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Abstract: In this paper, we examined the connection between quantum systems’ indistinguishability1

and signed (or negative) probabilities. We do so by first introducing a measure-theoretic definition of2

signed probabilities inspired by research in quantum contextuality. We then argue that ontological3

indistinguishability leads to the no-signaling condition and negative probabilities.4
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1. Introduction7

The assignment of truth values to propositions asserting that a system’s property has a definite8

value is problematic in quantum mechanics. Take the case of propositions about momentum and9

position for a quantum system. Heisenberg’s uncertainty principle asserts that we cannot know10

the values of position and momentum simultaneously, at least not as precisely as one wants. This11

constraint brings the issue of whether systems have well-defined but unknowable values of position12

and momentum, or whether these are undefined. If the former, the probabilistic uncertainties appearing13

in quantum theory would have an epistemic character, being quantum properties the best description14

of what we can say about the system. If the latter, then what properties does the system have? For15

instance, when we measure a particle’s momentum and find the value p, does it mean the particle1 has16

momentum p? Moreover, is this value of momentum something that existed before the measurement?17

If not, then do measurements create properties? Do the experimenter, who chooses what to measure,18

set what properties a particle has? These questions become more problematic if we consider the19

Kochen-Specker theorem.20

In their seminal paper, Kochen and Specker (KS) studied hidden-variable theories compatible21

with the quantum formalism and satisfying certain physically-motivated conditions. They proved22

that the values that these hidden variable theories assign to propositions about quantum systems23

must be contextual: the truth-value assigned to a given proposition will depend on the context in24

which it is considered. The idea for their proof is the following (see Section 2 for detail). Imagine25

we have a set of N binary observables P = {P1, P2, ..., PN} corresponding to yes-no questions about26

a quantum particle. Each Pi is a Hermitian projection operator in a Hilbert space (in KS’s paper a27

three dimensional one). As is well known, each Pi is associated with a proposition about the quantum28

system. KS constructed a set of such operators with the following characteristics. First, there were29

several subsets of three commuting operators, such that one and only one of them were true for this30

1 It is important to stress here that in this work, the word “particle” is used only for the sake of clarity of exposition, and that
we are not compromised, in principle, with a particle ontology. Our considerations apply to whatever kind of entities the
quantum systems might be (such as particles or fields, for example), provided they are indistinguishable.
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set (i.e., they were orthogonal, and their sum was one). We can think of these subsets as a context,31

determined by the set of simultaneous propositions considered. These subsets had the additional32

feature that each Pi ∈ P appeared twice, one time for each of two possible contexts. By constructing33

an appropriate set P , KS showed that the structure of quantum observables and their corresponding34

contexts did not allow the consistent assignment of truth values for each Pi that was the same for all35

contexts. Thus, in this sense, only contextual hidden variable theories are compatible with the quantum36

formalism. Furthermore, this contextuality exists for all quantum systems that are complex enough37

(more specifically, it holds for any Hilbert space of dimension greater than two).38

Further study in hidden variable models led to the discovery of the so-called non-contextuality39

inequalities. These can be experimentally testable, opening an obvious field of research for discarding40

theories that deviate from experiments (and quantum theory). Examples of them are the KCBS41

inequalities in [1] and the GHZ inequalities in [2]. It was later shown that Bell and CHSH inequalities42

fall into this category. These inequalities’ characteristic feature is that they put an upper bound on the43

correlations that a family of non-contextual hidden variable theories can model. Thus, an approach44

is non-contextual if the correlations predicted by it satisfy a specific bound. Since the correlations45

predicted by quantum theory do violate those inequalities, it is natural (and tempting) to say that46

quantum mechanics is contextual. Notice that this is a shift from the old quantum physics jargon, for47

which only hidden-variable theories could be considered as contextual or not.48

Furthermore, in the last decades, this quantum theory feature has attracted a lot of interest due49

to its potential role in quantum information processing tasks. Thus, instead of being considered a50

negative characteristic, nowadays, physicists seeking to develop quantum technologies, consider51

contextuality a positive feature of quantum theory itself, which can be quantified, measured, and used52

as a resource. In this work, we will follow the current jargon, and refer to the feature of the quantum53

formalism discovered by Kochen and Specker as quantum contextuality. In other words, we will use54

expressions such as “quantum mechanics is contextual,” “this theory (or state) has such amount of55

contextuality,” and so on, to simply mean that outcomes of experiments are contextual.56

There is yet another –less explored– feature of quantum mechanics that justifies the modern jargon.57

Propositions about quantum systems are linked to concrete experimental settings, which are selected58

by the experimenter. If we prepare a quantum system in a particular state and consider a proposition59

in a given context, we find empirically that the result of an experiment might not be the same should60

we repeat the test with the same state, but with the given proposition considered in a different context.61

This is phenomenologically given, and it is independent of any interpretation. Furthermore, one might62

avoid speaking about states at all, and only refer to preparations and testable quantities of physical63

systems and their correlations in a theory-independent way; still, it would be meaningful to determine64

whether experiments display contextuality or not, and this could be checked by observing probability65

distributions and non-contextuality inequalities objectively. If a system shows contextual correlations,66

we refer to this feature by saying that the system is empirically contextual. This notion of empirical67

contextuality is consistently defined, objectively testable, and it is model-independent (in the sense68

that they only assume very general features of probabilistic models).69

Because of contextuality, one cannot represent quantum states with classical probabilities. Usually,70

one represents them by trace operators acting on a separable Hilbert space. But it seems possible71

to describe quantum states with extended probabilities. For example, the Wigner function takes72

a quantum state and transforms it into a classical phase space function. This function resembles a73

Kolmogorovian probability, but it may take negative values. Because it may be negative, it is considered74

a quasi-probabilities. Most approaches to quasi-probabilities rely on an underlying theory (such as75

quantum mechanics) whose states and observables are mapped to a classical phase space in which the76

states take the form of quasi-probabilities (see for example [3]).77

In this work, we take an alternative approach and focus on two aspects of quantum contextuality.78

First, we rely on the notions of signed measurable space and measurement context to give a formal79

definition of negative probabilities that is general enough to cover all cases of interest in quantum80
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contextuality (and hopefully also outside of physics). Classical probabilistic models are shown to81

be particular cases of our formulation, which is general enough to include contextual models, such82

as those coming from the quantum formalism. The approach presented here has many features in83

common with previous ones (see, for example, [4–6]). Still, it relies more directly upon the notions of84

compatible random variables (for which a joint probability distribution exists), and thus, it provides85

a straightforward extension of Kolmogorov’s approach. Our signed probabilities are constructed as86

no-signaling, meaning that the quasi-probability distribution associated with a random variable is87

context-independent. This particular feature is particularly relevant in physics, given that all physical88

theories satisfy this condition.89

The other focus of this article is on quantum indistinguishability. In previous works, we have90

discussed the connection between particle and property indistinguishability as related to contexts [7].91

Here we show that property indistinguishability leads to the no-signaling condition. Since negative92

probabilities are necessary and sufficient for the description of no-signaling models, we argue that93

there is a connection between the principle of particle indistinguishability and negative probabilities.94

The assumption of indistinguishability for quantum particles leads to contextual and indistinguishable95

properties, which can, in turn, be naturally modeled using our definition of signed probabilities.96

We organize this paper as follows. After reviewing elementary facts about contextuality in Section97

2, in Section 3 we motivate and provide our definition of signed probabilities. In Section 4, we discuss98

the connection between quantum indistinguishability, negative probabilities, and the non-signaling99

condition. Finally, in Section 5, we end with some final remarks and conclusions.100

2. Contextuality in Quantum Mechanics101

Context is a term that comes from linguistics, especially from semantics and pragmatics [8].102

For instance, in semantics, the truth-value of an utterance or written text may depend on the other103

statements or sentences that precede or follow it. Take the written sentence: “Alice sat by the bank to104

observe the people.” Its truth-value varies depending on other comments that accompanied it: if it were105

preceded by “The river was calming and beautiful,” its meaning would differ from if it were preceded106

by “The heist needed planning.” For the case where "river" preceded the sentence, "bank" likely107

refers to the bank side of a river, whereas for the "heist" case, "bank" refers to a financial institution.108

Though this is a case where meaning changes, there are other examples in linguistics where meaning109

does not change, but truth-value does. We can think of those as examples of context-dependency, or110

contextuality, in linguistics [9].111

Contextuality, as conceptually discussed above, is a central concept in the foundations of quantum112

mechanics. It is also the main driving difficulty in defining properties for quantum particles or113

systems. So, let us examine how contextuality appears in quantum mechanics by discussing the114

famous Kochen-Specker theorem [10]. Here we present a more straightforward proof involving only115

nine contexts [11].116

We start with a four-dimensional Hilbert space, H. According to the standard formalism of117

quantum mechanics, measurable properties are represented by Hermitian operators inH (known as118

observables). A quantum system is said to have a property if an experiment measuring it yields the119

same value all the time. In the formalism, this translates into having the system be in an eigenstate of120

the Hermitian operator. A particularly important subset of observables is projection operators, which121

correspond to 0- or 1-valued observables. We can think of these binary properties as truth-values:122

either the quantum system has the property (1), or it does not (0). To distinguish between general123

properties and those associated with projection operators, we call the latter testable propositions, or, in124

short, propositions. The distinction between testable propositions and properties is subtle and debated125

in the literature (see, e.g., [12,13]). Here we use the terminology that propositions are a particular type126

of observables, as discussed above.127



Version January 31, 2021 submitted to Entropy 4 of 28

A vector inH uniquely determines a projection operator. For example, the vector |1, 0, 0, 0〉 ∈ H
corresponding to the column matrix with the first component as one and the others as zero determines
the projector operator P̂1,0,0,0 ≡ |1, 0, 0, 0〉〈1, 0, 0, 0|. Let us consider now the following set of equations.

