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Abstract

In this paper, we discuss content and context for quantum properties. We give
some examples of why quantum properties are problematic: they depend on the
context in a non-trivial way. We then connect this difficulty with properties to
the indistinguishability of elementary particles. We argue that one could be in
trouble in applying the classical theory of identity to the quantum domain if we
take indiscernibility as a core and fundamental concept. Thus, in considering
indistinguishability as such a fundamental notion, it implies, if taken earnestly, that
one should not apply standard logic to quantum objects. Consequently, we end with
a discussion about novel aspects this new mathematics brings and how it relates to
some issues associated with the quantum world’s ontology and the classical limit.
We emphasize that, despite several different ways of questioning classical logic in
the quantum domain, our approach is distinct. It involves one of the core concepts
of classical logic, namely, identity. So, we are in a different paradigm from standard
quantum logics.

1 Introduction
Quantum mechanics (QM) is a very successful theory. It is also a strange theory.
Though QM can calculate many experiments’ outcomes, there is no consensus about
what quantum models tell us about the microscopic world. In other words, it is unclear
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what is the relationship between QM and metaphysics. In this paper, we examine one
particular aspect of the quantum world: quantum particles seem to lack identity.

Under certain circumstances, two quantum systems of the same kind (e.g., two
electrons) become utterly indistinguishable by any empirical means. However, the lack
of identity comes from more than just the impossibility of distinguishing between two
quantum particles (e.g., two electrons). It derives from the fact that nothing changes
when we permutate two identical quantum particles, contrary to what happens in the
classical world. This invariance by permutation is at the core of the Bose-Einstein and
Fermi-Dirac statistics. In this way, the standard interpretation of the theory assumes
indistinguishability. Here, we argue that indistinguishability is an essential concept in
quantum theories (both non-relativistic and quantum field theories). Indistinguishability
should be thought of as at the same level as celebrated quantum concepts, such as
superposition (in particular, entanglement), contextuality, and nonlocality.

Some philosophers and physicists are reluctant to admit that indistinguishability, also
known as indiscernibility, plays a salient role in quantum physics’s ontology. Perhaps,
this reluctance comes from the notion that indistinguishability can be simulated within a
“classical” mathematical setting, as we shall see below. However, we find this argument
weak for several reasons.

First, just because we can do something does not mean that this is the best approach.
Consider, for example, the geometry of curved spaces. We may describe a curved
space using Riemannian geometry, where Euclid’s postulate of parallel lines is not valid.
Alternatively, we can describe the same space by embedding it in a higher-dimensional
space and keeping Euclid’s postulates. Both approaches yield the same results: all
geometry theorems on the curved space are valid in both descriptions. However, one
requires a more complicated ontological structure with extra dimensions. Should we
make our ontology unnecessarily complicated to accommodate our prejudices? We
believe not.

Second, when someone is interested in a theory’s foundations, the underlying logic
and mathematics become fundamental. We should not do away with an ontological
feature because we can use a mathematical trick to describe it. Instead, we argue
that the mathematical formalism used to cope with quantum systems’ description
should consider the ontological features that one aims to describe. Therefore, as we
discuss below in more detail, it is crucial to develop a mathematical framework that
accommodates indistinguishability in a natural way. In fact, we cannot cope with a
contradictory theory (as some claim is Bohr’s theory for the atom, yet this is disputable
– see the discussion in [39]) within a “classical” framework such as in the mathematics
developed in a standard set theory such as the ZFC system, which we presuppose here.1

Thus, we wish to pursue a metaphysics of non-individuals. In this metaphysics,
quantum entities2 (here, quantum objects, independently of their proper characterization)
are seen as not following the standard notion of identity (to be discussed below).

1ZFC is the Zermelo-Fraenkel set theory with the Axiom of Choice. The reader can think of it as
formalizing the intuitive notion of a set one learned in our math classes.

2The notion of a quantum object, or quantum system, varies from one approach to another. In orthodox
quantum mechanics, we have particles and waves. In the quantum field theories, the basic entities are fields,
and particles arise as particular configurations of the fields. Our claims in this paper apply to both particles
and fields.
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Therefore, we need to change logic and mathematics, unless we accept the physicists’
usual way of impersonating them within classical frameworks. These entities need to
be considered in most cases as absolutely indiscernible, something forbidden in the
classical settings.3

Nevertheless, the interpretational problem does not end with the indiscernibility of
quantum objects. Indistinguishability is not the only mystery of quantum theory. The
ontological status of properties of these objects is also relevant. Quantum properties
are tricky, and if we are not careful about how we deal with them, we may reach
contradictions. These contradictions arise from considering the possible results of
multiple (and incompatible) experiments over the same system. As we have stated
elsewhere [9], we never perform the same experiment twice. What we do is take
a similar experiment, so similar as to be indistinguishable. Since experiments are
associated with properties, we should consider indiscernible properties also. These
indistinguishable properties are also forbidden by classical logic. We need to go outside
of standard mathematics and use a different mathematical (and logical) setting as,
for example, quasi-set theory, to be sketched below. Given that we need to recreate
indiscernible properties and systems, it is natural to use a mathematical setting that
incorporates indistinguishability as a primitive notion right from the start.

This paper is organized as follows. In Section 2, we first discuss the role of context
and content in classical and quantum physics. These two concepts play an essential role
in the difficulties physicists and metaphysicists face concerning quantum properties. In
Section 3, we consider the concepts of identity and indiscernibility and how they are
connected. Identity is a difficult concept, and we explore it both as it is connected to clas-
sical physics and indiscernibility in logic. This discussion opens up to our investigations
outlined in Section 4. In this section, we argue that by intimately connecting identity to
context, we can solve some puzzling aspects of quantum physics. Finally, in Section 6,
we outline how to change mathematics to allow for the existence of indiscernibility as a
fundamental and primitive concept. This mathematics, grounded on quasi-set theory,
captures the idea that quantum objects are indistinguishable and lack a classical identity.
As a bonus, we included in Section 7 somewhat more detailed mathematical explanation
of the structures discussed in Section 6. We hope the interested reader will find this
useful, but this section can be skipped by those readers not seeking further mathematical
details. We end the paper with some final remarks, conclusions, and perspectives.

This article is written for a layperson with a strong mathematical background. The
reader is assumed to know enough mathematics to be comfortable with logic, set theory,
and orthodox quantum mechanics. It should be remarked that a paper dedicated to
foundations and aimed at a general reader requires many caveats, since the delicate
aspects can be quickly passed unsuspected. We try to warn the reader about those details
in between the text or in the footnotes. We ask the reader’s forgiveness in advance for
the numerous footnotes.

3For a defense of the non-individuals view, see [22].
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2 Content and context in quantum and classical physics
The idea of content and context comes from linguistics, specifically semantics and
pragmatics. Nevertheless, physics has straightforwardly borrowed those concepts. This
section will discuss how content and context translated from linguistics to physics,
focusing on quantum mechanics. We organize this section in the following way. First,
we concisely review the concepts from linguistics. Then we explore how content and
context show up in classical semantics theories. Our discussion should not be thought of
as a detailed scholarly review of the linguistic literature on content and context, as this
topic is the object of intense research in philosophy of language and linguistics for more
than a century. Instead, we present a subset of linguistics that is relevant to physics.
With that in mind, we follow our linguistics discussion by examining some physics
examples. We see that contents may present context-dependency in both classical and
quantum physics. However, we also argue that the context-dependency in quantum
physics is different.

Let us start with the concept of content. Roughly speaking, semantic content refers
to the meaning of a sentence.4 Consider the following statement, made by Vera’s friend,
Alice:

L1. Vera had a bad date.

Sentence L1 can be seen as a proposition referencing to an object. Assuming the
correspondence theory of truth,5 its truth value requires some metric, likely subjective,
of what constitutes a “bad date.” However, once such a metric exists, one could infer
L1’s truth value. The truth-value of L1, therefore, lies on its semantic content. In other
words, a sentence’s semantic content can be thought of as a function that takes the
sentence and outputs a truth-value.

Context, on the other hand, is the idea that some statements and utterances depend
on the circumstances surrounding it, such as time, place, speaker, hearer, and topic,
to name a few. For example, Alice’s claim that “Vera had a bad date” has different
meanings depending on whether their conversation revolved around the fruits of the
Phoenix dactylifera or romantic engagements. The context alters the meaning and the
functions that take the content to truth values.

However, context does not alter meaning only. Consider the case of indexicals.
The statement “Acacio is hungry now” is contingent on when it is uttered and on the
particular subjective satiety state of the person named “Acacio.” In a sense, its meaning
does not change. Its referent, Acacio, is the same (assuming we are talking about the
same person, one of the co-authors of this paper), the concept of hunger is invariant, and
the meaning of now as the present moment is maintained. However, its truth value is

4We shall assume this without further discussion, but things are not as straightforward as it may appear.
Meaning means “meaning for someone,” and there is no meaning tout court. Yuri Manin, in his great book [25,
pp. 34ff] mentions the case of Lev Alexandrovich Zasetsky, who suffered a brain injury in battle. Zasetsky
could write sentences with meaning, such as “An elephant is bigger than an ant,” and know that it is true
(semantically well defined). But his illness impeded him to understand the meaning of the terms “ant” and
“elephant.” He had semantics and truth, but not meaning.

5We also sustain that the correspondence theory of truth, for instance that treated by Tarski, is not suitable
for the empirical sciences, but this is something to be developed in another opportunity; here we take the
standard view.
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variable. As we write this paragraph, it is false, as Acacio just had lunch. However, the
same statement was right about an hour ago. It will be true again several hours from
now, even though its meaning is seemingly unchanged.

To summarize, sentences have meanings given by their semantic contents. Some-
times the meanings are context-dependent, as in the case of dates. However, other times,
their truth-values vary with context, whereas their meanings seem to do not. We shall
see that physics has some correlates to those ideas.

Let us start with classical physics. A physically-relevant proposition about an object
is something empirically measurable. For example, we can have the following statement:

P1. A billiard ball’s kinetic energy is between 0.1 kg · m2/s2 and 0.2 kg · m2/s2.

Similarly to linguistics, P1 has a meaning: if we measure the kinetic energy of a billiard
ball, perhaps by measuring its mass and speed and inferring the energy, we find it to be
in a certain range. Its meaning is given by an accompanying experimental procedure that
yields a truth-value to the sentence. As importantly, this truth-value also corresponds to
the idea that the billiard ball, if P1 is true, has a specific property: its kinetic energy.

As in linguistics, P1 refers to a subject (the billiard ball) and a truth-value associated
with some meaning-constructing procedure (the experiment). Accordingly, we can think
of any physics experiment as observing a physical system’s property. This property
itself has an associated proposition whose truth-value is assessed by an experiment.
So, in a certain sense, properties of physical systems, such as temperature, momentum,
energy, present an analogy with contents.

