum mechanics means agreement in all the intrinsic properties [44,384

p.275]. But, in philosophy, so as in standard mathematics, identity means the same. If a = b is true, this385

means that there are not two distinct things, but just one, which can be named either by a or b. Physicists386

understand the distinction between one and the other, but their language should be made more precise387

in mathematical and logical terms. That’s what we partially intend to do here.388

Classical physics, as we have seen, classical logic, and, more importantly, standard mathematics do389

not enable indistinguishable but not identical things, as the formalisms involve Leibniz’s metaphysics of390

identity in some way (the converse of the above principle is a theorem of the underlying logic: identical391

things are indistinguishable; they have the same properties). So, how can we speak of indistinguishable392

but not identical things? One way is to relax the notion of identity and consider just relative identity,393

that is, identity relative to a certain class of properties. For instance, the three authors of this paper are394

indistinguishable relatively to their interest for physics, mathematics, philosophy, and good beer, but395

they are not identical, as they are not the same person. In being different, each of them present at least396

property (in our case, a large quantity of them) which do not belong to the others, e.g. the countries we397

live in, US, Argentina, and Brazil. So, within a “classical” setting such as classical mathematics10, we can398

deal with indistinguishable things only by pretending that they share all their properties (and say that399

they are "indistinguishable"), but this is (again!) a way of talking—in such a framework, every object is400

an individual, as it has identity.11
401

Quasi-set theory is the mathematical theory of indistinguishable but not identical things. Why to402

consider it? The reason comes, first and foremost, from QM: to express without making the trick of using403

a relative identity (say by making use of an equivalence relation or a congruence other than identity),404

such that we may have “truly” indistinguishable things (quantum systems) that cannot be discerned even405

in principle12. Cases abound in quantum mechanics: the aforementioned two electrons in a He atom,406

and particles in a state of superposition, to name a few. In quantum field theory, the Bose-Einstein407

condensate is perhaps the best example of “things” (quantum systems) partaking all their properties,408

10 What is “classical” mathematics is unclear, but here we mean a mathematics that can be constructed within a standard set
theory, such as the Zermelo-Fraenkel system.

11 In ZF, given an object a, it is enough to consider its unitary set {a} and define the property Ia(x) := x ∈ {a}. It is a theorem of
ZF that the only object having the property Ia is a itself. Then, according to Leibniz’s principle, this suffices for saying that a is
distinct from any other object.

12 For a detailed account of the pros and cons of using quasi-sets, the interested reader is referred to [45].
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being in the same quantum state, without turning to be, by force of Leibniz’s principle, the very same409

object. Notice that this is not an epistemic indistinguishability: quantum particles are indistinguishable410

in principle. So, to make things mathematically right, we need of such a theory, and we need to change411

the metaphysics accordingly.13 In QM, Leibniz’s principle would not be valid for all objects, yet we can412

maintain it for some others. In Q, which we explain in the next section without to many technical details413

(for the interested reader, see [41,46]), the standard theory of identity does not hold for all objects of the414

domain.415

3.2. Quasi-set theory416

Now that we laid out the motivations, let us have a look on how the qset theory describes the417

above concepts. Indiscernibility is a primitive concept, formalized by a binary relation “≡” satisfying418

the properties of an equivalence relation. In this notation, “x ≡ x′” is thought to mean "x is indiscernible419

from x′”. This binary relation is a partial congruence in the following sense: for most relations, if R(x, y)420

and x ≡ x′, then R(x′, y) as well (the same holds for the second variable). The only relation to which this421

result does not hold is membership: x ∈ y and x′ ≡ x does not entail that x′ ∈ y (details in [41,46]). This422

captures the idea that, although two electrons are indistinguishable, one of them may be in an orbital,423

while the other may be not. We should emphasize that it is wrong to conclude that since they are in424

different orbitals, they are distinct, for one has a property not shared by the other, namely, to belong to425

the orbital. In fact, we cannot know which is which and, furthermore, any permutation of the electrons426

does not give different empirical results.427

This conclusion that being in different orbitals would lead to electrons being different holds only if428

the metaphysics is classic, that is, only if we reason as if the systems are classical objects having identity,429

that is, obeying the standard theory of identity. But our theory says that for q-objects the predicate of430

identity does not hold. For instance, it makes no sense to say that the two electrons in the level 2s of a431