P̂0,0,0,1 + P̂0,0,1,0 + P̂1,1,0,0 + P̂1,−1,0,0 = 1, (1)

P̂0,0,0,1 + P̂0,1,0,0 + P̂1,0,1,0 + P̂1,0,−1,0 = 1, (2)

P̂1,−1,1,−1 + P̂1,−1,−1,1 + P̂1,1,0,0 + P̂0,0,1,1 = 1, (3)

P̂1,−1,1,−1 + P̂1,1,1,1 + P̂1,0,−1,0 + P̂0,1,0,−1 = 1, (4)

P̂0,0,1,0 + P̂0,1,0,0 + P̂1,0,0,1 + P̂1,0,0,−1 = 1, (5)

P̂1,−1,−1,1 + P̂1,1,1,1 + P̂1,0,0,−1 + P̂0,1,−1,0 = 1, (6)

P̂1,1,−1,1 + P̂1,1,1,−1 + P̂1,−1,0,0 + P̂0,0,1,1 = 1, (7)

P̂1,1,−1,1 + P̂−1,1,1,1 + P̂1,0,1,0 + P̂0,1,0,−1 = 1, (8)

P̂1,1,1,−1 + P̂−1,1,1,1 + P̂1,0,0,1 + P̂0,1,−1,0 = 1. (9)

Each equation above is numerically equal to one because all the vectors in each line form a complete128

and orthonormal basis for H. This means that, for each equation (1)–(9), we have four true-false129

properties that are compatible, complete, and mutually exclusive. Therefore exactly one of them must130

be true, and the others zero, which means they all add to one.131

An issue may be evident to some readers about (1)–(9): if we assign to each property a truth-value132

of zero or one we reach a contradiction. To see this contradiction, consider that each property P̂i133

appears on the left hand side of (1)–(9) twice. Since 2P̂i is an even number, it follows that the sum of all134

the terms on the left-hand side of (1)–(9) must be even. However, we add the right-hand side of (1)–(9)135

we total nine, clearly not an even number, which is a mathematical contradiction.136

The mathematical contradiction is a result of assuming that the truth-value of a property P̂i is the137

same when it is co-measured with different properties. For example, P̂0,0,0,1 shows up in (1) but also138

in (2). However, the co-measured variables to P̂0,0,0,1 in (1) are all different from the ones in (2). In139

the example above, therefore, we have nine contexts, and each property shows up in exactly two of140

those contexts. If we allow, for example, P̂0,0,0,1 to have a different truth-value when co-measured with141

P̂0,0,1,0, P̂1,1,0,0, and P̂1,−1,0,0 (call it Context 1) from when it is co-measured with P̂0,0,0,1, P̂0,1,0,0, P̂1,0,1,0,142

and P̂1,0,−1,0 (Context 2), we reach no contradiction. It is in this sense that contextuality is claimed for143

quantum observables: the truth-value of a property varies with its context determined by the collection144

of co-measured properties.145

The above example has some intriguing features. First, it is state-independent. This feature means146

that it does not matter how we prepare the quantum system; if we try to measure the properties147

on (1)–(9), they will change from context to context. Therefore contextuality is a property of the148

quantum-operator algebra. Second, what the KS theorem shows is a logical contradiction that arises149

from a context-independence assumption. This means that we do not need to involve probabilities in150

proving the contextuality of quantum properties.151

However, probabilities are a fundamental aspect of quantum theory, and perhaps of any empirical
theory. So, how could we formulate the KS theorem in terms of probability theory? The hint can be
found on [14]: logical inconsistencies are but a special case of probability one events when a joint
probability distribution does not exist that describes the outcomes of the experiments. To see this, let
us consider the example of four two-valued properties, A, A′, B, and B′, who can only be observed in
the following pairwise experimental arrangements: A with B; A with B′; A′ with B; and A′ with B′. If
we assume that those properties are context-independent, then the combination of their values defined
by

S = AB + AB′ + A′B− A′B′ (10)
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is always a number equal or less than two. The reader can verify the previous statement for all possible
combinations, but as an example, if A = 1, A′ = −1, B = 1, and B′ = 1, S = 1 + 1− 1 + 1 = 2.
Since any combination of A, A′, B, and B′ yields a value of S that is 2 or less, it follows that convex
combinations of S imply that

〈S〉 ≤ 2, (11)

where we are using the fact that the mean value of S, denoted 〈S〉, is a convex combination of each152

of its possible values. It follows, from (11) that if S > 2, there is no convex combination of the logical153

context-independent possibilities that yields the expected value of S. In other words, it is not possible154

to assign probabilities to the possible combinations of values of A, A′, B, and B′ consistent with 〈S〉 > 2.155

This is why a joint probability distribution for A, A′, B, and B′ does not exist, although, of course,156

marginal probabilities do, since we can use the data tables to, say, compute the value of 〈AB〉.157

We should point out that (11) is one of the CHSH inequalities [15]. By itself, as we saw above,158

a violation of (11) is sufficient to establish the non-existence of a joint probability distribution or159

contextuality for the observables in question. However, other inequalities need to be added to (11) to160

form a set of necessary and sufficient conditions for the contextuality of properties.161

The CHSH inequalities [15] are related to Bell’s inequalities [16], and they can be used to show that
quantum mechanics is a non-locally contextual theory, or simply non-local. This is done by starting
with two spin-1/2 particles, A and B, in an entangled state

|ψ〉 = 1√
2
(|+−〉 − | −+〉) , (12)

where |+−〉 is the state where particle A has spin +1/2 and B spin −1/2 and | −+〉 the other way
around. It is easy to prove from (12) that the joint expectation of two spin measurements in directions
θ1 for A and θ2 for B yield the following correlation:

E(θ1, θ2) = sin(θ1 − θ2). (13)

The reader can verify that for the combinations of measuring the spin of A at 0°and 45° and B at 22.5°162

and 67.5°, 〈E〉 = 2
√

2 > 2, which violates (11). So, quantum mechanics is not only contextual, but its163

contextuality manifests for observers that may be far apart from each other, such as the case of the164

two-particle example above. Contextuality appears in quantum mechanics from the structure of the165

Hilbert space and that it is present even for systems whose properties are space-like separated. This166

contextuality presents difficulties to the concept of property in quantum mechanics, as they would167

depend on the experimenter’s choice of a measurement apparatus, as discussed above.168

To summarize, in this section, we discussed the idea of contextuality both from an intuitive169

and formal perspective. We saw that contextuality is the impossibility of consistently assigning170

truth-values to the same testable proposition in different contexts. Equivalently, a similar assertion171

holds for observables: it is impossible to assign non-contextual values to all possible observables if some172

minimal functionality conditions are to be considered [10]. Alternatively, one can interpret contextuality173

as the proposition (or observable) changing from one context to another. These observations lead174

to a subtle (but fundamental) problem: do propositions (or observables) retain their identity when175

considered in different contexts? Let us be more explicit about this. In the scenario described above,176

consider the contexts AB and AB′. What is the status of observable A in contexts AB and AB′? Let177

us denote AB and AB′ to the observable A considered in contexts AB and AB′, respectively. Usually,178

since quantum systems obey the no-signal condition, physicists tend to identify AB and AB′ (i.e.,179

AB = AB′ ). However, this assumption is not trivial at all and has indeed been criticized. In some180

fields of research, AB and AB′ may not have the same distribution (as is the case in signaling theories)181

and, even if they have the same content, it should be dubious to identify them. Some authors have182

proposed that AB and AB′ should be considered different whenever a system manifests a strong degree183

of contextuality [17,18]. In previous works [7,19], we have proposed an alternative solution to the184
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dichotomy AB = AB′ vs AB 6= AB′ . Using a formal framework that allows dealing with collections185

of indistinguishable objects (see section 4 of this work), we have proposed that AB and AB′ can be186

thought of as indistinguishable (denoted by AB ≡ AB′ ). This point of view allows us to connect with187

contextuality one of the most fundamental features of quantum theory: quantum systems of the same188

kind are indistinguishable. More specifically, we show in [7,19] that the indistinguishability of particles189

leads to the indistinguishability of propositions and that this, in turn, gives place to contextuality. In190

the rest of this work, we elaborate on these ideas further and show a strong connection between the191

indistinguishability of testable propositions (or observables) and negative probabilities. To do this, we192

must first introduce a definition of negative probabilities that is useful for our purposes and general193

enough to cover all physical models of interest.194

3. Negative Probabilities195

Negative Probabilities (NP) have a long tradition in physics and find applications in different196

branches of quantum physics [20]. NP appeared in physics early in the 20th century in quantum197

mechanics, for example, in connection to the Klein-Gordon equation or Wigner’s paper on the classical198

approximations for quantum statistical mechanics [21]. However, NP were considered an undesirable199

side effect of a defective model or theory. As such, theories yielding NP were discarded as having no200

physical interest. The first physicist to take NP seriously was Dirac, who used them as the basis for his201

interpretation of the theory of photons [22]. They also were discussed by Feynman, who thought they202

were a promising concept but could not find any use for them [23]. Nevertheless, their study helped203

understand the connection and differences between quantum and classical systems. In some fields –as204

is the case in quantum optics– they have even become a tool of everyday use [24]. Furthermore, they205

form the basis of many contextuality measures [25,26] and serve to characterize quantumness of states206

and theories [27]. Recent studies aim to understand the differences between the correlations originated207

in quantum theory and those that come from other plausible no-signaling generalized probabilistic208

models [28]. In this setting, negative probabilities are used to characterize different features of quantum209

mechanics [3,29]. Nowadays, NP have become a fundamental tool in quantum information theory and210

the development of quantum technologies. In particular, they play a significant role in the problem of211

quantum state estimation [30], the determination of quantum correlations and classicality of quantum212

states [31], and the study of quantum computers’ speed-up [32,33].213

In our discussion of NP, let us start with Wigner’s work. In his 1932 paper [21], Wigner asked the
following question: if we have an ensemble of N classical particles, what types of corrections would
we have to introduce to their phase-space probability distributions such that their statistics coincided
with the quantum one. For this purpose, he constructed what is now known as the Wigner distribution,
given by