We may take the meaning of a statement as which experiment can yield a truth-value
to it. Consequently, expressions such as P1 attach a property to a physical object. Of
course, the property is the statement itself, and the experiment is a way to determine its
truth-value. To summarize, the properties of a physical system are the content of the
propositions.

What about context? Are classical properties context-dependent? Let us examine
an example from 18th-century physics. A group of Italian researchers in the 1700s,
known as the Experimenters, did not differentiate between heat and temperature but
combined both concepts into one (Wiser and Carey, 1983). This combined concept
of heat and temperature led to some puzzling results. For instance, the Experimenters
wondered about examples such as the following. Imagine we heat a 2 kg piece of iron
and immerse it in a container with room temperature water, subsequently measuring the
water’s temperature. Now, imagine that instead of iron, we use 2 kg of a 3:1 mixture of
nitric acid (1.5 kg) and tin (0.5 kg), immersing it in water, as we did with the piece of
iron. It was surprising to the Experimenters that even when the mixture of tin and acid
was not as hot as the iron, the latter would not raise the water’s temperature as much.
If both objects, iron and mixture, had the same amount of “hotness,” why would they
increase the water by different levels of “hotness?”

The answer to the above puzzle is straightforward in contemporary physics, as we
distinguish heat and temperature. Because of this distinction, we can measure how
much heat a substance holds as their temperature increases: what physicists call specific
heat. With this concept, we can measure that iron has a specific heat of 0.44 J/kg K.
In contrast, the specific heat of a 3:1 mixture of nitric acid and tin is 1.34 J/kg K. This
means that for every one-degree increase in temperature, the amount of heat held by the
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2-kg block of iron increases by 0.88 Joules and by 2.64 Joules for the 2-kg tin-nitric
acid mixture. In other words, at the same temperature, the mixture holds three times the
amount of heat as the iron. Because the Experimenters had a single concept of heat and
temperature, they could not even investigate the concept of specific heat, nor could they
understand the puzzle.

Let us examine the example above from a slightly different perspective. Imagine
we are observing a student who does not distinguish temperature from heat (as the
Experimenters) and thinks of both as the smorgasbord concept “hotness.” Consider the
following propositions observed to be empirically true for a specific experimental setup
involving three objects: X, Y , and W (as for instance X is iron, Y is the mixture of nitric
acid and tin, and W is water as in the example above).

A: If X has more heat than Y, then W will have a high temperature.

B: If X has a higher temperature than Y, then W will not have a high temperature.

Both propositions A and B can be true if we carefully chose X and Y’s masses, heat
capacities, and how we define statements such as “low temperature,” “high temperature,”
and so on. However, let us rephrase A and B in terms of the student’s hotness concept.
We now have two new propositions, A′ and B′:

A′: If X has more hotness than Y , then W will have high hotness.

B′: If X has more hotness than Y , then W will not have high hotness.

A′ and B′ cannot be both true, as they are contradictory. The contradiction comes here
from identifying heat and temperature as a single concept: hotness.

There is an obvious, albeit silly, solution to this contradiction. The student might
say, ad hoc, that “hotness” in the context of an experiment observing A′ is different from
experiment B′, so they are not the same statement. To save their hotness concept, the
student makes things unnecessarily more complicated than they need to be. As more
experiments pile up, the more contexts and the more complicated their theory becomes.
Furthermore, such a move would lead to a theory incapable of making good predictions
in different situations.

Of course, this is not what scientists usually do. Scientists try to find appropriate
ways to describe a physical system that does not lead to contradictions or context
dependency. In the hotness case, they realized that differentiating between heat and
temperature was consistent and allowed for predictions and explanations of thermal
phenomena. When faced with contradictions, scientists realized that the best approach is
to face them and figure out ways to rethink our theories or experiments without resorting
to context-dependency.

The above example is interesting for historical reasons, but it also illustrates a type
of explicit contextuality. In the physics literature, this explicit contextuality is called
direct influences [13] or signaling [29]. When the student “explained” the differences
between A′ and B′ as context-dependent, he thought of explicit contextuality. Explicit
contextuality manifests when there is a direct contradiction between two statements
or results, such as the contradiction between A′ and B′. When this happens, scientists
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recognize a problem and try to solve it, as with the development of the concepts of heat
and temperature.

Let us now move from classical to quantum physics. Quantum physics, as far as
we know, forbids any type of properties that exhibit direct influences, i.e., signaling.
However, it allow another type of context-dependency (or contextuality): implicit
contextuality. In the technical literature, this is called simply “contextuality.” We
call it implicit contextuality to emphasize its contrast with contextuality due to direct
influences. From now on, when we talk about contextuality, we will refer solely to
implicit contextuality.

To understand contextuality in quantum physics, let us consider another example
[33]. Imagine a Simon-like-game device with three buttons (instead of the usual 4).
Each button on this device, when pushed, randomly emits red or green light. Turns
consists of multiple trials, where after observing their behavior, the player can try to
predict how each button will lit. For each trial of this game, the player can push at most
two buttons at the same time, for as many times as they want, and in any combination of
the three buttons they wish. If all three buttons are pushed at the same time, no light is
emitted. To win the turn, the player needs to correctly guess what color the unpressed
button would light in their last trial.

Let us consider a simple non-contextual example for this game. During her turn,
Alice notices the following.

• For trials when she only presses one key, they seem to yield either color randomly.
In other words, if Alice presses X, 50% of the time he observes green and 50%
red.

• For trials when Alice presses X and Y , she also gets 50% for each color for X or
Y , and the two colors are the same;

• For trials when Alice presses X and Z, she also gets 50% for each color for X and
Z trials colors are opposite;

• For trials when Alice presses Y and Z, she also gets 50% for each color for Y and
Z trials colors are also opposite.

So, after realizing that, if Alice presses X and Y and obtain “red” for both, she could
logically infer that Z would be “green.” This is because Z has the opposite color of both
X and Y . Guessing “green” would win Alice the turn.

Now, imagine that in another turn, Bob starts prodding different combinations of
pairs of X, Y , and Z, and observes the following.

• For trials when Bob only presses one key, they seem to yield either color randomly.
In other words, if Bob presses X, 50% of the time he observes green and 50% red.

• For trials when Bob presses X and Y , he also gets 50% for each color for X or Y ,
but the two colors are the opposite;

• For trials when Bob presses X and Z, he also gets 50% for each color for X and Z
trials colors are opposite;
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• For trials when Bob presses Y and Z, he also gets 50% for each color for Y and Z
trials colors are also opposite.

In other words, when two buttons are pushed simultaneously, they randomly emit red
or green light, but in opposite colors. This example exhibits implicit contextuality.
To see this contextuality, imagine we start with X emitting green and Y red. Bob can
reason that if he pushed X and Z instead, then Z would be red. However, he could also
argue that if he pushed Y and Z, since Y was red, Z would be green. Here we reach a
logical contradiction: Z would be both red and green, and impossibility in the game.
To avoid such contradiction, we need to either assume that Z has no possible color, or
that its color changes with the “context” of being seen with X or with Y . To convince
themselves that Z changes with which other buttons it is pushed, we urge the readers
to think about possible mechanisms that could yield the outcomes we described. The
reader will quickly see that any mechanism that generates the outcomes for X and Y
needs to be physically different from one generating X and Z (for an example using a
firefly in a box, see [8]).

The above example of contextuality is contrived. But contextuality shows up in
quantum mechanics. One such example comes from the Greenberger-Horne-Zeilinger
state [17], also known as GHZ. Without going into the details of where the following
relations are derived, the GHZ state predicts the existence of six observable properties,
X1, X2, X3, Y1, Y2, and Y3, satisfying the following properties. First, the properties Xi

and Yi take values +1 or −1. Second, whenever we observe each of those properties
separately, they look completely random, i.e., their average value is zero. The same is
true for when we observe them in pairs: they look completely uncorrelated. Third, we
can observe them in triples, and when we do, we see the following relationship between
the triplets.

Y1Y2Y3 = 1, (1)
Y1X2X3 = X1Y2X3 = X1X2Y3 = −1. (2)

The above correlations are experimentally observed [7, 4]. Finally, we cannot observe
all six properties at the same time. In fact, we can only observe at most three of them
simultaneously. For example, quantum mechanics forbids us to see Y1, X1,X2, and X3 at
the same time. Contextuality manifests in a similar way as the previous three-variable
example.

To see how contextuality manifests itself, let us assume that the six properties are
not contextual. Then, we can use (1) and (2) and write the following.

(Y1X2X3)(X1Y2X3)(X1X2Y3) = (−1)(−1)(−1) = −1. (3)

But we can regroup the above product, and get

Y1Y2Y3(X2X3)(X1X3)(X1X2) = Y1Y2Y3(X2
2)(X2

1)(X2
3). (4)

However, because Xi is ±1 valued, their square is 1, i.e., X2
i = 1. Therefore, it follows

that
(Y1X2X3)(X1Y2X3)(X1X2Y3) = Y1Y2Y3. (5)
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But this is a mathematical contradiction! The first term in the above equation is −1
whereas the second term is +1, and (5) is telling us that 1 = −1.

Where is the contradiction coming from? It does not come from a mathematical
mistake, but from an assumption of non-contextuality. When we wrote that X1

1 = 1,
we implicitly assumed that X1 observed together with Y2 and X3 is the same as when
observed together with X2 and Y3. This turns out to be false. If we, instead, call each
Xi by a different name depending on the context, no contradiction is obtained. What
happens in quantum mechanics is similar to the simple color game we discussed before.

The reader may now be thinking about whether we could make a move similar to
the contextual classical case. Namely, can we redefine properties such that no such kind
of contradictions arise in quantum physics? The answer is yes. Unfortunately, there are
many different ways to do so, and there is no consensus among the physics community
as to which answer is even acceptable. So, let us end this section with two possible
ways around this contradiction.

One move is to assume that properties depend on the context. This is the idea behind
Bohm’s interpretation of quantum mechanics [3, 19]. In Bohm’s theory, the famous
duality wave/particle is resolved by assuming both wave and particle existence. The
wave fills out the whole of space, and this wave guides the particle. How the wave
directs the particle in one direction or another depends on its form. For example, in
the two-slit experiment, the wave goes through both slits simultaneously, and due to its
interference pattern, it guides the particle toward certain areas and away from others.
The result is different if one or two slits are open [19]. Since the wave depends on the
context dictated by the physical experiment, Bohm’s theory tells us that particles’ reality
and their properties are contextual. However, Bohm’s theory presents a problem: for two
or more particles, their waves are affected by their corresponding particle’s positions.
This theory implies the existence of instantaneous interactions between physical systems.
Instantaneous interactions present a difficulty to the causal structure in Bohm’s quantum
world. As Einstein showed, to have cause and effect, we cannot have instantaneous
interactions. This difficulty between Bohm’s theory and Einstein’s special relativity is
the main reason for many physicists to reject it.