Sodium atom are distinct (with orbitals 1s22s22p63s1), for they lack a distinctive property that enables us432

to apply Leibniz’s principle and conclude that they are different. The reason is that even if they differ in433

their values of spin (being fermions, they cannot be in the same quantum state), it would make sense to434

talk about their identity only if we could identify them. For example, we can say that one has spin UP,435

but we cannot say which one. Hence, they cannot present identity conditions.14
436

The objects of the considered domain are distinguished as q-objects (intended to represent quantum437

objects), c-objects (representing classical objects), and collections of them, termed quasi-sets (qsets), some438

of them perhaps being mixed collections, yet these are not the interesting ones. Among the qsets there are439

some called sets, which have as elements either c-objects or other sets. The null qset is a set. The q- and440

c-objects are ur-elements, in the sense of the set theories with objects which are not sets but which can be441

elements of sets [47]. If we eliminate the q-objects, we are left with a copy of ZFU, the Zermelo-Fraenkel442

set theory with Urelemente. Hence, we can reconstruct all standard mathematics within Q in such a443

“classical part” of the theory.444

Cardinals are also taken as primitive, although they can be proven to exist for finite qsets (finite in the445

standard sense [48]). The idea is to use this concept to enable us to speak of “several objects” in a certain446

situation and expressing that in terms of cardinals. So, when we say that we have two indiscernible447

13 It is a thesis of ours that we cannot read the metaphysics from the physics. There is an underdetermination of the metaphysics by
the physics. See reference [41, §4.5] for details.

14 The situation is different with “classical” objects. For instance, in Zermelo-Fraenkel with the Axiom of Choice, every non-empty
subset of the real numbers admits a well-ordering. So, the last elements of two disjoint subsets are different, although we cannot
say which reals they are, for the well-ordering cannot be defined by any formula of the language of set theory. But, as they obey
the classical theory of identity, they are in principle different, yet unidentifiable.
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q-functions, according to the above definition, we are saying that we have a qset whose elements are448

indiscernible q-functions and whose q-cardinal is two15. The same happens in other situations.449

The interesting fact is that qsets composed by several indistinguishable objects do not have an450

associated ordinal. This means that these elements cannot be ordered, hence they cannot be counted.451

But even so we can still speak of the cardinal of a collection, termed its quasi-cardinal or just its q-cardinal.452

This is similar to what we have in QM when we say that we have some quantity of systems of the same453

kind but cannot individuate or count them, e.g. the six electrons in the level 2p of a Sodium atom (cf.454

above).455

Identity (termed extensional identity) “=E” is defined for qsets having the same elements (in the sense456

that if an element belongs to one of them, them it belongs to the another)16 or for c-objects belonging to457

the same qsets. It can be proven that this identity has all the properties of classical identity for the objects458

to which it applies. But it does not make sense for q-objects, that is, x =E y does not have any meaning459

in the theory if x and y are q-objects. It is similar so speak of categories in the Zermelo-Fraenkel set460

theory (supposed consistent). The concept cannot be captured by the theory, yet it can be expressed in its461

language. From now on, we shall abbreviate =E by = as usual.462

The postulates of Q are similar to those of ZFU, but by considering that now we may have q-objects.463