W(r, p) =
1

(2π)3

∫
ψ∗
(

r +
h̄
2

s
)

ψ

(
r− h̄

2
s
)

eip·sd3s, (14)

where r and p are the position and momentum, and s is an integration variable. A similar definition
holds for arbitrary pairs of conjugate variables. It is easy to see that W behaves similarly to a joint
probability distribution, in the sense that if we integrate W on either r or p we get the marginal
probability distributions. For example,∫

W(r, p)d3p = |ψ(r)|2. (15)

However, as Wigner pointed out, W is not a proper joint probability distribution, as it can take negative214

values. For example, for the ground state of the harmonic oscillator, W is non-negative, but for the215

first excited state, it is negative in some regions of the phase space [34]. After Wigner, Dirac [35]216

used negative probabilities to try to solve the problem of infinities in quantum field theory. In his217

theory, negative probabilities were nothing more than an accounting tool for computing (non-negative)218

observable probabilities, and carried the same interpretation as the statement “having negative three219
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apples.” This was similar to the interpretation suggested by Feynman in his article on negative220

probabilities [36]. For a review of the history of negative probabilities in physics, the interested reader221

is referred to [37]. More recently, negative probabilities have been used in foundations of quantum222

mechanics, and the interested reader is referred to references [6,38,39] and references therein. For223

possible interpretations of negative probabilities that are not based on a pragmatic bookkeeping,224

readers are referred to [5,40–43].225

What are negative probabilities? Let us start with the standard probability theory. The currently226

accepted axioms for probability were laid down by Kolmogorov [44]. In his axioms, we start with a227

sample set Ω, which we can think of as possible states of the system of interest. For example, if we are228

interested in a die’s outcomes, Ω could be the set {1, 2, 3, 4, 5, 6}. We could, in principle, talk about the229

probabilities of the members of Ω. Still, Kolmogorov recognized that, in probability theory, we want230

to refer to logical combinations of possible states. To do so, he associated with Ω a σ-algebra F of its231

elements. Once we have Ω and F , he define the probability p as a non-negative real-valued function232

p : F → [0, 1] satisfying the following properties.233

K1. p(Ω) = 1234

K2. For every denumerable and disjoint family {Ai}i∈N, p(
⋃

Ai) = ∑i p(Ai).235

It is easy to see, for simple examples, that Kolmogorov’s definition captures the essence of probabilities236

first put forth by Pascal and then developed throughout the centuries (for a wonderful historical237

account of probability theory, see [45].).238

However, as we saw in Section 2, it is not always possible to have a joint probability distribution239

that accounts for all experimental outcomes. There are different ways to approach this lack of a240

joint. One possibility is to notice that the algebra of observables is not Boolean, but follows a lattice241

structure that does not allow for certain Boolean operations (for example, the complement of a property242

may not exist) [46]. This is the quantum logic approach, and one could try to create a probability243

calculus over lattices, and not Boolean algebras. Of course, one such probability calculus is the244

Hilbert space formalism. Another approach could be to modify Kolmogorov’s definition to allow for a245

new probability function, say p∗, to exist. For example, we could change K2 from an equality to an246

inequality, as is the case for upper and lower probabilities [47–49]. Another possibility is to keep the247

algebra intact, as well as K1 and K2, but change the requirement that p is non-negative, i.e., to allow248

for negative probabilities.249

What are the axioms for negative probabilities? To give a straightforward description based on250

measure theory (obtaining thus a canonical generalization of Kolmogorov’s approach), we rely on the251

notion of compatible random variables and signed measure spaces. In the rest of this section, we will252

try to motivate and write down a definition for negative probabilities in the spirit of Kolmogorov.253

Let us start with a definition of random variables.254

Definition 1. Let (Ω,F , p) be a probability space, and let (M,M) be a Borel space with elements of M being255

real numbers, i.e. M is a σ-algebra over M. A (real-valued) random variable R is a measurable function256

R : Ω→ M, i.e. for all m ∈ M, R−1(m) ∈ F .257

Though the above definition may seem complicated, it is intuitive. What it says is that we can258

associate to partitions of the sample space Ω a particular real number. A simple example is the game259

of craps. Imagine we throw two dice and record their outcomes. A sample space for this example is260

(1, 1), (1, 2), . . . , (6, 6), where each ordered pair corresponds to an outcome for each die. In a game of261

craps, often, what matters is the sum of the values and not the individual outcomes. For example,262

rolling a seven out, a sometimes desired outcome, is the result of one of the following outcomes: (1, 6),263

(2, 5), (3, 4), (4, 3), (5, 2), or (6, 1). A random variable yielding the sum of the thrown dice would264

associate to all those outcomes the value 7. As defined, random variables are a way to model outcomes265

of experiments or observations that are stochastic, i.e., that have certain randomness associated with266

them.267
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If we look back at our examples in Section 2, we can see that random variables may express
contextuality. For example, let us consider the four two-valued properties A, A′, B, and B′. Since
they could be used to describe yes/no properties, let us think of each of them as a ±1-valued random
variables in a given a probability space (Ω,F , p), e.g. A : Ω → 1,−1. In terms of random variables,
(10) would be rewritten simply as

S = AB + AB′ + A′B−A′B′. (16)

Since it follows from standard probability theory that

〈S〉 = 〈AB〉+ 〈AB′〉+ 〈A′B〉 − 〈A′B′〉 ≤ 2, (17)

any violation of this inequality would imply that no (standard) probability space exists that allow268

for the correlations observed in those random variables. Equation (17) is one of the well-known269

CHSH inequalities, which are necessary and sufficient conditions for the existence of a joint probability270

distribution [15,50]. However, for this example, it is trivial to construct four different probability spaces271

for each experimental situation, i.e. A and B, A′ and B, A and B′, and A′ and B′. The impossibility272

is to find a single probability space that yields all four correlations that are experimentally observed273

in quantum theory. And this is how random variables can help us define negative probabilities. We274

can relax the non-negativity assumption as long as we guarantee that all observable properties do not275

result in negative probabilities2. This motivates the following definitions.276

Definition 2. Let Ω be a sample space and F a σ-algebra over Ω. A signed measure is a function µ : F → R
such that

µ(∅) = 0 (18)

and for every denumerable and disjoint family {Ai}i∈N

µ(
⋃

i
Ai) = ∑

i
µ(Ai) (19)

The triple (Ω,F , µ) is called a signed measure space [53].277

Signed measure spaces expand the idea of measures (not probabilities), to the negative domain.278

However, it should be clear to the reader that signed measures are a generalization of probability279

measures, one we will use to define negative probabilities.280

Definition 3. Let (Ω,F , µ) be a signed measure space, and let (M,M) be a Borel space with elements of281

M being real numbers, i.e. M is a σ-algebra over M. A (real-valued) extended random variable R∗ is a282

measurable function R∗ : Ω→ M, i.e. for all m ∈ M, (R∗)−1(m) ∈ F .283

Notice that extended random variables are not at all equivalent to random variables, except in284

special cases when µ is a probability measure.285

Definition 4. Let {R∗i }, i = 1, . . . , n, be a collection of extended random variables defined on a signed measure286

space (Ω,F , µ). A µ-induced context is a subset Cµ
j = {R∗k}k∈Nj

, Nj ⊂ {1, . . . , n}, for which there exists a287

sub-σ-algebra Fj of F such that, by defining pµ
j (F) := µ(F) for all F ∈ Fj, the triad (Ω,Fj, pµ

j ) becomes a288

probability space, and R∗ik is a random variable with respect to it, for all k ∈ {1, ..., nj}.289

2 We point out that in the context of weak measures, negative probabilities may be “measurable,” but we will not discuss this
issue or its meanings here. Instead, we refer the interested reader to references [51,52].
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Some observations are in order. First, the notion of context given by Definition 4 depends on290

the chosen measure µ. Since we are grounding our definitions on measure theory, the available291

mathematical tools are a set Ω, a collection F of subsets of it (forming a Boolean algebra), and a292

signed measure µ. The dependence on µ makes our definition of context measure dependent. We aim to293

represent each possible state of the system under study by a normalized signed measure. A concrete294

probabilistic model for a system is determined when all its possible states are specified. Once this is295

done, the contexts of the theory can be unambiguously determined as follows. We denote by S to the296

collection of all possible states of a system, described as signed measurable spaces. In order to obtain a297

consistent theory (such as a classical or quantum probability theory), we assume that all states have298

associated the same outcome set Ω and the same σ-algebra F and that they are normalized. It is useful299

to put this in terms of a definition.300

Definition 5. Let Ω be a set and F a σ-algebra of subsets of Ω. A family of signed probabilistic models301

for (Ω,F ) is a collection S(Ω,F ) of signed measures on (Ω,F ) such that, for all µ ∈ S(Ω,F ), µ(Ω) = 1. Any302