Bohm’s theory gets into trouble with special relativity because it assumes that
properties exist, whether we choose to measure them or not. When we measure, we
affect the wave function and, consequently, the physical system. However, the property
exists independent of an observer. In other words, Bohm’s theory assumes that reality
exists, whether we observe it or not.

Another possible solution to the problem of contextuality, particularly to contextual-
ity at a distance (also called non-locality), is to assume quantum properties do not have
values before a measurement and that the measurement process “creates” such values.
This position was held by Bohr and is the core of the Copenhagen interpretation of
quantum mechanics [21]. In this interpretation, saying that an electron has spin ~/2 in
the direction z is meaningless unless we perform a measurement of spin in the direction
z and find it to be ~/2. However, before such a measurement, we cannot say anything
about the spin. Furthermore, when we afterward make a measurement of spin in an
orthogonal direction, say x, because z and x spins are incompatible (i.e., cannot be mea-
sured simultaneously), we cannot say anything anymore about the spin in the z direction;
such “property” becomes meaningless. So, Bohr solves the problem of properties in
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quantum physics by merely denying their “existence” prior to a measurement.
We shall not cover all possible solutions to defining properties in quantum theory,

as they abound. We just wanted to present to the reader two possible paths on how
to deal with it and emphasize that the choices we have are not necessarily great. In
Bohm’s theory, we need to re-think the concepts of causality and space-time, two well-
established tenets of special relativity, to accommodate faster-than-light signaling. In the
Copenhagen interpretation, it becomes problematic to talk about a reality independent
of a measurement apparatus (and the observer behind it). Either solution present
metaphysical difficulties that have troubled physicists for more than a century. These
puzzles all boil down to the problem of having properties that depend on the context.

To summarize, in this section, we discussed the idea of content and context. We
started with its origins from linguistics and presented an interpretation that allows us
to apply these concepts to physical phenomena. We saw that contextual dependencies
appear in classical physics, but they are resolved by resorting to reinterpretations and
refinements of the theory. We then discussed another contextual dependency that appears
in quantum mechanics, such as the GHZ-state example. We then presented some of the
proposed solutions to the problems and their corresponding metaphysical issues. In the
following sections, we will show that those issues are intimately related to the concept
of identity in the quantum world.

3 Identity and indiscernibility
Identity is an old and difficult notion to be dealt with. Usually, the discussions have
focused on personal identity and identity through time. Here, we shall be concerned
with particular applications of this notion to the identity of objects and properties. By
“identity of objects,” or individuals as we prefer to call them,6 we mean identity of those
entities which are dealt with by the theories of physics7. For a more detailed discussion
about the origins of the term “object,” see [37, pp.13ff]; here we review briefly some
aspects of the argumentation given in [14, Chap.1].

We have an intuitive idea of what it means to say that two objects, or individuals, are
identical: they are the same. However, to say this is to say nothing, for we also do not
know what is to be “the same,” something reported equivalent to identity. Thus, we go
to the opposite side: we judge individuals as being different and, therefore, not identical,
hence not the same. Nevertheless, in virtue of what should individuals be different?
Usually, we look for their differences; although quite similar, two peas show differences,
maybe some small scratch or a slightly different color. At least, that is what we tend to
think.

6The word “individual,” according to the Oxford Online Etymological Dictionary, means “one and
indivisible.” Hence our preference for the term. However, as it is common practice, we relax the idea of
‘indivisible’ and keep “one,” adding that it can always be distinguished in other contexts, at least in principle,
from any other individual as being that individual. This distinguishability cannot occur with quantum entities,
even those trapped by some device.

7The standard quantum formalism is developed within a mathematical structure called “Hilbert-space
formalism,” although there are alternatives ([34] mentions nine different ways of developing orthodox quantum
mechanics).
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Still, in virtue of what two objects would be different? Are they so? Is it possible
to have two (or more) objects perfectly alike, with no differences at all? Put in other
words, what makes an object an individual, distinct from any other? Is there some
Principle of Individuation we can use to specify an individual’s individuality? Theories
of individuation are generally divided up in two main lines: substratum theories and
theories of bundles of properties. According to the first group, beyond the properties of
an object and the relations it can share with others, there is something more, something
Locke described as “I don’t know what” [24, Book I, XXIII, 2]. This notion and
the related ones (such as haecceities and thisness)8 were discarded in favor of bundle
theories of individuation. Bundle theories say that there is nothing more to an object
than the collection of its properties (encompassing relations). Nevertheless, if in the
substratum theories one could say that what distinguishes an object from another is its
substratum (or something like that), in bundle theories, many discussions have appeared
concerning the possibility of two objects having the same collection of properties. Can
they have the same collection of properties? If not, why not? Of course, that objects
in our scale, i.e., “macroscopic objects,” can partake all their properties is something
that cannot be logically proven. This assumption must be accepted as a metaphysical
hypothesis, and there are no known counterexamples to it. Furthermore, this hypothesis
was what Western philosophy has preferred, from the Stoics to Leibniz’s metaphysics.

Let us remember Leibniz’s metaphysics’ intuitive idea: no two individuals share all
their properties; if they have the same attributes, they are not different, but the same
individual. This metaphysical principle was encapsulated in standard logic with the
definition of identity given by Leibniz Law. This law says what we have expected:
entities are identical if and only if they share all their properties, hence all their relations,
that is, if and only if they are indistinguishable.

What about the identity of properties? In standard logic, we usually say that two
properties, P and Q, are “identical” if they are satisfied by the same “things.” For
instance, for Aristotle, the properties “to be a human” and “to be a rational animal” are
“identical” in this sense. As an example from standard mathematics, consider the sets
{x ∈ R|x2 − 5x + 6 = 0}, {x ∈ N|1 < x < 4}, and {x ∈ R|x = 2 ∨ x = 3}. These three sets
are identical: they have the same extensions but different intensions.9

Classical mathematical frameworks do not accommodate indistinguishables; entities
sharing all their attributes and being just numerically distinct do not exist in classical
mathematics (but see below). Individuals are unique, separable, at least in principle,
counted as one of a kind and presenting differences to every other object. There are
no purely numerical identical individuals: some form of Leibniz’s Law holds. This is
so within standard logic and mathematics, and the ways of dealing with indiscernibles
require mathematical tricks such as confining them to non-rigid structures10. For

8There are peculiarities in using these terms, but broadly speaking, all refer to something beyond an
individual’s properties.

9In technical terms, in extensional higher-order logics, we can define such a notion by saying that P and Q
are identical when they have the same extensions, that is, when they are satisfied by the same lower terms.

10A structure (a domain comprising relations over its elements) is rigid if its only automorphism (bijections
that preserve the relations of the structure) is the identity function. Indiscernibility in a structure means that
the objects are invariant by some automorphism of the structure; in rigid structures, an object is indiscernible
just from itself. Non-rigid (deformable) structures hide the object’s identity so that we may not be able to
discern them by lack of distinctive relations or properties. For details, see [14, §6.5.2], [23].
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example, take the structure 〈Z,+〉, which represents the integer numbers, Z, and only
the standard addition operation, “+.” This structure is not rigid, since the transformation
f (x) = −x is an automorphism of the structure, i.e., it keeps the individuals indiscernible
within its point of view. To see this, take the 2 and −2. We cannot discern them within
this structure. Imagine any property for 2 defined only with “+,” such as “2 + 1 = 3.”
If we change the numbers by the “minus” ones, we have “(−2) + (−1) = (−3).” From
within this structure, the latter is identical to the former; we cannot distinguish them. Of
course, if we added additional properties to the structure, such as the “<” relation, it
would become rigid, and we would be able to distinguish between 2 and −2. However,
we cannot do it only with “+.”

The search for legitimate indiscernible objects/individuals, in the above sense and
without mathematical tricks, requires a change of logic. We will retake this discussion
later on this paper, but we wish to turn to another kind of question for now.

Some authors, such as Peter Geach, argue that identity is relative. The only thing we
can say, according to him, is that two individuals a and b are (or not) identical relative to
a sortal11 predicate F; in the positive case, we say that they are F-identical and can write
a =F b. In our opinion, identity is absolute. Identity is, according to us, to be associated
with metaphysical identity, as explained above. It is something an individual has that
says that it is unique and, when it appears in some other context, we are authorized to
think that it is the same individual that has appeared twice. Alternatively, an individual’s
identity is its identity card, one for each individual: it accompanies it in all contexts
and, with its help, we can distinguish the individual as being the same individual of a
previous experience. Identity makes the individual’s name a rigid designator, denoting
the same entity in all possible accessible worlds. As it is well known, David Hume
guessed that there is no such an identity; according to him, we recognize someone
as being the same from a previous experience by habit, by familiarity [20, p.74 and
passim], but cannot “logically” prove that. Schrödinger had a similar opinion regarding
quantum entities when he says that

“[w]hen a familiar object reenters our ken, it is usually recognized as
a continuation of previous appearances, as being the same thing. The
relative permanence of individual pieces of matter is the most momentous
feature of both everyday life and scientific experience. If a familiar article,
say an earthenware jug, disappears from your room, you are quite sure
that somebody must have taken it away. If after a time it reappears, you
may doubt whether it really is the same one − breakable objects in such
circumstances are often not. You may not be able to decide the issue, but
you will have no doubt that the doubtful sameness has an indisputable
meaning − that there is an unambiguous answer to your query. So firm
is our belief in the continuity of the unobserved parts of the string!” [32,
p.204]

Entities partaking metaphysical identity are termed individuals. Can we think of non-
individuals too? If yes, can we give examples of entities of this kind? The first way to

11A sortal predicate enables to count the objects that obey the predicate, such as “being a philosopher.”
So, Isaac Newton and Stephen Hacking would both be counted as “Lucasian Professor of Mathematics in
Cambridge.”
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think of them, by considering what we have said, is to deny them the epithet “to have an
identity.” What should it mean? The short answer is that they would be entities sharing
all their characteristics, either substratum or properties and relations. From now on,
we shall avoid speaking of substratum and keep with bundle theories [36]. However,
non-individuals, in our formulation, are not simply metaphysically or numerically
identical entities, although this is logically possible.12 Our notion is weaker, enabling
non-individuals to form collections (termed “quasi-sets”) with cardinalities greater than
one so that no particular differences can be ascribed to them. Furthermore, they would be
indistinguishable even if an omniscient demon (Laplace’s demon) exchanged them with
one another; in this case, nothing would change in the world at all. That is the difference:
individuals, by definition, when permuted, make a difference! This difference is of
fundamental importance, for it involves several other related notions which appear in
physical theories, such as space and time and, fundamentally, permutations. We shall
need to explain that further, but for now, we wish to emphasize that we do not regard
identity as something an entity must have. When something has an identity, then it is
absolute, it is metaphysical, and no two entities with identity can be only numerically
distinct. Non-individuals are entities that lack identity, that can be just numerically
discerned, that have all the same identity card. If one looks at one non-individual here
and there, one finds “another” one in a different context; not even demons or gods will
tell one if this new object is “different” or “the same” one found previously, as this
would be meaningless.