The notion of indistinguishability is extended to qsets by means of an axiom which says that two qsets464

with the same q-cardinal and having the same quantity (we use q-cardinals to express this) of elements465

of the same kind (indistinguishable among them) are indiscernible too. As an example, consider the466

following: two sulfuric acid molecules H2SO4 are seen as indistinguishable qsets, for both contain467

q-cardinal equals to 7 (counting the atoms as basic elements), and the elements of the sub-collections468

of elements of the same kind are also of the same q-cardinal (2, 1, and 4 respectively). Then we can469

say that H2SO4 ≡ H2SO4, but of course we cannot say that H2SO4 = H2SO4, as for the latter the two470

molecules would not be two at all, but just the same molecule. In the first case, notwithstanding, they471

count as two, yet we cannot say which is which.472

Since we want to talk about random variables over qsets, it is important to define functions between473

qsets. This can be done in a straightforward way, and here we consider binary relations and unary474

functions only. Such definitions can easily be extended to more complicated multi-valued functions. A475

(binary) q-relation between the qsets A and B is a qset of pairs of elements (sub-collections with q-cardinal476

equals 2), one in A, the other in B.17 Quasi-functions (q-functions) from A to B are binary relations477

between A and B such that if the pairs (qsets) with a and b and with a′ and b′ belong to it and if a ≡ a′,478

then b ≡ b′ (with a’s belonging to A and the b’s to B). That is, a q-function may take indistinguishable479

elements to indistinguishable elements. When there are no q-objects involved, the indistinguishability480

relation collapses in identity and the definition is equivalent to the classical one. In particular, a q-function481

from a ‘classical’ set such as {1,−1} to a qset of indiscernible q-objects with q-cardinal 2 can be defined482

so that we can’t know which q-object is associated to each number (this example will be used below).483

15 We use the notation qc(x) = n (really, qc(x) =E n, see below) for a quasi-set x whose q-cardinal is n.
16 There are subtleties that require us to provide further explanations. In Q, you cannot do the math and decide either a certain

q-object belongs or not to a qset, for this requires identity—you need to identify the object you are making reference to. In
the theory, however, you can make the hypothesis that if a certain object belongs to a qset, then so and so. This is similar to
Russell’s use of the axioms of infinite (I) and choice (C) in his theory of types, which assume the existence of certain classes
that cannot be constructed, so going against Russell’s constructibility thesis. What was Russell’s answer ? He transformed all
sentences α whose proofs depend on these axioms in conditionals of the form I → α and C → α. Hence, if the axioms hold, then
we can get α. We are applying the same reasoning here: if the objects of a qset belong to the another and vice-versa, then they
are extensionally identical. It should be noted that the definition of extensional identity holds only for sets and for c-objects.

17 We are avoiding the long and boring definitions, as for instance the definition of ordered pairs, which presuppose lots of
preliminary concepts, just to keep with the basic ideas. For details, the interested reader can see the indicated references.
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To summarize, in this section we showed that the concept of indistinguishability, which is in conflict484

with Leibnitz’s Principle of the Identity of Indiscernibles, can be incorporated as a metaphysical principle485

in a modified set theory with indistinguishable elements. This theory contains in it ‘copies’ of the486

Zermelo-Frankael axioms with Urelemente as a special case, when no indistinguishable q-objects are487

involved. This theory will provide us the mathematical basis for formally talking about indistinguishable488

properties, which we will show can be used in a theory of quantum properties. We will see in the next489

section how we can use those indistinguishable properties to avoid contradictions in quantum contextual490

settings such as KS.491

4. The indistinguishability assumption, contexts, and the measurement process492

Let us now relate the above metaphysical discussion to physics. Suppose that we aim to perform a493

quantum experiment. In order to check some statistical predictions of the formalism, we need to repeat494

the same experiment a number N of times, with N large enough to allow us to compute mean values,495

probabilities, and all necessary stochastic properties of experimental outcomes. But what can we mean by496