µ ∈ S(Ω,F ) is called a state of the model.303

The above definition is analogous to that of states in a classical probabilistic model, the sole304

difference being that we allow the states to take negative values. In order to describe the observables305

of physical theories, we need each extended random variable to be consistently defined with regard306

to all possible states S(Ω,F ) in the following sense. Considered as a function R∗i : Ω −→ R, we must307

have that each extended random variable must satisfy (R∗i )
−1(∆) ∈ F , for every Borel set ∆ ⊆ R (this308

means that the R∗i ’s are measurable functions with regard to all possible µ ∈ S(Ω,F )). This condition309

grants that the extended random variables are well defined for all µ ∈ S(Ω,F ). With these definitions,310

we are ready to provide a state-independent definition of context.311

Definition 6. Consider a family of signed probability models S(Ω,F ). Let {R∗i }, i = 1, . . . , n, be a collection of312

extended random variables defined on S(Ω,F ). A general context is a subset Cj = {R∗k}k∈Nj
, Nj ⊂ {1, . . . , n}313

of those extended random variables, for which there exists a sub-σ-algebra Fj of F satisfying that, for all µ ∈ S ,314

by defining pµ
j (F) := µ(F) for all F ∈ Fj, the triad (Ω,Fj, pµ

j ) becomes a probability space, and R∗ik is a315

random variable with respect to it, for all k ∈ {1, ..., nj}.316

Using the definition of general context, we can naturally introduce the notion of signed probability317

space as follows.318

Definition 7. A signed probability space, also called here negative probability space, is a signed measure319

space (Ω,F , µ) endowed with a non-empty set of contexts C = {Cµ
j } (in the sense of Definition 4), such that320

µ(Ω) = 1. The measure µ in this space is a signed probability or negative probability.321

In other words, a signed probability space is a signed measure space for which there exist contexts,322

and these contexts give place to well defined probabilistic scenarios.323

Proposition 1. If a state µ ∈ S(Ω,F ) of an extended probabilistic model admits a non-empty set of contexts,324

then, it defines a signed probability space.325

Proof. If µ ∈ S(Ω,F ) is a state, then, µ is a signed measure on (Ω,F ) such that µ(Ω) = 1. Thus, the326

existence of a non empty family of contexts for (Ω,F , µ), makes it satisfy Definition 7.327

After the above Definitions, it is important to make the following remarks.328

Proposition 2. If (Ω,F , p) is a probability space, then it is also a signed probability space.329
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Proof. Any (Ω,F , p) satisfying Kolmogorov’s axioms also satisfies the axioms of signed measure330

in Definition 2. Given that p is normalized, it is also a state with respect to the pair (Ω,F ). Any331

collection of random variables defined on (Ω,F , p), induces a context satisfying Definition 4 (by taking332

sub-σ-algebra as F itself). Thus, the states of classical probabilistic systems can be described as a333

particular case of signed probabilities.334

The states of the extended probability model of quantum theory are just the quantum states’335

images under the Wigner transform. Any context of a quantum system – understood in the usual sense336

of a family of commuting observables – can be described in our approach by a collection of extended337

random variables.338

Definitions 4, 6, and 7 are inspired in the following properties of the Wigner distribution function.339

For simplicity, suppose that we have a phase space Ω = {(x, p) ∈ R × R} = Ω1 × Ω2 (i.e., we340

are taking Ω1 = R = Ω2). Let F be the collection of Borel subsets of Ω. Then, we have that the341

quasi-probability of obtaining a system in the set F ∈ F is given by µ(F) :=
∫ ∫

F W(x, p)dxdp,342

where W(x, p) is the Wigner distribution function. Indeed, this distribution defines a normalized343

signed measurable space (Ω,F , µ). To obtain the marginal measures, we must do as follows. Let344

F1 be the subalgebra of F formed by all elements of the form ∆ × Ω2, where ∆ ranges over any345

possible Borel set of the real line. Define W(x) :=
∫

Ω2
W(x, p)dp and pµ

1 (∆×Ω2) :=
∫

∆ W(x)dx =346 ∫
∆

∫
Ω2

W(x, p)dxdp = µ(∆ ×Ω2). While µ is not in general a positive measure, p1 always is, and347

(Ω,F1, pµ
1 ) is indeed Kolmogorovian. It also coincides numerically with the probabilities for position348

context computed from the quantum formalism. A similar Kolmogorovian measure (Ω,F2, pµ
2 ) can be349

obtained in an analogous way for the momentum context. Further comments are in order:350

• Suppose that a random variable belongs to two different general contexts Ci and Cj (according351

to Definition 6). For each µ ∈ S , the condition pµ
j (F) := µ(F) in Definition 6 implies that352

pµ
i (F) = µ(F) = pµ

j (F), for all events F associated to this random variable. In other words, the353

probability of a proposition is independent of the context in which it is tested. This implies354

that the probability distribution assigned to an observable will be independent of the other355

observables with which it is co-measured. This condition is nothing but the generalized version356

of the no-signaling condition in physics (we will further discuss this below). It means that the357

probability of a given event (or more generally, the probability distribution of a given random358

variable) will not depend on the context in which it is considered. Thus, according to Definition359

6, all negative probabilities that we consider satisfy the no-signaling condition.360

• In definition 6, for each µ, all measurable functions defined over the probability space (Ω,Fj, pµ
j )361

define legitimate observables in the classical sense. These observables are all compatible. It is362

in this sense that the Cj’s define contexts. If we mix an observable from context i with other363

taken from context j, there is no reason to assume that there will exist a joint (Kolmogorovian)364

probability distribution for them, because µ is not necessarily positive definite. For example,365

the proposition “the observable fi (taken from context Ci) possesses its value in the interval366

∆ ∈ Fi and the observable gj (from context j) possesses its value in the set Γ ∈ Fj", has a367

quasi-probability given by µ(∆× Γ). These observables are not necessarily compatible because,368

by construction, we allow this quantity to be negative. Being negative, this probability cannot be369

observed in any measurement context.370

Each context represents a real empirical scenario, where probabilities and observable quantities371

are suitably defined. In general, given a set of random variables, it is not necessarily true that a joint372

probability distribution (understood in the Kolmogorovian sense) exists for all variables. However,373

for random variables describing physical measurements in different contexts, a negative probability374

distribution can always be constructed. Definition 7 includes those cases.375

A typical practical situation is the following. Suppose that a collection of contexts {Cj} is given376

and that there is more than one signed probability space in which those contexts are defined. Among377
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all possible signed probability spaces compatible with a family of contexts, which one should we378

chose? To help us understand this question, we should define compatible signed probability spaces.379

Definition 8. A family of signed probability spaces is compatible if their collection of contexts is the same.380

Given a family of contexts F = {Cj}, call S(F) the maximal set of compatible signed probability381

spaces that have F as its collection of contexts. Which signed probability space should we take among382

all possible in S(F)? The problem of the existence of a "minimal one" is subtle and will be treated383

elsewhere. Instead, we give here the following definition, which is useful in many circumstances. We384

also restrict to finite sets in order to simplify the analysis.385

Definition 9. Let Ωi = (Ωi,Fi, µi), i ∈ I, be a compatible collection of signed probability spaces. For386

each Ωi, let Mi = ∑ω∈Ωi
|µi(ω)|. Then Ωk is a minimal signed (or negative) probability space if387

Mk = min{Mi|i ∈ I} when it exists.388

From now on, we will use the notation p∗ for negative probabilities, p for regular probabilities, and µ389

for measures that are not necessarily probabilities (signed or not). With this notation in mind, we can390

write the following results [6].391

Proposition 3. Let Ω = (Ω,F , p∗) be a minimum signed probability space. If M = ∑ω∈Ω |p∗(ω)| = 1,392

then Ω is also a probability space. Alternatively, if Ω is a probability space, then it is also a minimum signed393

probability space, with M = 1.394

Proof. Since, by Definition 9, we have ∑ω∈Ω p∗(ω) = 1, it follows that ∑ω∈Ω |p∗(ω)| = 1 implies395

p∗(ω) is non-negative for all ω ∈ Ω. Given that negative probabilities satisfy all of Kolmogorov’s396

axioms except the non-negativity one, it follows that p∗ is a probability, if M = 1. Alternatively, for397

non-negative p∗ that add to one, it is immediate that the sum of their absolute value also add to one.398

See reference [6] for details.399

The above Proposition suggests that the L1 norm plays an essential role in whether a probability400

distribution exists or not for a set of correlations and random variables. This motivates the following401

definition.402

Definition 10. Let Ω = (Ω,F , p∗) be a minimal signed probability space. The quantity δ, defined as403

δ = ∑ω∈Ω |p∗(ω)| − 1 is called the contextuality index of Ω or, in short, contextuality index.404

The contextuality index provides a measure of contextuality for a set of experimental outcomes405

associated to observations of a system. This is at the core of the following proposition, but is also406

suggested by the previous one.407

Proposition 4. A collection of no-signaling extended random variables on a minimal signed probability space408

is contextual if and only if the contextuality index δ is greater than zero.409

Proof. If we assume that the random variables are contextual, this means that there is no non-negative410

joint probability distribution that explains all the correlations for the random variables. But since they411

are no-signaling, from [6] it follows that there is a negative probability consistent with the correlations.412

Since, by definition, ∑ω∈Ω p∗(ω) = 1, and some of the p∗(ω) < 0, it follows that ∑ω∈Ω |p∗(ω)| > 1,413

and therefore δ 6= 0. Also, from the definition of negative probabilities, it follows that δ cannot be414

less than zero, and we have that δ > 0. Now, let us assume that δ > 0. Since δ is the lowest possible415

value for the L1 norm minus one, this implies that there is no non-negative joint, which also implies416

contextuality. For a more detailed proof using a different definition of negative probabilities, see417