Nevertheless, once we think about more than one entity, one could claim that
they must be different. Mathematically, this would be expressed by the set-theoretical
argument that once the cardinal of a set is greater than one, its elements must be different.
We stress that this depends on the set theory one is taking into account. In standard set
theories, such as the most celebrated systems (the apparently most famous one is termed
“ZFC”), this is true, but in quasi-set theory (discussed below), this is may not be the
case. In quasi-set theory, we not only can have collections (quasi-sets) of absolutely
indiscernible entities and with a cardinal greater than one, but we can also quantify
such “non-individuals.” Quasi-set theory shows that Quine’s motto of “no entity without
identity” [30, p.23] does not hold in general, for even non-individuals can be values of
the variables of a regimented language.

3.1 Identity in classical formal settings
There is a problem concerning the metaphysical identity of the last section: it cannot
be defined in first-order languages [18, 14].13 We provide here a slightly technical
explanation. As said earlier, first-order languages speak of the individuals of some

12In his criticism to the definition of identity given by Whitehead and Russell in their Principia Mathematica
(Leibniz Law, in a standard second-order language, x = y := ∀F(Fx ↔ Fy), where x and y are individual
terms and F is a predicate variable for individuals), F. P. Ramsey said precisely this: that we could logically
conceive entities violating the definition, sharing all their properties, and even so not being the same entity
[31, p.30].

13First-order languages deal with domains of individuals, their properties, relations and operations over
them. Quantified expressions like “There exists some x such that . . .” and “For all individuals x, . . .” applies
only to individuals, and we cannot say things like “There is a relation among individuals . . .” or “For every
property of individuals . . ..” In logic, we say that first-order languages quantify over individuals only.
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domain. Usually, the axiomatizations take logical identity as primitive (represented by
a binary predicate “=”), subject to certain axioms (reflexivity and substitutivity). We
can prove that identity is an equivalence relation, really a congruence, whose intended
interpretation is the identity of the domain; calling it D, then we are referring to the
set ∆D := {〈a, a〉 : a ∈ D}, also called the diagonal of D. But it can be proven that
there are other structures, called elementary equivalent structures,14 which also model
“=” but interprets this symbol in sets other than the diagonal (op.cit.). So, within a
first-order language, we never know if we speak of the identity (or the difference) of
two individuals or of, say, classes of individuals.

Higher-order languages enable us to define logical identity by Leibniz Law, but such
logical identity is defined through indiscernibility. If we wish to define indiscernibility
instead, the definition would be the same: agreement for all properties. So, higher-order
languages do not distinguish between these two concepts. If we intend to speak of
indiscernible but not identical things, Leibniz Law does not help.15 Furthermore, if we
aim to preserve some meta-properties of our system (Henkin’s completeness), we are
subject to find Henkin models so that two objects of the domain look as indiscernible
since they obey all the language’s predicates, but which are not the same element [14,
§6.3.2]. In short, we need to conclude that metaphysical identity cannot be defined. The
most we can do is find refuge in logical identity, but this, as we shall see soon, causes
troubles to quantum mechanics.

However, let us first put away the often-made claim that even quantum objects can
be discerned by spatio-temporal location.

3.2 Identity and space and time
There is still another way to look at identity in classical settings: include space and
time. Orthodox non-relativistic quantum mechanics makes use of classical space and
time or, as we can say, “Newtonian” absolute notions. Intuitively, the classical space
and time structure is a space that looks, at least for small regions, like the R4, namely
three dimensions for space (R3) and one for time (R). More precisely, mathematically,
the classical space-time is a manifold locally isomorphic to R4, usually termed E4 (for
“Euclidean”); see [28, Chap. 17].

This structure has some interesting features, but for us here, an important charac-
teristic is that it is a “Hausdorff space.” This property of being Hausdorff means that,
given any two points a and b, a , b, it is always possible to find two disjoint open sets
(say two open balls) Ba and Bb such that a ∈ Ba and b ∈ Bb. In extensional contexts,
such as the ZFC set theory, a property is confounded with a set; the objects that belong
to the set are precisely those satisfying the property. So, a and b have each a property
not shared with the other, namely, to belong to “its” open set. Hence, Leibniz’s Law
applies, and they are different. Notice that this holds for any two objects a and b: once
we have two, they are distinct. Therefore, we may say that, within such a framework,

14Elementary equivalent structures are interpretations of a first-order language that preserve the same truth
sentences. From the language’s point of view, one cannot distinguish among such structures: they look the
same.

15The distinction between identity and indiscernibility can be made only in semantical terms; see [6].
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there are no indiscernibles!16

Let us see now how we can pretend to say that we have indiscernibles within a
classical framework.

3.3 Indiscernibility in classical logical settings
Still working in a classical setting, say the ZFC system, we can mimic indiscernibility.
In this subsection we expand the above discussion about using non-rigid structures,
presenting some of its more technical concepts and ideas.

Usually, we say that the elements of a certain equivalence class are indiscernible, and
perhaps this is acceptable for certain purposes. More technically, in doing that, we are
restricted to a non-rigid (or deformable) structure. As we saw previously, we say that
a structure A = 〈D,Ri〉, i ∈ I, is rigid if its only automorphism is the identity function;
this means that we have a domain D, a non-empty set, and a collection of relations
over the elements of D, each one of a certain arity n = 0, 1, 2, 3, . . ..17 If the structure
is not rigid, then it is is non-rigid or deformable. We saw an example of a deformable
structure earlier on, the 〈Z,+〉. Another example of a deformable structure is the field
of the complex numbers, for the operation of taking the conjugate is an automorphism.
In such a structure C = 〈C, 0, 1,+, ·〉, the individuals i and −i are indiscernible.

Given A as above, we say that the elements a and b of D are A-indiscernible if
there exists X ⊆ D such that (i) for every automorphism h of A, h(X) = X, that is, X is
invariant by the automorphisms of the structure, and (ii) a ∈ X iff b < X. Otherwise, a
and b are A-discernible [23].

It is clear that in a rigid structure, the only element indistinguishable from a is a
itself since the only automorphism is the identity function. In informal parlance, we may
say that a and b are A-indiscernible iff they are invariant by permutations that “preserve
the relations of the structure.”

Something like that is what we do in quantum mechanics. Roughly speaking, the
theory says that when we measure a certain observable value for a quantum system in a
certain state, the value does not change before and after a permutation of particles of the
same kind. Physicists say that permutations are not observable, and this is expressed by
the Indistinguishability Postulate.18

16In model theory, an important part of logic, we can speak of “indiscernibles” in a sense, for instance,
Ramsey indiscernibles. However, this is a way of speaking; even these entities obey the classical theory of
identity, therefore being individuals. See [5, Chap.15].

17That the identity mapping is an automorphism is trivial. For all the argumentation, it is enough to consider
relational structures, for distinguished elements and operational symbols can be taken as particular kinds of
relations; also, we subsume all domains in just one.

18In technical terms, let us take a permutation P between particles denoted by xi and x j. As usually stated,
we may say that for any x1, . . . , xn,

P(x1, . . . , xi, . . . , x j, . . . , xn)↔ P(x1, . . . , x j, . . . , xi, . . . , xn) (6)

The Indistinguishabilility Postulate is expressed in terms of “expectation values;” it says that

〈ψ|Â|ψ〉 = 〈Pψ|Â|Pψ〉 (7)

for any observable represented by a self-adjoint operator Â and for any permutation operator P, being |ψ〉 the
vector state of the system.
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Leaving formal logic and mathematics for a while, let us consider more general
situations, which will lead us to a more detailed discussion about quantum mechanics.
We shall commence by emphasizing the importance of the contexts.

4 Connecting identity to context
On many occasions, we are tempted to think about possible worlds which are not actual.
We wonder what our life would have been like if we had taken different decisions at
crucial moments. We can think about an object, person, or animal, in many different
circumstances, which can differ from the actual ones. For example, suppose that we have
a pet cat and live in a small apartment. Given its living conditions, the cat cannot catch
the birds that he sees through the window. He observes them with attention, craving
for them but unable to reach them. Thus, in our tiny-apartment world, our cat never
caught a bird. Furthermore, he never will because he cannot go out. However, we can
imagine a different world, in which we live in a house with a big yard in which our cat
can wander out as many times as it wants. In this big yard world, our cat can surely try
to catch a bird, and he will undoubtedly do so at least once.

The above story is an example of how we reason about counterfactuals. We are
tempted to conclude something that occurs in a world that is not actual could happen,
even if that world never becomes actual. This kind of reasoning is very natural in our
everyday life. However, what are the assumptions behind it? First, somehow, our cat
retains its identity among the different worlds: the cat in the small apartment world is
the same as the cat in the big yard world. Both cats have the same name, color, same
capabilities, and desire to catch birds. Nevertheless, how can we assure that the cat will
retain its properties among the different worlds? Perhaps, if we could afford a house
with a big yard, we could also afford fancy and tasty cat food. The cat gets used to
it, stays inside the house, and eats the whole day. In the fancy house world, it might
become idle to the point that it barely moves or plays, as it happens with some cats.
When it finally goes out to the garden, it cannot catch birds anymore, as it became
clumsy and slow.

The above example shows that we should not make hasty conclusions: the properties
of an object, person, or animal, might depend strongly on the context in which we are
considering them. In the small apartment, humble life, with cheap food, our cat is
playful and agile: it has a high probability of catching a bird but no bird to catch. In the
big house, those properties may or may not be valid. The first lesson is: to assume that
an object retains its properties among different and incompatible worlds is not granted.
Even more so, one may ask: in which sense are the two cats in different worlds the
same? From a strict point of view, one may say that the agile cat from our actual world
is not the same as the idle cat of the alternative reality. In the same way, we should not
mix the different worlds with counterfactual reasoning. If we conclude, by studying our
cat in this actual world, that he is very skilled in chasing birds, we cannot use empirical
information from our world to conclude that the cat will indeed chase a bird in the
alternative world.