“the same experiment?” Let us elaborate on this notion to underscore how indistinguishability is deeply497

connected to contextuality.498

First of all, notice that in order to make N experiments, we must first prepare N "identical" copies of a499

quantum system. That is, by employing the language of most physicists, we need N "identical" particles500

or quantum systems. But, according to the indistinguishability postulate,18 these particles cannot be501

identified. As it is generally agreed, this is so even if we perform a thought experiment: if we want to502

respect what the logic of QM seems to suggest (at least to us) with regards to identity, we must assume503

that the set of copies that we imagine of the quantum system is in reality a quasi-set of indiscernible504

objects in the sense of Section 3.1 above.505

Next, we have to perform the “same” measurement (or more generally, the same set of506

measurements) on each preparation. This means to construct the "same" experimental setup for each one507

of them, which is impossible to realize. But we can suppose that this construction involves equivalent508

setups Mi, (i = 1, . . . , N), which are essentially indistinguishable between them. Notice that each one of509

these setups defines the “same” context. The fact that these setups are macroscopic should not lead us510

into confusion about their indistinguishable logical nature. This assumption is inherited from the fact511

that particles are indistinguishable: as representative of properties, the Mi’s are indistinguishable in the512

sense given in Section 3.1.513

But our above discussion has a direct connection to the KS contradiction: when we run each514

version of the experiment, we may obtain different outcomes, even if we measure then in the same515

context. For example, if we prepare N copies of a spin 1/2 system and measure the spin in the same516

direction, say Sz, we can obtain a distinguishable series of results. As an example with N = 5, we may517

obtain (1/2, 1/2,−1/2,−1/2, 1/2). But here it comes the interesting part: while all preparations and518

measurements are essentially equivalent (i.e., indistinguishable), they are not the same ones in the sense519

of being just one. This is what allows a quantum system to possesses different results for equivalent520

experiments and still maintain an ontology based on truly indistinguishable entities.521

It is interesting to consider the classical analogue of this problem. If we prepare N classical522

particles in the same state, from a logical perspective, the ontological properties of classical identity523

18 This assumption, essential in the standard quantum formalism, says that the expected value of the measurement of any
observable in a system in a given state is the same before and after the system has suffered an interchange of indistinguishable
particles. Formally, 〈ψ |Â|ψ〉 = 〈Pψ|Â|Pψ〉 for any observable Â and any state |ψ〉, where P is a permutation operator—see [41,
p.135 and passim].
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imply that, if we perform the same measurements on each particle, we must obtain the same results.524

There is no other logical possibility: two classical particles prepared in the same state (even if there are525

actually two of them), are identical from the logical perspective—classical logic of course. Thus, if we prepare526

identical (equivalent) measurements we must obtain (ideally) the same results. Under these assumptions,527

statistical fluctuations need to be seem as originated by the imperfections of either the state preparation528

or measurement, but never in the ontological properties of the objects themselves. They are, at least in529

principle, well behaved individuals. That is, there is no room for fluctuations at the logical/ontological530

“classical” level: the classical theory of identity implies that indistinguishability must collapse into531

identity (in the philosophical or in the mathematical sense of “being the same”).532

The quantum mechanical situation is totally different from a classical logical/ontological point of533

view, provided that we assume that quantum particles can be truly indistinguishable objects. By this534

we mean: contrarily to classical systems, quantum systems can be different solo numero, i.e., they can be535

seen as collections of indistinguishable entities in a very strong sense which, notwithstanding, are not536

the same. This logical structure does not allow us to conclude that, in a thought experiment, the results537

of the N measurements Mi must be the same. With this in mind, there is room for another possibility:538

due to the fact that particles can be seen as truly indistinguishable entities, they are not obliged to yield539

exactly the same results even if the experiments are indistinguishable. Suppose that we aim to perform540

a quantum experiment. A quantum property, in this sense, cannot truly be attributed to a particle, since541

this particle does not have an identity.542

This idea that measurements may yield different results for different but indistinguishable particles543

may suggest the possibility of distinguishing them, since we could label them with the measured544

property. This is not so, as we cannot attribute each result of the experiment to each particle (before545

measurement), because of the fact that the state has changed, and the particles could have been even546

destroyed during the measurement process. In other words: the result of the measurement must not547

be confused with the particles themselves. And this is expressed also in the possibility of correlations548

between “different” particles. For example, two entangled spin-1/2 particles in a singlet state will show549

strong spin-measurement correlations, and if we measure their spin in the same direction they will be550

anti-correlated. However, even in this case, we cannot say that particle a has spin “up” and b has spin551