[6].418
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Another straightforward consequence of the definition of negative probabilities is that, for each419

context Ci, the extended random variables are equivalent to regular random variables. This equivalency420

should not come as a surprise since, for each context, we have a complete data table involving all421

possible experimental outcomes. We also point out that if there exists a context Ci such that Ωi = Ω,422

then p∗ is a probability.423

Let us now examine some examples. Let R1, R2, and R3 be three extended random variables424

defined over a negative probability space, and assume that C1 = (R1, R2) and C2 = (R1, R3) define425

two different measurement contexts. Then, it follows from Definition 9 that p∗(R1 = α) = ∑βi
p∗(R1 =426

α|R2 = βi)p∗(R2 = βi) and p∗(R1 = α) = ∑βi
p∗(R1 = α|R3 = βi)p∗(R3 = βi), where α and βi427

are the possible values the random variables can take. In other words, the (pseudo) probability428

distribution of a random variable defined over a negative probability space cannot depend on whether429

it is co-observed with one or another random variable [38,39,54]. As remarked above, this property430

is known in the physics literature as the "no-signaling condition" [55]. Alternatively, if experimental431

observations of a quantity show its probability distributions as independent of other co-observable432

variables, then it follows that there always exist a negative probability with extended random variables433

that model the experimental outcomes. In other words, the existence of extended random variables on434

a negative probability space is a necessary and sufficient condition for the non-signaling condition to435

hold [38,39,54].436

The equivalence between negative probabilities and non-signaling is one reason why negative437

probabilities may be a useful tool for exploring the quantum world. Additionally, other properties of438

quantum systems are well described by negative probabilities. For example, in reference [56], many439

of the principles attempted to describe quantum mechanics were represented in terms of negative440

probabilities. It was shown there that negative probabilities provided an elegant and straightforward441

way to express them.442

At this point, it is illustrative to consider the example of two photons, A and B, in the singlet state
with z-polarization either ±1, given by (12). We saw in Section 2 that no probability distribution exists
that can account for the quantum correlations, because quantum mechanics violates (11). However, let
us see how we can build a negative probability distribution for the above example. First, we point out
that for the above case, the smallest Ω we can use, without loss of generality [57], is given by

Ω = {ωāā′ b̄b̄′ , ωāā′ b̄b′ , ωāā′bb̄′ , ωāā′bb′ , ωāa′ b̄b̄′ , . . . , ωaa′bb̄′ , ωaa′bb′}, (20)

where ωaa′bb′ corresponds to the outcome A = a, A′ = a′, B = b, and B′ = b′. It should be clear that Ω
generates a σ-algebra F , formed by all its subsets (i.e., F = P(Ω)). Accordingly, the random variables
can be defined easily from Ω. For example, A would be the random variable defined as the following
function.

A(ω) =

{
+1 if ω ∈ {ωaā′ b̄b̄′ , ωaā′ b̄b′ , ωaā′bb̄′ , ωaā′bb′ , ωaa′ b̄b̄′ , ωaa′ b̄b′ , ωaa′bb̄′ , ωaa′bb′}
−1 if ω ∈ {ωāā′ b̄b̄′ , ωāā′ b̄b′ , ωāā′bb̄′ , ωāā′bb′ , ωāa′ b̄b̄′ , ωaā′bb̄′ , ωāa′bb̄′ , ωāa′bb′}

. (21)

Alternatively, A′ is given by

A′(ω) =

{
+1 if ω ∈ {ωāa′ b̄b̄′ , ωāa′ b̄b′ , ωāa′bb̄′ , ωāa′bb′ , ωaa′ b̄b̄′ , ωaa′ b̄b′ , ωaa′bb̄′ , ωaa′bb′}
−1 if ω ∈ {ωāā′ b̄b̄′ , ωāā′ b̄b′ , ωāā′bb̄′ , ωāā′bb′ , ωaā′ b̄b̄′ , ωaā′ b̄b′ , ωaā′bb̄′ , ωaā′bb′}

, (22)

and similarly for B and B′. On the other hand, given that A and B are compatible in the two photons443

model, there exists a context that contains both. This means that there exists an observable (A, B), that444

gives the joint outcomes (i, j) (i, j = ±1) of performing a simultaneous measure of both A and B. It is445

defined by446
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(A, B)(ω) =


(+1,+1) if ω ∈ {ωaa′bb′ , ωaā′bb′ , ωaa′bb̄′ , ωaā′bb̄′}
(−1,+1) if ω ∈ {ωāa′bb′ , ωāā′bb′ , ωāa′bb̄′ , ωāā′bb̄′}
(+1,−1) if ω ∈ {ωaa′ b̄b′ , ωaa′ b̄b̄′ , ωaā′ b̄b′ , ωaā′ b̄b̄′}
(−1,−1) if ω ∈ {ωāa′ b̄b′ , ωāā′ b̄b′ , ωāa′ b̄b̄′ , ωāā′ b̄b̄′}

. (23)

Let us see how the context defined by AB defines a probability space, and how this space relates447

to Ω and F . Notice first that all possible propositions associated to (A, B) (which have the form "A448

has value i and B has value j", for i, j = ±1), are represented by the subsets of Ω listed in equation449

(23). By computing all possible unions, intersections and complements of these subsets, a Boolean450

subalgebra F(A,B) of F is generated. Now, in a two photons state, A and B are of course compatible,451

and there exists a probability assignment (defined by a quantum state of the compound system) µ(A,B)452

such that the triad (Ω,F(A,B), µ(A,B)) is a classical probability space. If we now consider a global453

probability assignment (Ω,F , µ) (satisfying definition 7), if it is a valid extension, we must have that454

µ(F) = µ(A,B)(F), for all F ∈ F(A,B).455

Another interesting observable is given by the product of outcomes of A and B. Let us denote it
by AB. It is defined by

AB(ω) =

{
1 if ω ∈ {ωaa′bb′ , ωaā′bb′ , ωaa′bb̄′ , ωaā′bb̄′ , ωāa′ b̄b′ , ωāā′ b̄b′ , ωāa′ b̄b̄′ , ωāā′ b̄b̄′}
−1 if ω ∈ {ωāa′bb′ , ωāā′bb′ , ωāa′bb̄′ , ωāā′bb̄′ , ωaa′ b̄b′ , ωaa′ b̄b̄′ , ωaā′ b̄b′ , ωaā′ b̄b̄′}

. (24)

We obtain again a Boolean subalgebra FAB of F . Similar constructions can be made for A′B, AB′,
AA′, BB′, (A, A′), (A, B′), and so on. What are the differences between those observables that mix
incompatible observables (such as AA′) with respect to those which do not (such as AB)? If we write
down the details for AA′, we obtain

AA′(ω) =

{
1 if ω ∈ {ωaa′bb′ , ωaa′bb̄′ , ωaa′ b̄b′ , ωaa′ b̄b̄′ , ωāā′ b̄b′ , ωāā′ b̄b̄′ , ωāā′bb′ , ωāā′bb̄′}
−1 if ω ∈ {ωāa′bb′ , ωāa′bb̄′ , ωāa′ b̄b′ , ωāa′ b̄b̄′ , ωaā′ b̄b′ , ωaā′ b̄b̄′ , ωaā′bb′ , ωaā′bb̄′}

. (25)

We get again a Boolean subalgebra FAA′ for AA′. Notice first that FAA′ 6= FAB. Second, if we want to456

define probabilities for the outcomes of AA′, we have to consider the measures defined by the model457

we are considering, here a two photons system. In this case, the states are determined by the Born rule.458

We know that if a collection of observables is commutative, a quantum state assigns them a positive459

probability. Thus, any legitimate quantum state will assign positive probabilities for all the events in460

the Boolean algebras FAB, FAB′ , FA′B and FA′B′ . What happens with the events in FAA′ and FBB′?461

The non-negativity of the probabilities assigned by quantum states to the propositions associated462

with those algebras is no longer granted. This will become clear with the examples discussed in the463

following Section (see Proposition 7).464

Quantum mechanics tells us that, in addition to the correlations in (13), the observable expectations
also satisfy the following:

〈A〉 = 〈A′〉 = 〈B〉 = 〈B′〉 = 0. (26)

If we now impose (13) and (26) to the probabilities, from the definition of the random variables set465

above, we would have at once that the probabilities of ωi would have to satisfy the following set of466

linear equations.467

pāā′ b̄b̄′ + pāā′ b̄b′ + pāā′bb̄′ + pāā′bb′ + pāa′ b̄b̄′ + pāa′ b̄b′ + pāa′bb̄′ + pāa′bb′

+paā′ b̄b̄′ + paā′ b̄b′ + paā′bb̄′ + paā′bb′ + paa′ b̄b̄′ + paa′ b̄b′ + paa′bb̄′ + paa′bb′ = 1,
(27)

−pāā′ b̄b̄′ − pāā′ b̄b′ − pāā′bb̄′ − pāā′bb′ − pāa′ b̄b̄′ − pāa′ b̄b′ − pāa′bb̄′ − pāa′bb′

+paā′ b̄b̄′ + paā′ b̄b′ + paā′bb̄′ + paā′bb′ + paa′ b̄b̄′ + paa′ b̄b′ + paa′bb̄′ + paa′bb′ = 0,
(28)
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−pāā′ b̄b̄′ − pāā′ b̄b′ − pāā′bb̄′ − pāā′bb′ + pāa′ b̄b̄′ + pāa′ b̄b′ + pāa′bb̄′ + pāa′bb′

−paā′ b̄b̄′ − paā′ b̄b′ − paā′bb̄′ − paā′bb′ + paa′ b̄b̄′ + paa′ b̄b′ + paa′bb̄′ + paa′bb′ = 0,
(29)