Thus, we are introduced to a profound philosophical problem by thinking about the
above straightforward situation: what are the principles or conditions that grant identity

16



to objects considered in different possible worlds? Are we entitled to say that a given
object retains its identity when considered in different and incompatible situations? Of
course, in many situations of our daily life, assuming that objects retain their identities
and properties in different contexts will work. Our bike works well on sunny and rainy
days and in diverse landscapes (such as cities or mountains). Many characteristics of
our bike – such as its color or its range of velocities – are, to a great extent, context
independent. However, we should not take this context independence for granted. This
is more so if we consider quantum systems that define phenomena that lie far beyond
our everyday experience. The realm of the atom extends far beyond the ångström scale
(ten to the minus ten meters, which is something like 0, 0000000001 meters for one
ångström!). The principles – whatever they are – that allow us to identify properties
and objects among incompatible situations may no longer be valid for atomic systems.
Moreover, this seems to be the case, as the GHZ example above and the following
example show.

Suppose that Alice and Bob have separated labs, LA and LB, in which they perform
their experiments. At a given time, a third party prepares a quantum system capable of
affecting what happens in LA and LB. Suppose that Alice decides to make an experiment
PA in her lab, in order to interact with the given quantum system, and that Bob can do
PB or P′B in LB. Due to the peculiarities of quantum mechanics, PB and P′B cannot be
performed at the same time – they are incompatible experiments. To understand what
incompatible means, imagine the following situation: in order to perform PB, Bob must
align a magnet in a given direction d, and in order to perform P′B, he must align its
magnet in a different direction d′. A magnet cannot point in two different directions –
similarly, a clock’s handle cannot point at two different angles simultaneously. Thus,
there are two incompatible situations: either Alice performs experiment PA and Bob
performs PB, or Alice performs PA and Bob P′B. The two possibilities cannot coexist in
the same world. Let us call these possibilities W1 and W2, respectively.

Suppose now that Alice and Bob are in the process of deciding what to do. They
wonder about the experiments’ possible outcomes in the different situations, W1 and
W2. Notice that they do not need actually to perform the experiments. It is all about
reasoning in various alternatives without actually performing them. Now we question:
what is the status of the possible results of experiment PA concerning W1 and W2? After
the discussion about the cat, we should not be as quick to identify what happens in W1
with W2, even if we are talking about the same experiment, PA. In both possible worlds,
Alice will perform the same actions (she will orient the magnets in the same directions,
prepare the same reading apparatus, and so on). Is she going to obtain the same results?
What enables us to conclude that she will? Notice that we are not asking here about
an influence of Bob’s actions in Alice ones: the laboratories can be very far away in
space and time. We are asking here whether we are entitled to assume that there is some
trace of identity among the results obtained in different (and incompatible worlds). As
expected, the answer is: no, we are not. Contradictions can be readily achieved if we do
so, as the cat and contextuality examples suggest (and shown in technical research on
quantum theory).

The actions required for experimenting PA are the same in W1 and W2. Can we say
that PA in W1 is the same as PA in W2? After the cat discussion, let us be conservative
about the answer. We will say that PA in W1 is indistinguishable from PA in W2. The
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two experiments are completely alike: Alice will execute the same actions in a system
prepared with an equivalent procedure in both worlds. However, we should not be
tempted to claim they are the same. The more so, we should not expect the same
results. In this sense, we say that the properties studied by experiment PA in W1 are
indistinguishable from the properties studied by PA in W2. We denote these properties
by the pairs (PA; W1) and (PA; W2) and write (PA; W1) ≡ (PA; W2), to stress the fact that
they are indistinguishable (but not identical). A natural, logical formalism for describing
this kind of indistinguishability is the quasi-set theory. This theory allows us to consider
properties or objects in alternative worlds as collections of indiscernible ur-elements.

If world W1 becomes actual, Alice and Bob will perform their actions, obtain their
results, and record them. Out of these results, what conclusions should they take about
the possible results associated with W2? Are they entitled to reason in a counterfactual
way and combine the results of worlds W1 and W2 to extract conclusions about them?
Much caution should be taken here, as the cat and contextual examples show. In
principle, there is no a priori reason to do so. That we are allowed to do so in many (but
not all!) everyday situations is more a lucky strike that we share with other creatures
in our macroscopic reality than a general rule. Counterfactual reasoning simplifies our
existence, but we should not expect it to be valid in every situation. This lack of validity
seems empirically suggested at microscopic scales, which are very different from our
own.

To summarize, we can state the following:

• Even if state preparations and measurement procedures are completely alike
among different worlds, we should not treat them as identical. In this sense, we
speak about things such as indistinguishable properties and objects.

• Even if two experiments are completely indistinguishable, we should not expect
the same results in different worlds.

• We should not derive conclusions from counterfactual reasoning, especially in the
quantum domain. Such conclusions are not reliable and are not metaphysically
justified.

5 Quantum mechanics in classical logical settings
In this section, we briefly review how the standard quantum formalism performs the
trick of treating indiscernible quantum systems within the scope of classical logic
(encompassing mathematics). In doing so, we lay the groundwork for alternative logics
and mathematics, which provide an adequate description from our perspective.

A glance at standard textbooks on quantum mechanics reveals that they use classical
mathematics, hence classical logic. However, the claim that quantum mechanics requires
a different logic, known as quantum logic, can also often be found.19 These two
observations seem contradictory. Why is this apparent contradiction present in the
literature?

19The field of “quantum logic” arose from Birkoff and von Neumann’s 1936 seminal paper. The reader
interested in the subject is referred to the following excellent papers: [12] and [35].
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The reason may be as follows. Most physicists are concerned with physical problems
being solved by quantum theory and not with philosophical or logical foundational ques-
tions about it. Although they might endorse some particular interpretation of quantum
mechanics, thus presupposing some concern with quantum theory’s philosophy, most
physicists use “classical” mathematics in an almost instrumentalist way. Thus, when
dealing with entities that would be indistinguishable, physicists use some mathematical
tricks to hide the identifications typical of our standard mathematical languages. Let us
see how they do it.

First, we recall that, in quantum mechanics’ standard formulation, a system’s state
is represented mathematically by a vector in a Hilbert space. This vector, also called
the wave function, is supposed to encode all information available for that system in a
specific situation. Observables, which represent possible experimental procedures and
their outcomes, are self-adjoint operators in the Hilbert space. When an observable is
measured, the state-vector enters (or “collapse”) into one of the observable operator’s
eigenvectors. Since this process is “mysterious,” in the sense that the formalism does not
explain how it happens, many physicists try to avoid it, adopting alternative explanations.
Nevertheless, the primary mathematical object in quantum theory is the Hilbert space
and vectors in it. So, the question is how to represent indistinguishable objects using the
mathematics of vectors.

Quantum particles come in two types: bosons and fermions. Their main differ-
ence comes from their statistics: bosons follow the Bose-Einstein statistics, whereas
Fermions satisfy the Fermi-Dirac one. Both statistics count objects as if they were
indistinguishable, contrary to the classical Maxwell-Boltzman statistics.

Bosons are a typical type of indistinguishable quantum entities. Bosons are a kind of
quantum “particles,” and they are entirely indistinguishable when prepared in the same
quantum state. This state is such that they share all the relevant quantum properties.
A system composed of, say, two bosons 1 and 2 in two possible situations A and B is
described by a symmetric wave function such as the following.

Ψ =
1
√

2

(
ψA

1ψ
B
2 + ψA

2ψ
B
1

)
, (8)

where ψA
1ψ

B
2 means system 1 in the state A and system 2 in B and similarly for the other

term. The 1
√

2
is just a normalization factor required by the formalism. Ψ is invariant

under the permutation of 1 and 2. This invariance means that exchanging particle 1 by 2
(and vice-versa) does not affect the state of the system. Consequently, any measurement
results are maintained under permutations.

This symmetrization of the wave function works, but it is a trick. We are still
using labels to “name” the particles because our language and mental models have a
hard time thinking otherwise. In other words, this trick assumes, upfront, that bosons
are individuals. Suddenly, as if a miracle happened, permutations do not conduce to
different situations. However, this invariance was put there by hand. We could give more
detailed arguments as to why this is a mathematical trick that does not make bosons
indistinguishable, but we hope the above example is sufficient for the reader to grasp
the main idea.

The use of the above trick is similar to confining the discussion to a deformable
(non-rigid) structure, as explained earlier. However, as mentioned, within such classical
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settings, we can always go “outside” of the structure and identify the particles. This
possibility of identification is at odds with the hypothesis that they are indiscernible.20

There is no way to escape this conclusion. As we have said before, standard
mathematics and logic are theories of individuals. This is so for historical reasons:
classical logic, mathematics, and even classical physics were built with individuals in
mind. Quantum mechanics, of course, came to challenge those ideas and to question the
concepts of individuality.

6 Alternative logical approaches
Assuming that indiscernibility is a core notion in quantum mechanics, we should look for
an alternative logical and mathematical basis that considers it right from the start. This
bottom-up approach would not mimic it within a standard framework from a top-bottom
one. Our strategy is grounded in a metaphysics of non-individuals (for detail, see [14],
[22], and references therein). Moreover, it tries to develop mathematics compatible
with such metaphysics. Consequently, Schrödinger logics and quasi-set theory were
developed in the 1990s. Although they are mathematical developments independent
of the interpretations, the intended one is precisely to cope with such non-individual
entities. In this section, we will give a rough idea about how quasi-set theory works. For
a review about Schrödinger logics, see [14, chap.8].

6.1 Quasi-set theory
In the quasi-theoryQ, indiscernibility is a primitive concept, formalized by a binary rela-
tion “≡” satisfying the properties of an equivalence relation, but not full substitutivity.21

In this notation, “x ≡ y” is thought to mean “x is indiscernible from y.” This binary
relation is a partial congruence in the following sense: for most relations, if R(x, y) and
x ≡ x′, then R(x′, y) as well (the same holds for the second variable). The only relation
to which this result does not hold is membership: x ∈ y and x′ ≡ x does not entail that
x′ ∈ y; details in [14, 15]).

Quasi-sets can have as elements other quasi-sets, particular quasi-sets termed sets
which are copies of the sets in a standard theory (in the case, the Zermelo-Fraenkel set
theory with the Axiom of Choice), and two kinds of atoms (entities which are not sets),
termed M-atoms (M-objects), which are copies of a standard set theory with atoms
(ZFA) and m-atoms (m-objects), which have the quanta as their intended interpretation,
to whom it is supposed that the logical identity does not apply. If we eliminate the
m-atoms, we are left with a copy of ZFA, the Zermelo-Fraenkel set theory with atoms.
Hence, we can reconstruct all standard mathematics within Q in such a “classical part”
of the theory.

Functions cannot be defined in the standard way. When m-atoms are present, it
cannot distinguish between indiscernible arguments or values. Therefore, the theory

20The way to “go outside” the quantum formalism is to go to the set-theoretical universe since all mathe-
matics used in quantum mechanics can be performed in terms of sets.