“down”, as this is not possible within the theory. All we can say, in this case, is that one of the particles552

has spin “up” and the other “down”.553

4.1. The indistinguishability assumption and KS554

Let us now take indistinguishability, as presented above, as a metaphysical thesis and consider its555

implications for quantum contextuality. In particular, we examine the implications of indistinguishable556

objects to the KS contradiction, something we already suggested intuitively in the beginning of this557

section. As seen in Section 2, we can summarize the assumption leading to the KS contradiction as the558

following statement:559

(KSH) It is possible to assign well-definite values to all measurable properties of a given560

quantum system.561

We can avoid a contradiction by negating KSH in at least two ways:562

(i) properties do not have well-defined values563

(ii) properties or particles may be indistinguishable.564

For (i), given a quantum system, it is not possible to assign well-definite values to all measurable565

properties. This is the usual way to avoid the KS contradiction, as discussed in Section 2. Option (i)566

is the most popular interpretation of the KS contradiction among physicists and philosophers of physics.567
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Option (ii), as we shall see below, is a consequence of the indistinguishability of quantum particles, and568

has also been explored by Kurzynski [49]. If particles are truly indistinguishable entities, and more than569

one particle could be involved in a measurement process of a quantum system, then the intrinsic lack570

of identity of particles makes it meaningless to speak about properties as being properties of a specific571

particle.572

In this paper we take option (ii), and analyze its possible consequences. This allows us to introduce573

a novel interpretation of the KS result. In order to proceed, let us assume that quantum systems (or even574

properties) lack identity (in the sense explained above): they may be taken, in certain situations, as truly575

indistinguishable objects, and in these cases it is meaningless to label them, name them, or identify them.576

Notice that the entities involved need not be particles: they can be degrees of freedom or even be fields.577

Only an indistinguishable “thing” is needed for our argument.578

Under this non-individuality assumption, it seems odd to affirm that the properties defining a579

context C correspond to the same particle than the ones defining a "different" context D prepared in580

the same way (an indistinguishable context, in the sense posed before). The act of choosing between581

measurements in contexts C or D corresponds to different (and usually, incompatible) possible worlds,582

and we cannot grant that we are talking about one and the object underlying these alternatives: our583

non-individuality assumption implies that it is meaningless to assign transworld identity to elementary584

particles. Notice that this argument needs not to be operational: it follows as a logical consequence of our585

ontological non-individuality assumption. There is no need to perform any actual experiments in order586

to realize that to affirm that we have the same particle in all contexts is a strong ontological assumption587

(dependent on the classical notion of identity).588

In order to claim that a classical system possesses context-independent properties, we must be able589

to identify the system in different possible worlds first (from a logical/ontological point of view). Indeed,590

we could (trivially) simulate a false contextuality experiment using “different” (remember the restrictions591

posed above on the use of language) classical particles (in the sense that we have a quasi-set with592

q-cardinal greater than one). But our fraud could always—at least in principle—be debunked. In classical593

mechanics, if we take our particle and measure a collection of properties (a context), and then measure594

another context, we can in principle follow the trajectory of our particle and assure that it will be the595

same in the new context. This is why we cannot reproduce quantum contextuality in classical mechanics596

without forbidding the possibility of detecting the fraud: if someone tries to reproduce a contextuality597

experiment using different classical particles, it could always be debunked by a careful observer following598

the particles’ trajectories and denouncing that he have used more than one particle. But as Schrödinger599

observed (and following our non-individuality assumption), it is pointless to try to identify particles in600

the quantum setting: besides the fact that particles are usually destroyed or perturbed in a quantum601

experiment, we have no means to detect which is which and “debunk” the false experiment [41, §3.6].602