−pāā′ b̄b̄′ − pāā′ b̄b′ + pāā′bb̄′ + pāā′bb′ − pāa′ b̄b̄′ − pāa′ b̄b′ + pāa′bb̄′ + pāa′bb′

−paā′ b̄b̄′ − paā′ b̄b′ + paā′bb̄′ + paā′bb′ − paa′ b̄b̄′ − paa′ b̄b′ + paa′bb̄′ + paa′bb′ = 0,
(30)

−pāā′ b̄b̄′ + pāā′ b̄b′ − pāā′bb̄′ + pāā′bb′ − pāa′ b̄b̄′ + pāa′ b̄b′ − pāa′bb̄′ + pāa′bb′

−paā′ b̄b̄′ + paā′ b̄b′ − paā′bb̄′ + paā′bb′ − paa′ b̄b̄′ + paa′ b̄b′ − paa′bb̄′ + paa′bb′ = 0,
(31)

pāā′ b̄b̄′ + pāā′ b̄b′ − pāā′bb̄′ − pāā′bb′ + pāa′ b̄b̄′ + pāa′ b̄b′ − pāa′bb̄′ − pāa′bb′

−paā′ b̄b̄′ − paā′ b̄b′ + paā′bb̄′ + paā′bb′ − paa′ b̄b̄′ − paa′ b̄b′ + paa′bb̄′ + paa′bb′ = 1√
2
, (32)

pāā′ b̄b̄′ − pāā′ b̄b′ + pāā′bb̄′ − pāā′bb′ + pāa′ b̄b̄′ − pāa′ b̄b′ + pāa′bb̄′ − pāa′bb′

−paā′ b̄b̄′ + paā′ b̄b′ − paā′bb̄′ + paā′bb′ − paa′ b̄b̄′ + paa′ b̄b′ − paa′bb̄′ + paa′bb′ = 1√
2
, (33)

pāā′ b̄b̄′ + pāā′ b̄b′ − pāā′bb̄′ − pāā′bb′ − pāa′ b̄b̄′ − pāa′ b̄b′ + pāa′bb̄′ + pāa′bb′

+paā′ b̄b̄′ + paā′ b̄b′ − paā′bb̄′ − paā′bb′ − paa′ b̄b̄′ − paa′ b̄b′ + paa′bb̄′ + paa′bb′ = 1√
2
, (34)

pāā′ b̄b̄′ − pāā′ b̄b′ + pāā′bb̄′ − pāā′bb′ − pāa′ b̄b̄′ + pāa′ b̄b′ − pāa′bb̄′ + pāa′bb′

+paā′ b̄b̄′ − paā′ b̄b′ + paā′bb̄′ − paā′bb′ − paa′ b̄b̄′ + paa′ b̄b′ − paa′bb̄′ + paa′bb′ = − 1√
2
, (35)

where we are using the simplifying notation that paa′bb′ = p∗(ωaa′bb′), paa′bb̄′ = p∗(ωaa′bb̄′), and so on.468

Notice that equation (27) corresponds to the condition µ(Ω) = 1 in Definition 7. Equations (28)–(31)469

represent the expectations in (26). Finally, equations (32)–(35) are the expectations computed using470

(13).471

Equations (27)–(35) form a set of nine linearly independent equations. However, to completely472

determine the probabilities of each the 16 elementary events ωi ∈ Ω, one needs a total of 16 equations.473

Thus, the problem is under-determined. However, it is possible to write a general solution to (27)–(35)474

that will have seven undetermined parameters, and it is straightforward to show that at least one475

of the pωi ’s are negative for all possible solutions. But if one compute the marginal expectations for476

each of the experimental contexts, one would observe that for contexts C1 = (A, B), C2 = (A, B′),477

C3 = (A′, B), and C4 = (A′, B) all the marginal probabilities are non-negative. What we mean is that478

the marginal probabilities observed in, say, C1, i.e. p∗(A = ±1, B = ±1), are all non-negative. This479

comes from the constraints in (27)–(35). An explicit solution to (27)–(35) is lengthy and cumbersome480

but can be obtained easily. The interested reader can either examine a solution given in reference [6] or481

compute it themselves.482

We now prove a general relationship between quantum mechanics and negative probabilities.483

Proposition 5. LetQ be the collection of complete sets of simultaneously observable one-dimensional projection484

operators on a Hilbert spaceH, i.e., for each Qi ∈ Q there are N = dimH commuting projection operators such485

that ∑P̂j∈Qi
P̂j = 1̂. Let p be a measure over elements of Qi given by Born’s rule. Let also {R∗i } be a collection of486

extended dichotomous random variables on a signed measure space (Ω,F , µ), such that for each Qi there is a487

context Ci such that for all P̂j ∈ Qi there is a 1-1 equivalent element of Ci with the same marginal probability488

distributions, i.e., within a context Ci the expectations of R∗j and P̂j are the same, as well as any other higher489

moments in combination with other variables in the same context. Then µ is a negative probability space that490

represents all contexts Ci.491

Proof. To prove that µ is negative probability space, we just need to show that µ(Ω) = 1. In order492

do so, let us notice that each extended random variable R∗i defines a partition of the sample space493

Ω corresponding to each of their values (similarly to what we had in Equations (21)–(25)). For each494

combination of extended random variables, there is a corresponding partition. In particular, for a given495

projection operator, say, P̂1, by assumption, there exists a two-valued extended random variable R∗1 .496

The two outcomes, R∗1 = 1 and R∗1 = −1, define a partition of Ω, formed by two subsets that we denote497
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by F1 and F−1, such that F1 ∩ F−1 = ∅ and F1 ∪ F−1 = Ω. Since the measure µ assigns to those subsets498

the same probabilities as the Born’s rule, we must have 1 = 〈P̂1〉+ 〈1̂− P̂1〉 = µ(F1) + µ(F−1) = µ(Ω).499

Thus, µ is normalized, and defines a negative probability.500

In the following section we present, in Propositions 6 and 7, examples of how this result applies501

in simple but important cases. We end with this section with a final comment. The requirement502

that p∗ minimizes the L1 norm (see Definition 9) provides us with a number δ that is greater than503

or equal to zero. If it is zero, the random variables are not contextual, and proper a joint probability504

distribution exists. However, the correlations for the Bell-EPR case do not allow for a proper joint [58].505

The fact that δ is not zero provides a way for measuring how contextual (or, in this case, because it is506

contextual-at-a-distance, how non-local) a system of random variables is. The more δ departs from 0,507

the more contextual it is [17,25,59,60].508

In this section, we showed a generalized probability theory that includes negative (or signed)509

probabilities. This theory is well suited for describing quantum systems, as it is compatible with the510

no-signaling condition. Furthermore, negative probabilities have advantages with other alternative511

extended probability theories. For example, upper and lower probabilities can also be used to describe512

quantum contextuality [47,48]. However, because upper and lower probabilities involve inequalities,513

their computation is challenging and cumbersome. Additionally, the main appeal for upper and lower514

probabilities is that they have an interpretation. For instance, monotonic upper and lower probabilities515

can be interpreted within Dempster-Shaffer theory (they call them plausibility and belief, respectively)516

[61]. However, this interpretation fails in quantum theory, where upper and lower probabilities are517

non-monotonic, and Dempster-Shaffer’s reasoning does not apply anymore.518

Unlike upper probabilities, negative probabilities can be easily computed, as shown in the519

example above. Furthermore, one can use negative probabilities as a contextual calculus for conflicting520

subjective contextual information even outside of physics [62–65]. So, the use of negative probabilities521

for quantum systems seem worth exploring.522

However, a question often asked is this: what is the meaning of an event having a negative523

probability? First, we point out that, in our definition, negative probability events are never observed:524

negative probabilities exist for the unobserved joint events. This is similar to the use of negative525

numbers to count physical objects, e.g. apples in a fruit stand. Of course, the concept of a negative526

number of apples is absurd: one could never observe −3 apples. This is emphasized by DeMorgan’s527

comment about negative numbers [66]: “[the student] must reject the definition still sometimes given528

of the quantity −a, that it is less than nothing. It is astonishing that the human intellect should ever529

have tolerated such an absurdity as the idea of a quantity less than nothing; above all, that the notion530

should have outlived the belief in judicial astrology and the existence of witches, either of which is531

ten thousand times more possible.” Even though the meaning may be problematic for DeMorgan, the532

use of negative numbers to track operations of future sales and purchases of apples does not need to533

be; a negative number of apples makes sense, but only as an accounting trick that helps us figure out534

the observable (non-negative) final number of apples. We do not need an interpretation of negative535

numbers of apples. In this sense, an interpretation of negative probabilities is as unnecessary as an536

interpretation of negative numbers of apples.537

Nevertheless, there are many different interpretations of negative probabilities for non-monotonic538

systems (see [5,40,41,43,67,68]). For example, Khrennikov proposes that negative probabilities are539

associated with sequences that violate von Mises’s principle of stability, which states that probabilities540

are about well-behaved sequences whose mean converge to a certain number [41]. By focusing on541

infinite sequences that do not converge using the standard real-number metric, Khrennikov showed542

that such sequences converge using p-adic numbers, with negative probabilities being associated to543

such sequences that violated the principle of stability. Another approach is that of Abramsky and544

Brandenburger [5]. They proposed to use negative probabilities to describe a data table where events545

could themselves be signed. In their interpretation, the joint event of, say, three random variables being546

+1, would also carry an additional bit, a sign. Two events could then cancel each other if their signs547
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were different, and negative probabilities manifest those two types of events. As mentioned in the548

previous paragraph, another way to think about negative probabilities is the pragmatic view: negative549

probabilities are a useful tool for computing quantum probabilities. This view does not demand an550

interpretation, and it was the way that both Feynman and Dirac thought about negative probabilities551