21If we add substitutivity to the postulates, then no differences between indiscernibility and logical first-order
identity would be made.
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generalizes the concept to “quasi-functions,” which map indiscernible elements into
indiscernible elements. See below for more on this point.

Cardinals (termed “quasi-cardinals,” qc) are also taken as primitive, although they
can be proven to exist for finite qsets (finite in the usual sense [10, 2]). The concept of
quasi-cardinals can be used to speak of “several objects.” So, when we say that we have
two indiscernible q-functions, according to the above definition, we are saying that we
have a qset whose elements are indiscernible q-functions and whose q-cardinal is two.22.
The same happens in other situations.

An interesting fact is that qsets composed of several indistinguishable m-atoms do
not have an associated ordinal. This lack of an ordinal means that these elements cannot
be counted since they cannot be ordered. However, we can still speak of a collection’s
cardinal, termed its quasi-cardinal or just its q-cardinal. This existence of a cardinal
but not of an ordinal is similar to what we have in QM when we say that we have some
quantity of systems of the same kind but cannot individuate or count them, e.g., the six
electrons in the level 2p of a Sodium atom.23

Identity (termed extensional identity) “=E” is defined for qsets having the same
elements (in the sense that if an element belongs to one of them, then it belongs to
the another)24 or for M-objects belonging to the same qsets. It can be proven that this
identity has all the properties of classical logical identity for the objects to which it
applies. However, it does not make sense for q-objects. That is, x =E y does not have
any meaning in the theory if x and y are m-objects. It is similar to speak of categories in
the Zermelo-Fraenkel set theory (supposed consistent). The theory cannot capture the
concept, yet it can be expressed in its language. From now on, we shall abbreviate “=E”
by “=,” as usual.

The postulates ofQ are similar to those of ZFU, but by considering that now we may
have m-objects. The notion of indistinguishability is extended to qsets through an axiom
that says that two qsets with the same q-cardinal and having the same “quantity” (we
use q-cardinals to express this) of elements of the same kind (indistinguishable among
them) are indiscernible too. As an example, consider the following: two sulfuric acid
molecules H2SO4 are seen as indistinguishable qsets, for both contain q-cardinal equals
to 7 (counting the atoms as basic elements), and the elements of the sub-collections
of elements of the same kind are also of the same q-cardinal (2, 1, and 4 respectively).
Then we can state that “H2SO4 ≡ H2SO4,” but of course, we cannot say that “H2SO4 =

22Quasi-cardinals turn to be sets, so we can use the equality symbol among them. We use the notation
qc(x) = n (really, qc(x) =E n, see below) for a quasi-set x whose cardinal is n.

23To count a finite number of elements, say 4, is to define a bijection from the set with these elements to the
ordinal 4 = {0, 1, 2, 3}. This counting requires that we identify the elements of the first set.

24There are subtleties that require us to provide further explanations. In Q, you cannot do the maths and
decide either a certain m-object belongs or not to a qset; this requires identity, as you need to identify the
object you are referring to.

In quasi-set theory, however, one can hypothesize that if a specific object belongs to a qset, then so and
so. This is similar to Russell’s use of the axioms of infinite (I) and choice (C) in his theory of types, which
assume the existence of certain classes that cannot be constructed, so going against Russell’s constructibility
thesis. What was Russell’s answer? He transformed all sentences α whose proofs depend on these axioms
into conditionals of the form I → α and C → α. Hence, if the axioms hold, then we can get α. We are
applying the same reasoning here: if the objects of a qset belong to the another and vice-versa, then they are
extensionally identical. It should be noted that the definition of extensional identity holds only for sets and
M-objects.
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H2SO4,” as for in the latter, the two molecules would not be two at all, but just the same
molecule (supposing, of course, that “=” stands for classical logical identity). In the
first case, notwithstanding, they count as two, yet we cannot say which is which.

Let us speak a little bit more about quasi-functions. Since physicists and math-
ematicians may want to talk about random variables over qsets as a way to model
physical processes, it is important to define functions between qsets. This can be done
straightforwardly, and here we consider binary relations and unary functions only. Such
definitions can easily be extended to more complicated multi-valued functions. A (bi-
nary) q-relation between the qsets A and B is a qset of pairs of elements (sub-collections
with q-cardinal equals 2), one in A, the other in B.25 Quasi-functions (q-functions) from
A to B are binary relations between A and B such that if the pairs (qsets) with a and b
and with a′ and b′ belong to it and if a ≡ a′, then b ≡ b′ (with a’s belonging to A and
the b’s to B). In other words, a q-function maps indistinguishable elements into indis-
tinguishable elements. When there are no m-objects involved, the indistinguishability
relation collapses in the extensional identity, and the definition turns to be equivalent to
the classical one. In particular, a q-function from a “classical” set such as {1,−1} to a
qset of indiscernible q-objects with q-cardinal 2 can be defined so that we cannot know
which q-object is associated with each number (this example will be used below).

To summarize, in this section, we showed that the concept of indistinguishability,
which conflicts with Leibnitz’s Principle of the Identity of Indiscernibles, can be in-
corporated as a metaphysical principle in a modified set theory with indistinguishable
elements. This theory contains “copies” of the Zermelo-Frankel axioms with Urele-
mente as a particular case when no indistinguishable q-objects are involved. This theory
will provide us the mathematical basis for formally talking about indistinguishable
properties, which we will show can be used in a theory of quantum properties. We
will see in the next section how we can use those indistinguishable properties to avoid
contradictions in quantum contextual settings such as KS.

7 Formulating quantum mechanics within quasi-set the-
ory

As we have seen, the quasi-set theory enables us to form collections (the quasi-sets) of
“absolutely” indiscernible elements. In this theory, even if one goes outside the relevant
structures, they will not become rigid: this mathematical universe is not rigid. Thus, the
quasi-set theory is a suitable device to develop a quantum theory where indiscernibility
is considered from the start as a fundamental notion. This section explains how quantum
mechanics (in the Fock space formalism) can be developed within the quasi-set theory
Q. The current development is based in [11] and is technical. This level of mathematical
formality is necessary to provide essential details. The reader unconcerned with such
technicalities may skip this section and proceed directly to the conclusions.

25We are avoiding the long and boring definitions, as, for instance, the definition of ordered pairs, which
presuppose lots of preliminary concepts, just to focus on the basic ideas. For details, the interested reader can
see the indicated references.
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7.1 The Q-spaces
In the standard mathematical formalisms, the assumptions that quantum entities of
the same kind must be indiscernible are hidden behind mathematical tricks such as
symmetrizing wave-functions and vectors. In order to avoid these tricks, we introduce
the notion of Q-spaces. The resulting framework is termed nonreflexive quantum
mechanics or, simply, nonreflexive.

We begin with a q-set of real numbers ε = {εi}i∈I , where I is an arbitrary collection
of indexes, denumerable or not. Since it is a collection of real numbers, which may
be constructed in the classical part of Q, we have that Z(ε). Intuitively, the elements εi

represent the eigenvalues of a physical observable Ô, that is, they are the values such that
Ô|ϕi〉 = εi|ϕi〉, with |ϕi〉 the corresponding eigenstates. Since observables are Hermitian
operators, the eigenvalues are real numbers. Thus, we are justified in assuming that
elements of ε are real numbers. Consider then the quasi-functions f : ε −→ Fp, where
Fp is the quasi-set formed of all finite and pure quasi-sets (that is, finite quasi-sets whose
only elements are indistinguishable m-atoms). Each of these f is a q-set of ordered
pairs 〈εi, x〉 with εi ∈ ε and x ∈ Fp. From Fp we select those quasi-functions f which
attribute a non-empty q-set only to a finite number of elements of ε, the image of f being
∅ for the other cases. We call F the quasi-set containing only these quasi-functions.
Then, the quasi-cardinal of most of the q-sets attributed to elements of ε according to
these quasi-functions is 0. Now, elements of F are quasi-functions which we read as
attributing to each εi a q-set whose quasi-cardinal we take to be the occupation number
of this eigenvalue. We write these quasi-functions as fεi1 εi2 ...εim

. According to the given
intuitive interpretation, the levels εi1εi2 . . . εim are occupied. We say that if the symbol εik
appears j-times, then the level εik has occupation number j. For example, the notation
fε1ε1ε1ε2ε3 means that the level ε1 has occupation number 3 while the levels ε2 and ε3
have occupation numbers 1. The levels that do not appear have occupation number zero.
Another point to be remarked is that since the elements of ε are real numbers, we can
take the standard ordering relation over the reals and order the indexes according to this
ordering in the representation fεi1 εi2 ...εim

. This will be important when we consider the
cases for bosons and fermions.

The quasi-functions of F provide the key to the solution to the problem of labeling
states. Since we use pure quasi-sets as the images of the quasi-functions, there is
simply no question of indexes for particles, for all that matters are the quasi-cardinals
representing the occupation numbers. To make it clear that permutations change nothing,
one needs only to notice that a quasi-function is a q-set of weakly ordered pairs.26 Taking
two of the pairs belonging to some quasi-function, let us say 〈εi, x〉, 〈ε j, y〉, with both x
and y non-empty, a permutation of particles would consist in changing elements from
x with elements from y. However, by the unobservability of permutations theorem,27

what we obtain after the permutation is a q-set indistinguishable from the one we
began with. Remember also that a quasi-function attributes indistinguishable images to
indistinguishable items; thus, the indistinguishable q-set resulting from the permutations

26A weak ordered pair is a qset having just one element (that is, its cardinal is one). We cannot name such
an element, for we need an identity to do that. SO, it can be taken as one element of a kind.

27This theorem says that if we exchange an element of a qset by an indistinguishable one, the resulting qset
turns to be indistinguishable from the original one.
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will also be in the image of the same eigenvalue. To show this point precisely, we recall
that by definition 〈εi, x〉 abbreviates [[εi], [εi, x]],28 and an analogous expression holds for
〈ε j, y〉. Also, by definition, [εi, x] is the collection of all the items indistinguishable from
εi or from x (taken from a previously given q-set). For this reason, if we permute x with
x′, with x ≡ x′ we change nothing for [εi, x] ≡ [εi, x′]. Thus, we obtain 〈εi, x〉 ≡ 〈εi, x′〉
and the ordered pairs of the permuted quasi-function will be indiscernible (the same if
there are no m-atoms involved). Thus, the permutation of indistinguishable elements
does not produce changes in the quasi-functions.