And, we emphasize it again, this is not a matter to be settled in an empirical way: these considerations603

follow as a consequence of our ontological non-individuality assumption. If our particle is a quantum604

system, there is no way, when we repeat the experiment with another set of properties, to grant that we605

will be dealing with the same particle or property, just because elementary particles are (in certain crucial606

situations) indistinguishable and the very question is meaningless (according to our ontology, there are607

no identity conditions to elementary particles and their collections).608

We remark that the above considerations do not imply that quantum particles are distinguishable by609

their (differing) properties in different contexts. Let us consider the example of a singlet state to illustrate610

this. In a singlet state, we know that electrons have opposite spin values: if we measure the spin in a611

certain direction, we obtain that one electron has spin up and the other will have spin down. And there is612

no other possibility (because of the properties of the singlet state). But this does not allow us to conclude613
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a statement such as “electron 1 has spin up while electron 2 has spin up”. We can only conclude that614

electrons have different spins, and that is all. This example shows that615

We can have indistinguishable particles that although being of the same kind, form a quasi-set616

with q-cardinal greater than one and its elements may have different properties, while at the617

same time, these particles do not have properties which allow us to individuate o identify618

them.619

There are many possible examples of this situation. Take again the six electrons in the 2p level of an620

Sodium atom 1s22s22p63s1. They are indiscernible and, although obeying Pauli’s Principle in not having621

all the same quantum numbers, nothing can discern them, tells us which is which. Even so they have622

"different" properties, characterized for instance by their quantum numbers. The six electrons cannot be623

counted if by this we understand, as in standard mathematics, to define a bijection from the von Neumann624

ordinal number 6 = {0, 1, 2, 3, 4, 5} into that collection. To which electron should we associate the number625

4? Impossible to say. The most we can say is that we associate 4 to one of them, but without identification,626

something that can be captured by the use of q-functions. So, a standard function cannot be defined, and627

this is why we use q-functions.628

4.1.1. Quasiset theory used to avoid the contradiction629

To begin, let us mention something more about the defined notion of extensional identity given in Q.630

It says that two items x and y are extensionally identical (x =E y, abbreviated by x = y) if they are both631

q-objects and belong to the same qsets or are qsets having the same elements (the formal definition is632

given in [41, p.277]). If there are no q-objects involved, the definition collapses in the standard definition633

of identity in ZFC.634

Now, from the arguments exposed above, it follows that if we assume that particles can be truly635

indistinguishable entities, the contradiction in the KS theorem can be avoided, so it seems. Let us now636

use quasi-set theory to express this idea in a formal way.637

The first mathematical notion that we need is that of a strong singleton. Given a qset z and a q-object638

x ∈ z, we can always form (by the qset version of the separation axiom) the qset [x]z of all elements of z639

that are indistinguishable from x (we follow the notations introduced in [46]). Then, again by separation,640

we get the strong singleton of x, written JxKz as a subqset of [x]z having q-cardinal equals to one. That is,641

JxKz is a qset whose q-cardinal is one and whose only element is an indistinguishable from x. We cannot642

say that this element is x for this affirmation presupposes identity. The existence of such a qset results643

from the axioms of the theory, as it was shown in [41, p.292].644

So, JxKz represents a class of objects, rather than a single object, and satisfies the following property:

(JxKz ⊆ [x]z) ∧ qc(JxK) =E 1 (22)

Notice once more that, despite the notation, it is impossible to identify which is the element that645

belongs to JxKz. Any indistinguishable from x will do the job and the question is simply meaningless646

inside quasi-set theory, due to the fact that the standard theory of identity does not apply to q-objects.647

Furthermore, we remark that all the elements (strong singletons) of such a class are also indistinguishable.648