[35,36]. In this paper, we are proposing that, at least in quantum physics, negative probabilities can be552

interpreted as a miscounting and mislabeling of a data table because quantum particles, and some553

propositions about them, are indistinguishable.554

4. Indistinguishability in Quantum Mechanics and Mathematics555

Compound quantum systems can be prepared in entangled states that violate non-contextuality556

inequalities. An example we saw was the state in (12), whose correlations (26) lead to a violation557

of (11). However, there is a different physical effect associated with compound quantum systems558

involving particles of the same kind. To write the state of the compound system, we must invoke the559

symmetrization postulate. This postulate asserts that the state of a compound quantum system of560

identical particles must be symmetric under permutation of the particles if the particles are Bosons561

and anti-symmetric if they are Fermions.562

Suppose that we have two Fermions, one of them prepared in the state |a〉 and the other in the
state |b〉. Then, after applying the symmetrization postulate, the state of the compound system is given
by

|ψ〉 = 1√
2
(|a〉 ⊗ |b〉 − |b〉 ⊗ |a〉) . (36)

A similar procedure should be used to construct the state of two Bosons by using a plus instead of a563

minus sign, thus yielding a symmetric state.564

The implications of the symmetrization postulate (SP) are of significant importance for quantum565

theory. Pauli’s exclusion principle and also the so-called quantum statistics (Einstein-Bose and566

Fermi-Dirac statistics) follow from the SP. This feature of the quantum formalism is particularly567

relevant for the study of the properties of indistinguishable particles in quantum information theory568

[69–71]. Furthermore, the peculiar properties of compound systems of identical particles lead to heated569

debates in the literature about the interpretation of quantum mechanics. A remarkable position was570

that of E. Schrödinger, who claimed that elementary particles are not individuals, given that the theory571

gives no means to identify them [72,73]. An even more extraordinary view was that suggested by572

Wheeler, who once told Feynman that all electrons have the same properties because they are all the573

same electron [74]. We do not necessarily agree with Schrödinger or Wheeler, but we emphasize a574

broad agreement among physicists that two electrons are indistinguishable at some fundamental level.575

Researchers discussed the indistinguishability of elementary particles in connection to576

indistinguishability in logic and mathematics. Indeed, to deal with genuinely indistinguishable577

entities, the quasi-set theory was developed as a set-theoretical framework in which the classical laws578

of identity do not apply for specific elements of the theory (see, for example, [75–77]). This formalism579

was used in [78,79] to reconstruct the Fock-space formulation of quantum mechanics avoiding any580

particle labeling (see [80] for an alternative approach). The axioms of quasi-set theory are chosen581

so that it is possible to form collections of indistinguishable entities, violating Leibniz’s principle582

of identity of indiscernibles [75]. In this theory, the identity symbol "=" cannot be applied to all its583

elements. Instead, a weaker equivalence relation "≡" is used to describe a situation where an element x584

is indistinguishable from another element y, and it is formally represented by x ≡ y. This corresponds585

to the idea that x and y represent indistinguishable quantum objects.586

Quasi-set theory assumes that a cardinal can be assigned to these collections so that every quasi-set587

has a definite number of elements. The indistinguishable elements of a quasi-set cannot be identified by588

names, counted, or ordered. In this sense, the standard set-theory rules do not apply for all elements of589

the theory. Quasi-sets having indistinguishable elements are thought of as representing collections of590

quantum objects of the same kind, i.e., indistinguishable objects. Another essential feature of quasi-set591
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theory is that it contains a copy of Zermelo-Fraenkel set theory to develop standard mathematics592

within it.593

Quasi-set theory allows us to formally describe collections of indiscernible objects without594

resorting to any mathematical tricks. The connection between indistinguishability and contextuality595

was studied recently. In [19], we have shown that the possibility of identifying particles in different596

contexts lies at the core of the Kochen-Specker contradiction. In [7], we studied how the assumption of597

the indistinguishability of properties allows one to understand the occurrence of contextual random598

variables.599

The connection between particle indistinguishability and indistinguishability of properties is600

essential here. So, let us examine how it comes about. In the quantum formalism, a testable proposition601

about an object is formally represented by a projection operator. Given an observable A, consider the602

proposition "the value of A lies in the interval ∆" (that we write compactly as PA(∆)). By using the603

spectral theorem, PA(∆) can be mathematically represented by an orthogonal projection P̂A(∆) (notice604

that the "hat" distinguishes the mathematical object from the proposition it represents). We aim to605

represent quantum properties related to the particles and describe expressions such as “a particle has a606

certain property.”607

It is instructive to illustrate the connection between quantum indistinguishability and the608

identification of propositions with the same content, but in different contexts, by considering a609

quasi-pair concept in quasi-set theory. The quasi-pair 〈[x], PA(∆)〉 can be used to describe one610

quanta possessing the property PA(∆) (see also the discussion presented in [7]), where the [x] is611

the collection of all possible indistinguishable elements from x. Thus, 〈[x], PA(∆)〉, can be interpreted612

as: “a quantum object satisfies that the value of A lies in ∆". Notice that we refer to a quantum613

object, without specifying which one it is (because, according to the spirit of quasi-set theory, they are614

indiscernible). The classical analog of this proposition could make explicit reference to the particle615

identity (as, for example, in "particle e1 satisfies that the value of A lies in ∆"). Moreover, we could use616

standard set theory and write 〈{e1}, PA(∆)〉 (notice that, in the last pair, we are using the standard617

singleton {e1}, which is formed by the sole individual e1). However, this is impossible if we assume618

that quantum particles are indistinguishable, and we use quasi-set theory. If we now take another619

quanta y such that y ≡ x, and consider the proposition 〈[y], PA(∆)〉, using the rules of quasi-set620

theory, we obtain 〈[x], PA(∆)〉 ≡ 〈[y], PA(∆)〉. This can be interpreted as follows: indistinguishability of621

particles leads to the identification of propositions among different contexts. Each time we consider different622

instances of a proposition about a quantum system, the propositions associated with these instances623

are indistinguishable, and thus, they can be identified. Notice that a proportion’s instantiation has624

the form “a quantum object’s value of A lies in ∆.” If we now have an instantiation of an equivalent625

assertion, but considered in a different context, given that we cannot refer to the identity of the quanta626

involved, we have no means to distinguish the propositions either. Assuming the axioms given in [75],627

indistinguishable quasi-sets are identical (but have in mind that, in this framework, identity is a derived628

notion). It is in this sense that indistinguishable propositions can be identified.629

The above discussion is particularly relevant for the problem mentioned at the end of Section630

2. Given the random variables AB and AB′ discussed in Section 2 (that have the same content), we631

have two options: either AB = AB′ , or AB 6= AB′ . Assuming that quanta are indistinguishable and632

describing propositions using quasi-set theory (as above), when all propositions associated to AB have633

indistinguishable counterparts in those associated to AB′ , we obtain that AB ≡ AB′ (i.e., they can be634

identified as random variables). The assumption of quanta indistinguishability, together with the use635

of quasi-set theory, serves as a justification for identifying those random variables (see [19] and [7] for636

a related discussion).637

Let us now use the above framework to connect particle indistinguishability with non-signaling.638

Let A and B represent two agents, Alice and Bob, that aim to communicate with each other. For A to639

send a signal to B, they need to appeal to some physical mechanism that can be generally described640

by sharing a physical system that induces observable correlations between what they observe on it.641
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Suppose that they can measure different observables on their respective sides. We denote by A, A′, etc.,642

the observables for A, and B, B′, etc. for B). Given A and A′, we assume that they are complementary,643

i.e., that if Alice selects A, she cannot at the same time select A′; similarly for Bob’s B and B′. However,644

because Alice and Bob are observing different parts of the communication device, we assume that any645

of the observables for A are always compatible with whatever choice Bob makes in B. The idea of a646

communication device is that Alice can affect Bob’s observations of B or B′ by changing her settings647

from observing A to A′ (or vice versa), .648

Let us assume now that Alice and Bob construct a device that works. In other words, they figured649

out a way to communicate between themselves using some (unknown to us) mechanism where Alice’s650

choices affect Bob’s observations. However, Alice and Bob now make a new proposal: they want to see651

if their device works with indistinguishable quantum particles. This proposal means that whenever we652

have the contexts (A, B) and (A, B′), the properties associated with A in context B are indistinguishable653

from those of A in context B′. Under these assumptions, we should have that, for each property, the654

probability of obtaining PA(∆) in context B is the same as the probability of obtaining PA(∆) in context655

B′. If they were not the same, Alice could use these probabilities to attach an "identity card" to some656

particles in B but not to others. This would be a way of distinguishing indistinguishable particles.657

The above conclusion leads to the following conditions:

∑
b

p(PA(a), PB(b)|A, B) = ∑
b

p(PA(a), PB′(b)|A, B′) = p(PA(a)|A) (37)

and

∑
a

p(PA(a), PB(b)|A, B) = ∑
a

p(PA′(a), PB(b)|A′, B) = p(PB(b)|B). (38)

Equations (37) and (38) are no-signaling conditions [55]. Thus, the assumption of indistinguishability658

of properties leads to the no-signaling condition: whatever Alice does to “her particle” cannot affect659

what Bob infers about “his particle,” because this would mean attaching an identity card to Alice’s and660

Bob’s particles. This condition is extreme, and is specific to physical theories, in particular quantum661

mechanics, and should not hold in other domains (such as cognition; see, for example [63,65,81]).662