7.2 A Vector Space Structure
Now, we wish to have a vector space structure to represent quantum states. To do that,
we need to define addition and multiplication by scalars. Before we go on, we must
notice that we cannot define these operations directly on the q-set F , for there is no
simple way to endow it with the required structure; our strategy here is to define ?
(multiplication by scalars) and + (addition of vectors) in a q-set whose vectors will be
quasi-functions from F to the set of complex numbers C. Let us call C the collection of
quasi-functions that assign to every f ∈ F a complex number. Once again, we select
from C the sub-collection CF of quasi-functions c such that every c ∈ CF attributes
complex numbers λ , 0 for only a finite number of f ∈ F . Over CF , we can define a
sum and a product by scalars in the same way as it is usually done with functions as
follows.

Definition 7.1 Let γ ∈ C, and c, c1 and c2 be quasi-functions of CF , then

(γ ? c)( f ) := γ(c( f ))

(c1 + c2)( f ) := c1( f ) + c2( f )

The quasi-function c0 ∈ CF such that c0( f ) = 0 for every f ∈ F acts as the null element
for the sum operation. This can be shown as follows:

(c0 + c)( f ) = c0( f ) + c( f ) = 0 + c( f ) = c( f ),∀ f . (9)

With both the operations of sum and multiplication by scalars defined as above we
have that 〈CF ,C,+, ?〉 has the structure of a complex vector space, as one can easily
check. Some of the elements of CF have a special status though; if c j ∈ CF are the
quasi-functions such that c j( fi) = δi j (where δi j is the Kronecker symbol), then the
vectors c j are called the basis vectors, while the others are linear combinations of them.
For notational convenience, we can introduce a new notation for the q-functions in
CF ; suppose c attributes a λ , 0 to some f , and 0 to every other quasi-function in F .
Then, we propose to denote c by λ f . The basis quasi-functions will be denoted simply
fi, as one can check. Now, multiplication by scalar α of one of these quasi-functions,
say λ fi can be read simply as (α · λ) fi, and sum of quasi-functions λ fi and α fi can be
read as (α + λ) fi. What about the other quasi-functions in CF? We can extend this
idea to them too, but with some care: if, for example c0 is a quasi-function such that

28We are leaving aside the subindices in this notation.
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c0( fi) = α and c0( f j) = λ, attributing 0 to every other quasi-function in F , then c0
can be seen as a linear combination of quasi-functions of a basis; in fact, consider the
basis quasi-functions fi and f j, (this is an abuse of notation, for they are representing
quasi-functions in CF that attribute 1 to each of these quasi-functions). The first step
consists in multiplying them by α and λ, respectively, obtaining α fi and λ f j (once again,
this is an abuse, for these are quasi-functions in CF that attribute the mentioned complex
numbers to fi and to f j). Now, c0 is in fact the sum of these quasi-functions, that is,
c0 = α fi + λ f j, for this is the function which does exactly what c0 does. One can then
extend this to all the other quasi-functions in CF as well.

7.3 Inner Products
The next step in our construction is to endow our vector space with an inner product. This
is a necessary step for we wish to calculate probabilities and mean values. Following
the idea proposed in [11], we introduce two kinds of inner products, which lead us to
two Hilbert spaces, one for bosons and another for fermions. We begin with the case for
bosons.

Definition 7.2 Let δi j be the Kronecker symbol and fεi1 εi2 ...εin
and fεi′1

εi′2
...εi′m

two basis
vectors (as discussed above), then

fεi1 εi2 ...εin
◦ fεi′1

εi′2
...εi′m

:= δnm

∑
p

δi1 pi′1δi2 pi′2 . . . δin pi′n . (10)

Notice that this sum is extended over all the permutations of the index set i′ =

(i′1, i
′
2, . . . , i

′
n); for each permutation p, pi′ = (pi′1, pi′2, . . . , pi′n).

For the other vectors, the ones that can be seen as linear combinations in the sense
discussed above, we have

(
∑

k

αk fk) ◦ (
∑

k

α′k f ′k ) :=
∑

k j

α∗kα
′
j( fk ◦ f ′j ), (11)

where α∗ is the complex conjugate of α. Now, let us consider fermions. As remarked
above in page 23, the order of the indexes in each fεi1 εi2 ...εin

is determined by the canonical
ordering in the real numbers. Thus, we define another • inner product as follows, which
will do the job for fermions.

Definition 7.3 Let δi j be the Kronecker symbol and fεi1 εi2 ...εin
and fεi′1

εi′2
...εi′m

two basis
vectors, then

fεi1 εi2 ...εin
• fεi′1

εi′2
...εi′m

:= δnm

∑
p

σpδi1 pi′1δi2 pi′2 . . . δin pi′n (12)

where: σp = 1 if p is even and σp = −1 if p is odd.

This definition can be extended to linear combinations as in the previous case.
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7.4 Fock spaces using Q-spaces
We begin with a definition to simplify the notation. For every function fεi1 εi2 ...εin

in F ,
we put

α|εi1εi2 . . . εin ) := α fεi1 εi2 ...εin

Note that this is a slightly modified version of the standard notation. We begin with the
case of bosons.

Suppose a normalized vector |αβγ . . .), where the norm is taken from the corre-
sponding inner product. Let ζ stand for an arbitrary collection of indexes. We define
a†α|ζ) ∝ |αζ) in such a way that the proportionality constant satisfies a†αaα|ζ) = nα|ζ).
From this it will follow, as usual, that:

((ζ |a†α)(aα|ζ)) = nα.

Definition 7.4 aα| . . . nα . . .) :=
√

nα| . . . nα − 1 . . .)

On the other hand,

aαa†α| . . . nα . . .) = K
√

nα + 1| . . . nα . . .),

where K is a proportionality constant. Applying a†α again, we have

a†αaαa†α| . . . nα . . .) = K2
√

nα + 1| . . . nα + 1 . . .).

Using the fact that a†αaα|ζ) = nα|ζ), we have that

(a†αaα)a†α| . . . nα . . .) =
√

nα + 1K| . . . nα + 1 . . .).

So, K =
√

nα + 1. Then, we have

Definition 7.5 a†α| . . . nα . . .) :=
√

nα + 1| . . . nα + 1 . . .).

From this definition, with additional computations, we obtain (aαa†β − a†βaα)|ψ) = δαβ|ψ).
In our language, this means the same as

[aα; a†β] = δαβI.

In an analogous way, it can be shown that

[aα; aβ] = [a†α; a†β] = 0.

So, the bosonic commutation relation is the same as in standard Fock space formalism.
For fermionic states, we use the antisymmetric product “•.” We begin by defining

the creation operator C†α.

Definition 7.6 If ζ is a collection of indexes of non-null occupation numbers, then
C†α := α|ζ)
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If α is in ζ, then |αζ) is a vector of null norm. This implies that (ψ|αζ) = 0, for every
ψ. It follows that systems in states of null norm have no probability of being observed.
Furthermore, their addition to another vector does not contribute to any observable
difference. To take the situation into account, we have the following definition.

Definition 7.7 Two vectors |φ) and |ψ) are similar if the difference between them is a
linear combination of null norm vectors. We denote similarity of |φ) and |ψ) by |φ) � |ψ).

Using the definition of C†α we can describe what is the effect of Cα over vectors, namely

(ζ |Cα := (αζ |.

Then, for any vector |ψ),

(ζ |Cα|ψ) = (αζ |ψ) = 0

for α ∈ ζ or (ψ|αζ) = 0. Then, if |ψ) = |0), then (ζ |Cα|0) = (αζ |0) = 0. So, Cα|0) is
orthogonal to any vector that contains α, and also to any vector that does not contain
α, so that it is a linear combination of null norm vectors. So, we can put by definition
that ~0 := Cα|0). In an analogous way, if ∼ α denotes that α has occupation number zero,
then we can also write Cα|(∼ α) . . .) = ~0, where the dots mean that other levels have
arbitrary occupation numbers.

Now, using our notion of similar vectors, we can write Cα|0) � ~0 and Cα|(∼ α) . . .) �
~0. The same results are obtained when we use � and the sign of identity. By making
|ψ) = |α), we have (ζ |Cα|α) = (αζ |α) = 0 in every case, except when |ζ) = |0). In that
case, (0|Cα|α) = 1. Then, it follows that Cα|α) � 0. In an analogous way, we obtain
Cα|αζ) =� |(∼ α)ζ) when α < ζ. In the case α ∈ ζ, |αζ) has null norm, and so, for every
|ψ):

(αζ |C†α|ψ) = (αζ |αψ) = 0.

It then follows that
(ψ|Cα|αζ) = 0,

so that Cα|αζ) has null norm too.
Now we calculate the anti-commutation relation obeyed by the fermionic creation

and annihilation operators. We begin calculating the commutation relation between Cα

and C†β. We do that by studying the relationship between |αβ) and |βα). Let us consider
the sum |αβ) + |βα). The product of this sum with any vector distinct from |αβ) is null.
For the product with |αβ) we obtain (αβ|[|αβ)+ |βα)] = (αβ||αβ)+(αβ||βα). By definition,
this is equal to δααδββ − δαβδβα + δαβδαα − δααδββ. This is equal to 1 − 0 + 0 − 1 = 0.

The same conclusion holds if we multiply the sum |αβ)+ |βα) by (βα|. It then follows
that |αβ) + |βα) is a linear combination of null norm vectors, which we denote by |nn),
so that

|αβ) = −|βα) + |nn).

Given that, we can calculate

C†αC†β |ψ) = |αβψ) = −|βα|ψ) + |nn) = −C†βC
†
α|ψ) + |nn).
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From this it follows that {C†α; C†β}|ψ) = |nn). We do not lose generality by setting

{C†α; C†β}|ψ) = 0. In an analogous way we conclude that

{Cα; Cβ}|ψ) = 0.

Now we calculate the commutation relation between Cα and C†β. There are some
cases to be considered. We first assume that α , β. If α < ψ or β ∈ ψ then

{Cα; C†β}|ψ) ≈ ~0.

If α ∈ ψ and β < ψ, assuming that α is the first symbol in the list of ψ, then
{Cα; C†β}|ψ) = Cα|βψ) + C†β |ψ(∼ α)) � −|βψ(∼ α)) + |βψ(∼ α)) = ~0. If α = β and

α ∈ ψ, then {Cα; C†α}|ψ) = Cα|αψ) + C†α|ψ(∼ α)) � ~0 + |ψ) = |ψ). If α = β and α < ψ,
then {Cα; C†α}|ψ) = Cα|αψ) + C†α|ψ(∼ α)) � |ψ) + ~0 = |ψ). In any case, we recover
{Cα; C†α}|ψ) � δαβ|ψ). So, we can put

{Cα; C†α} = δαβ.

It then follows that the commutation properties inQ-spaces are the same as in traditional
Fock spaces.