Now, let us consider each projection operator involved in the above equations expressing KS. Each649

projection is of the form P̂i,j,k,l , where i, j, k, l take values in the set {0,±1}, and to such projectors we650

associate a property Pi,j,k,l . Each collection of values (i, j, k, l) represents a possible empirical proposition.651

Now, on each run of the experiment, these propositions can be either true or false. This is expressed652

formally by assigning to a random variable Pi,j,k,l the value 1 if the proposition is true and the value 0 if653

it is false. Here we stress that such a proposition refers to an identifiable particle.654
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In the case when the particle is treated as a “classical particle”, let us call it e (in this case, e655

can be taken as an element of the classical part of quasi-set theory, so it is governed by the classical656

theory of identity). For example, if we check the property P1,0,0,0 and it is true, we describe this by657

the proposition: “the particle e possesses the property P1,0,0,0". This situation can be represented by the658

ordered pair 〈〈P1,0,0,0, 1〉; {e}〉, which is in essence what a random variable is. Analogously, we describe659

it as 〈〈P1,0,0,0, 0〉; {e}〉 when it is false, and in this case it “the particle e does not possess the property660

P1,0,0,0.” In the original formulation of the KS contradiction, these properties where assigned to a single661

(same) particle {e}. This requires us to make consistent valuations: if the property P1,0,0,0 appears as662

P1,0,0,0 in different equations (that represent different contexts), its valuation must be the same, because,663

in the usual interpretation, it refers to the same particle {e}. Let us denote by V a variable assigning truth664

values (i.e., V = 0 or V = 1).665

But, if we use the resources of quasi-set theory, we cannot say that it is the same particle which is
possessing the property Pi,j,k,l , but only that indistinguishable particles do possess it or not. We express
this by an ordered pair as follows

〈〈Pi,j,k,l ; V〉; JxKz〉 (23)

where JxKz is a strong singleton of the class [x]z (defined by the q-object x for a suitable qset z), and666

the pair of equation (23) has q-cardinal 2. The above pair represents the proposition: “there is one667

indistinguishable {x} for which the property Pi,j,k,l acquires the value V,” but without any specific668

identification of the particle. Notice that, as said before, using the axioms of quasiset theory, it is formally669

impossible to identify the element of JxKz: we can only say that there is one of a kind (say, an electron).670

But now, if we try to make a concrete valuation using propositions represented by ordered pairs671

〈〈Pi,j,k,l ; V〉; {x}s〉, we realize that it is consistent to assign different truth values to the same projection672

operator. Really, this can be done due to the fact that, if we consider two properties P1 and P2 represented673

by 〈〈Pi,j,k,l ; 1〉; JxKz〉 and 〈〈Pi,j,k,l ; 0〉; Jx′Kz〉, we cannot affirm (due to the fact that this is meaningless in a674

theory of truly indistinguishable entities) that JxKz and Jx′Kz are the same. Thus, there is no contradiction in675

assigning the value V = 1 to Pi,j,k,l in proposition P1 and the value 0 to proposition P2. This modification676

of the propositional structure and the truth values assignment in the quantum formalism, allows us to677

avoid the contradiction in equations (3 and 12). In other words, the description of propositions using678

quasiset theory allows us to assign definite values to particles, but in a way that is very compatible679

with the constrains imposed by the quantum formalism. Particles may have well-defined properties; we680

simply cannot tell which particle has which property.681

5. Conclusions and Final Remarks682

Let us write down these considerations in a more general form. Consider the set B(H) of bounded683

operators acting on a separable Hilbert space H. It is well known that the collection P(H) of orthogonal684

projections is included in B(H) and that it forms an orthomodular lattice (which is modular for the685

finite dimensional case and strictly orthomodular in the infinite dimensional case). The KS theorem can686

be extended to more general von Neumann algebras (see [50]). Projection operators are interpreted as687

empirically testable propositions by appealing to the spectral theorem. Let B be the collection of Borel688