Using this formalism, we can adapt all the developments done in [26, Chap.7] and
[27, Chap.20] for the number occupation formalism. However, contrary to what happens
in these books, no previous (even unconscious) assumptions about quantum objects’
individuality is taken into account.

8 Conclusions
It is an exciting question to ask if we need to change logic every time we find difficulties
with the classical one. Are there other ways to circumvent the problems, such as
in the quantum case, using the tricks mentioned above, or choosing an alternative
interpretation? This question makes sense. However, we think that every theory, even
a mathematical one, starts from metaphysical hypotheses, even if not made explicit.
We have stated above that classical logic, standard mathematics, and classical physics
were developed with the classical enclosing world in our minds. This world is one
of individuals that have an identity. So, two of those individuals cannot possibly be
different.

Nevertheless, quantum mechanics brought us a different world, a world with no
proper names. In the quantum world, objects are (in most cases) precisely alike, and
permutations between objects of the same kind do not lead to any physical differences.
Here we emphasize that it is not that these are not measurable differences; they are no
differences at all. So, we arrive at the following conclusions.

1. Indistinguishability is essential in quantum mechanics, regardless of interpretation.
In our opinion, it should be placed at an equal level of importance in quantum
foundations to concepts such as entanglement, contextuality, and nonlocality.
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2. Ontological and epistemic aspects matter. Any physical theory is grounded in
interpretations due to the possibility of associating different world views (or
metaphysics) to a theory. Parodying Poincaré, we can say that physics is (also) a
domain where we give the same name to distinct things.29

3. Since mathematics and logic need to reflect the assumed metaphysical aspects (we
could speak in terms of ontology), quantum mechanics’ formalism and physical
theories should do the same.

Let us expand on this last point with an example involving logic. It is common
to say that in order to obtain intuitionistic logic, it is enough to drop the excluded
middle law from the axioms of classical logic. From a purely formal point of view,
this is correct. However, logic is not only syntax. It also involves semantic aspects
and even pragmatic ones (making references to who uses the logic and why). Let us
consider semantics. Although classical and intuitionistic logic differs syntactically just
by one axiom, semantically, they are much different. Classical propositional logic can
be described through truth-tables; intuitionistic logic cannot. In classical logic, any
proposition is either true or false, yet we may not know what the case is; in intuitionistic
logic, the notions of true and false are different. In this logic, a proposition p is true if
there is a “process” to get it, and false if a process for obtaining p leads to a contradiction.
Other differences can be pointed out. For instance, in classical logic, something exists if
its nonexistence creates a contradiction. In intuitionistic logic, something exists if it can
be created by our imagination.

This example shows that in order to consider a logic, semantical aspects must at
least be considered. Of course, this is true also with physical theories. Otherwise, we
risk having a purely mathematical theory. However, what corresponds to semantics in
the quantum case? We chose interpretations because quantum mechanics, as Yuri Manin
wrote, “does not really have its own language” [25, p. 84]. At least not yet. Indeed, the
standard formalism grounded on Hilbert spaces makes use of the language of standard
functional analysis, which presupposes classical mathematics and logic, with all the
problems seem before (in regarding quantum phenomena). A proper language should
reflect the indiscernibility of quanta from the start, without tricks!

As we showed in this paper, such a correct language can be constructed. In this
paper, we examined content and context in quantum physics. We provided examples
of context for the classical and quantum realms and argued that the quantum situation
is fundamentally different. Furthermore, we reasoned that context-dependency in
the quantum world is intrinsically connected to the lack of identity. Thus, the non-
identity of individuals is an essential feature of the quantum world. Since the standard
mathematics used in physics does not exactly allow for objects who lack identity, i.e.,
indistinguishable objects, we advocated for using a different mathematical structure in
physics: quasi-set theory. Quasi-set theory includes standard mathematic in it but also
contains indistinguishable objects. We believe that recreating quantum physics in terms
of quasi-set theory and its underlying logic would result in thinking closer to a more

29Poincaré was referring to mathematics: “mathematics is the art of giving the same name to distinct things”
— look at [38]. Of course, he spoke within the framework of axiomatized mathematical theories, able to have
different models.

29



reasonable ontology for the quantum world than currently available ontologies. This
way of thinking may lead to exciting insights into quantum ontologies and fundamental
physical principles that define quantum mechanics.

References
[1] Aerts, D., D’Hondt, E. and Gabora, L. (2000), Why the disjunction in quantum

logic is not classical. Foundations of Physics 30 (9): 1473-1480.

[2] Arenhart, J. R. B. (2011), A discussion on finite quasi-cardinals in quasi-set theory.
Foundations of Physics 41: 1338–1354.

[3] Bohm, D. (1952). A Suggested Interpretation of the Quantum Theory
in Terms of “Hidden” Variables. II. Physical Review, 85(2), 180–193.
https://doi.org/10.1103/PhysRev.85.180

[4] Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H., and Zeilinger, A. (1999).
Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement. Physi-
cal Review Letters, 82(7), 1345–1349.

[5] Button, T. and Walsh, S. (2018), Philosophy and Model Theory. Oxford: Oxford
Un. Press.

[6] da Costa, N. C. A. and Krause, D. (1997), An intensional Schrödinger logic. Notre
Dame J. Formal Logic 38 (2): 179-194

[7] de Barros, J. A., and Suppes, P. (2000). Inequalities for Dealing with Detector
Inefficiencies in Greenberger-Horne-Zeilinger Type Experiments. Physical Review
Letters, 84(5), 793–797.

[8] de Barros, J. A., Kujala, J. V., and Oas, G. (2016). Negative proba-
bilities and contextuality. Journal of Mathematical Psychology, 74, 34–45.
https://doi.org/10.1016/j.jmp.2016.04.014

[9] de Barros, J. A., Holik, F. and Krause, D. (2017), Contextuality and indistinguisha-
bility. Entropy 19 (9): 435-57.

[10] Domenech, G., Holik, F. (2007), A discussion on particle number and quantum
indistinguishability, Foundations of Physics 37 (6): 855-78.

[11] Domenech, G., Holik, F. and Krause, D. (2008), Q-spaces and the foundations of
quantum mechanics, Foundations of Physics 38 (11), pp.969-994.

[12] Dalla Chiara, M. L., Giuntini, R. and Greechie, R. (2004), Reasoning in Quantum
Theory, Sharp and Unsharp Quantm Logics. Dordrecht, Kluwer Ac. Pu.

[13] Dzhafarov, E. N., and Kujala, J. V. (2016, July). Contextuality-by-Default 2.0:
Systems with binary random variables. In de Barros, J. A., Coecke, B., and Pothos,
E. International Symposium on Quantum Interaction (pp. 16-32). Springer, Cham.

30



[14] French, S. and Krause, D. (2006), Identity in Physics: A Historical, Philosophical,
and Formal Analysis. Oxford: Oxford Un. Press.

[15] French, S. and Krause, D. (2010), Remarks on the theory of quasi-sets. Studia
Logica 95 (1-2): 101-124.

[16] Geach, P. (1967), Identity, Review of Metaphysics, 21: 3–12.

[17] Greenberger, D. M., Horne, M. A., and Zeilinger, A. (1989). Going Beyond Bell’s
Theorem. In M. Kafatos (Ed.), Bell’s theorem, Quantum Theory, and Conceptions
of the Universe (Vol. 37, pp. 69–72). Kluwer.

[18] Hodges, W. (1983), Elementary Predicate Logic. In: D. M. Gabbay and F. Guenth-
ner, (eds.) Handbook of Philosophical Logic - Vol. I: Elements of Classical Logic,
pp. 1-131. D. Reidel: Dordrecht.

[19] Holland, P. R. (1995). The Quantum Theory of Motion: An Account of the de
Broglie-Bohm Causal Interpretation of Quantum Mechanics. Cambridge Univer-
sity Press.

[20] Hume, D. (1985), Treatise of Human Nature. Ed. L. A. Selby-Bigge, 2nd ed.
Oxford: Oxford University Press.

[21] Jaeger, G. (2009). Entanglement, Information, and the Interpretation of Quantum
Mechanics. Springer-Verlag.

[22] Krause, D., Arenhart, J. R. B. and Bueno, O. (2020), The non-individuals interpre-
tation of quantum mechanics. Forthcoming in the Oxford Handbook of the History
of Interpretations of Quantum Mechanics, (Olival Freire Junior, editor; Guido
Bacciagaluppi, Olivier Darrigol, Thiago Hartz, Christian Joas, Alexei Kojevnikov,
and Osvaldo Pessoa Junior, assistant editors), 2021.

[23] Krause, D. and Coelho, A. M. N. (2005), Identity, indiscernibility, and philosophi-
cal claims. Axiomathes 15: 191-210. DOI: 10.1007/s10516-004-6678-5

[24] Locke, J. (1959), AN Essay Concerning Human Understanding. New York: Dover.

[25] Manin, Yu. I. (1977), A course in mathematical logic. Springer.

[26] Mattuck, R. D. (1967), A Guide do Feynman Diagrams in the Many-Body Problem.
New York: McGraw-Hill.

[27] Merzbacher, E. (1970), Quantum Mechanics. New York: John Wiley & Sons.

[28] Penrose, R. (2004), The Road to Reality: a Complete Guide to the Laws of the
Universe. London: Jonathan Cape.

[29] Popescu, S., and Rohrlich, D. (1994). Quantum nonlocality as an axiom. Founda-
tions of Physics, 24(3), 379-385.

[30] Quine V. O. (1969), Ontological Relativity and Other Essays. New York: Columbia
University Press.

31



[31] Ramsey, F. P. (1965), The Foundations of Mathematics and Other Logical Essays.
R. B. Braithwaite (ed.), with a preface by G. E. Moore. London: Routledge &
Kegan Paul.

[32] Schrödinger, E. (1998), What is an elementary particle? In Castellani, E. (ed.)
Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton:
Princeton Un. Press, pp. 197-210.

[33] Specker, E. P. (1975). The Logic of Propositions Which are not Simultaneously
Decidable. In C. A. Hooker (Ed.), The Logico-Algebraic Approach to Quantum
Mechanics (pp. 135–140). Springer Netherlands.

[34] Styer, D. F. et al. (2002). Nine Formulations of Quantum Mechanics. American
Journal of Physics, 70 (3): 288-297.

[35] Svozil, K. (1998), Quantum Logic. Singapore: Springer.

[36] Teller, P. (1998). Quantum mechanics and haecceities. In Castellani, E. (Ed.),
Interpreting Bodies: classical and quantum objects in modern physics. New Jersey,
Princeton University Press.

[37] Toraldo di Francia, G. (1986), Le Cose e i Loro Nomi. Bari: Laterza.

[38] Verhulst, F. (2012), An interview with Henri Poincaré. NAW 5/13 nr.3 Sept.2012
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