sets in R (the set of the reals). For each observable represented by a self-adjoint operator A, there exists689

a spectral measure MA : B −→ P(H) assigning to every Borel set B a projection operator MA(B). The690

usual interpretation of MA(B) is the proposition “the value of A lies in B.” But to be more precise, we691

should say what is the system for which this property is assigned. The above discussion indicates that the692

identity (or non-identity) of the system in question plays a crucial role. Let us call Q our quantum system,693

and ask about the set theoretical nature of Q. Let us suppose first that Q is identifiable and that it obeys the694

classical theory of identity. In this case, a more accurate description of MA(B) should be “the value of A695
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lies in B for the system Q.” This can be naturally represented, in a standard set theoretical framework, as696

an ordered pair 〈〈MA(B); 1〉; {q}〉, with the value “1" meaning that the proposition is true. The negation697

of this proposition (i.e. “the value of A is not contained in B for the system Q”) can be represented as698

〈〈MA(B); 0〉; {q}〉 (or equivalently, using the standard quantum logical interpretation of the orthogonal699

complement, we can write: 〈〈MA(B); 0〉; {q}〉 ((MA(B))⊥; 1〉; {q}〉 = 〈〈1−MA(B); 1〉; {q}〉). A valuation700

of the properties of Q can be seen as a collection of ordered pairs of this form, each one of them having701

the truth value V = 1 or V = 0. These valuations must be consistent: we cannot have 〈〈P; 1〉; {q}〉 and702

〈〈P; 0〉; {q}〉, because this would mean that q possesses the empirically testable property defined by the703

projection operator P and that it does not possesses it at the same time. This consistent valuation leads704

unavoidably to the KS contradiction, not only in B(H), but in more general von Neumann algebras as705

well.706

If we now assume that quantum particles lack individuality, we must consider Q as represented by707

an q-object x in quasiset theory. This means that, the best we can do is to form a strong singleton for708

q: JxKz, taken from a suitable qset z. Thus, the propositional structure of quantum mechanics must be709

interpreted again. For the observable A and the Borel set B, we can no longer claim that “the value of A710

lies in B for the system Q.” If Q represents a truly non-individual entity (an entity devoid of identity),711

the correct way to make this assertion is to say that “the value of A lies in B for one indistinguishable of Q”.712

Thus, if we now want to represent this proposition using ordered pairs in our set-theoretical framework,713

we can write 〈〈MA(B); 1〉; JqKz〉. But now, in the right hand side of the ordered pair, it appears a strong714

singleton of the qset [q]z, which stands for the indistinguishable from q that belong to z as seen above.715

This implies that potentially we have a collection of indistinguishables from JxKz that can be the value of716

the variable in the right hand side. In other words, any one of the JxKz’s can do the job.717

This of course gives us more freedom in claiming that a proposition is either true or false. And718

furthermore, now there is no contradiction between 〈〈MA(B); 1〉; JqKz〉 and 〈〈MA(B); 0〉; JqKz〉, simply719

because we cannot claim that the property pertains to a single and identifiable quantum system Q, but720

to any one of a collection of indistinguishable element of it. This gives us more freedom to choose721

valuations compatible with the constrains imposed by the quantum formalism and, thus, to avoid the KS722

contradiction. "The Ss In this paper we showed that it is possible to avoid the KS contradiction using the723

theory of qsets to describe indistinguishable properties of particles. Our approach has some similarities724

to that of Kurzynski [49], but here we not only provide a formal setup for avoiding the KS contradiction,725

but one that is mathematically precise and based on the ontology of quantum indistinguishability. It726

would be interesting to investigate the relationship between our approaches.727

Our results provide an example of how the use of non-standard mathematics may help us to solve728

conceptual problems in the interpretation of quantum mechanics. It also shows that taking a more critical729

look at the underlying ontological principles may lead to interesting ways of thinking about some of the730

fundamental issues in quantum mechanics.731
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