To summarize, quantum particles are indistinguishable, and this indistinguishability leads to the663

indistinguishability of properties. However, we showed that property indistinguishability implies that664

communication devices such as those discussed by [82] cannot work. If we could use the correlations665

in entangled systems to send a signal between Alice and Bob, such devices could distinguish particles.666

Let us consider two examples that illustrate how the following chain of implications works.667

Indistinguishability =⇒ No-signal =⇒ Negative probabilities

We illustrate the above idea with Propositions 6 and 7. Below we go through the proof of Propositions668

6 and 7, but we stress that the proofs are all based on the idea put forth above, namely that669

indistinguishability implies no-signaling, and therefore negative probabilities. Let us first clarify the670

notation. Consider three dichotomous random variables forming jointly measurable pairs X−Y, X−Z,671

and Y− Z. We denote by XY the random variable X in the context X−Y, with a similar interpretation672

for XZ, YX , YZ, ZX , and ZY. Then, we have the following proposition, whose proofs follow the above673

idea that indistinguishability implies no-signaling, which implies negative probabilities.674

Proposition 6. For jointly measurable pairs X−Y, X− Z and Y− Z of dichotomous random variables, if the675

indistinguishability relations XY ≡ XZ, YX ≡ YZ, and ZX ≡ ZY are satisfied, there exists a signed probability676

space (i.e., satisfying Definition 7), for which each pair of jointly measurable variables is a context (satisfying677

Definition 4).678

Proof. Suppose that we have three dichotomous random variables, X, Y and Z. Assume that X−Y,679

X− Z and Y− Z, are jointly measurable. In the context X−Y, we have different elementary events,680
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which are given by X = 1 and Y = 1, X = −1 and Y = 1, X = 1 and Y = −1, and X = −1 and Y = −1.681

Let us denote these results by xy, xȳ, x̄y and x̄ȳ, respectively. Combined propositions are given by sets682

like {xy, xȳ} (representing the proposition “xy or xȳ"), {xȳ, x̄y, x̄ȳ} (representing “not xy"), and so on.683

If we define X − Y := {xy, xȳ, x̄y, x̄ȳ}, the complete Boolean algebra is given by P(X − Y) (that we684

denote by BX;Y) and can be represented by the diagram in Figure 1.

{xy, xȳ, x̄y, x̄ȳ}

{xy, xȳ} {xy, x̄y} {xy, x̄ȳ} {xȳ, x̄y} {xȳ, x̄ȳ} {x̄y, x̄ȳ}

{xy, x̄y, xȳ} {xy, x̄y, x̄ȳ} {xy, xȳ, x̄ȳ} {xȳ, x̄y, x̄ȳ}

{xy} {xȳ} {x̄y} {x̄ȳ}

∅

Figure 1. Hasse diagram of the X−Y Boolean algebra.
685

Analogous Boolean algebras BX;Z and BY;Z hold for X − Z and Y − Z, which are given by all686

possible subsets of {xz, xz̄, x̄z, x̄z̄} and {yz, yz̄, ȳz, ȳz̄}, respectively. The random variable X can be687

considered in the context X−Y (we denote this random variable by XY). The proposition “X = 1 in688

the context Y, disregarding the value of Y", is represented by the proposition {xy, xȳ}. Its negation, is689

given by {x̄y, x̄ȳ}. It is easy to check that the set BXY := {∅, {xy, xȳ}, {x̄y, x̄ȳ}, {xy, xȳ, x̄y, x̄ȳ}} forms690

a Boolean subalgebra of BX;Y. And we also have an isomorphism of Boolean algebras between BXY691

and P({x, x̄}) := BX. Thus, we have that the random variable X considered in context Y defines a692

sub-Boolean algebra of BX;Y. The same happens for YX , and XZ with regard to BX;Z, YZ with regard693

to BY;Z, etc. We certainly have that BXY is isomorphic to BXZ , BYX is isomorphic to BYZ , etc. Should694

we identify those random variables? As remarked in the Introduction, this is a crucial problem in695

probability theory and statistics. In quantum physics, we usually do that, but this is not necessarily so696

in other fields of research.697

As discussed above, we assume that object’s indistinguishability implies the identification of698

properties. Thus, we assume that XY and XZ can be identified as random variables. This means that,699

given the isomorphism between BXY and BXZ , for each proposition F1 ∈ BXZ , we have F2 ∈ BXZ700

such that its content is the same, and that it has the same probability of occurrence. As an example701

of this, consider the sets F1 = {xy, xȳ} (that corresponds to the assertion “X = 1 in context X − Y”)702

and F2 = {xz, xz̄} (that corresponds to the assertion “X = 1 in context X − Z”). As sets, they703

are different. But we can identify F1 and F2 in the following sense: for any (classical) probability704

assignments (X−Y,BX;Y, pX;Y) and (X− Z,BX;Z, pX;Z), we must have that pX;Y(F1) = pX;Z(F2) (i.e.,705

the probabilities are numerically identical for propositions taken from different contexts).706

Up to now, we have the following situation. We have three different Boolean algebras of707

propositions, BX;Y, BX;Z and BY;Z. BX;Y contains BXY and BYX as Boolean subalgebras (and the same708

happens for BX;Z and BXZ and BZX and BY;Z and BYZ and BZY ). Furthermore, we have that, due to709
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the indistinguishability postulate, all probability assignments (X−Y,BX;Y, pX;Y), (X− Z,BX;Z, pX;Z)710

and (Y − Z,BY;Z, pY;Z), must be compatible with regard to indistinguishable propositions. Is there711

a Boolean algebra containing all the propositions in BX;Y, BX;Z and BY;Z? Can we find a global712

probability assignment compatible with pX;Y pX;Z and pY;Z? In the following, we show how to build713

that required Boolean algebra, and how to build a signed probability assignment for arbitrary (but714

positive) pX;Y pX;Z and pY;Z.715

Define X − Y − Z := {xyz, x̄yz, xȳz, xyz̄, x̄ȳz, x̄yz̄, xȳz̄, x̄ȳz̄} and BX;Y;Z := P(X − Y − Z). We716

need to recover BX;Y, BX;Z and BY;Z as subalgebras of BX−Y−Z. In order to do so, define (X −717

Y)Z := {{xyz, xyz̄}, {xȳz, xȳz̄}, {x̄yz, x̄yz̄}, {x̄ȳz, x̄ȳz̄}} and B(X−Y)Z
:= P((X − Y)Z). It is obvious718

that B(X−Y)Z
is isomorphic to BX;Y. We can also define B(X−Z)Y

and B(Y−Z)X
in an analogous way,719

and obtain algebras isomorphic to BX;Z and BY;Z, respectively. Similarly, if we consider BXY−Z :=720

{∅, {xyz, xȳz, xyz̄, xȳz̄}, {x̄yz, x̄ȳz, x̄yz̄, x̄ȳz̄}, 1}, we obtain a Boolean subalgebra of BX;Y;Z which is721

isomorphic to BXY . Indeed, BXY−Z is isomorphic to BXY and BXZ , reflecting the fact that those random722

variables were identified by the relation "≡".723

It is possible now to define a signed probability space (X − Y − Z,BX;Y;Z, pX;Y;Z) satisfying
Definition 9 as follows. Let pX;Y;Z(F) := pX;Y(F), whenever F ∈ B(X−Y)Z

, pX;Y;Z(F) := pX;Z(F),
whenever F ∈ B(X−Z)Y

, and pX;Y;Z(F) := pY;Z(F), whenever F ∈ B(Y−Z)X
. We must also impose

that ∑ω∈X−Y−Z pX;Y;Z(ω) = 1. Let us now build pX;Y;Z explicitly. In order to shorten the notation,
in some parts we write pX;Y;Z(xyz) := pxyz, pX;Y;Z(x̄yz) := px̄yz, pX;Y;Z(xȳz) := pxȳz, and so on. The
first constrain that we impose is normalization:

pxyz + px̄yz + pxȳz + pxyz̄ + pxȳz̄ + px̄yz̄ + px̄ȳz + px̄ȳz̄ = 1 (39)

Notice that Equation (39) imposes the following normalization conditions on pX;Y, pX;Z and pY;Z:

pX;Y(xy) + pX;Y(x̄y) + pX;Y(xȳ) + pX;Y(x̄ȳ) = 1 (40a)

pX;Y(xz) + pX;Y(x̄z) + pX;Y(xz̄) + pX;Y(x̄z̄) = 1 (40b)

pY;Z(yz) + pY;Z(ȳz) + pY;Z(yz̄) + pY;Z(ȳz̄) = 1 (40c)

The context X − Y imposes the following constrains on pX;Y;Z. First, notice that pX;Y is fixed by the724

following: 〈X〉, 〈Y〉 and 〈XY〉, and the normalization condition (40a). In therms of pX;Y;Z, this can be725

expressed as:726

pX;Y;Z(xyz)− pX;Y;Z(x̄yz) + pX;Y;Z(xȳz) + pX;Y;Z(xyz̄) + pX;Y;Z(xȳz̄)− (41a)

pX;Y;Z(x̄yz̄)− pX;Y;Z(x̄ȳz)− pX;Y;Z(x̄ȳz̄) = 〈X〉

pX;Y;Z(xyz) + pX;Y;Z(x̄yz)− pX;Y;Z(xȳz) + pX;Y;Z(xyz̄)− pX;Y;Z(xȳz̄)+ (41b)

pX;Y;Z(x̄yz̄)− pX;Y;Z(x̄ȳz)− pX;Y;Z(x̄ȳz̄) = 〈Y〉

pX;Y;Z(xyz)− pX;Y;Z(x̄yz)− pX;Y;Z(xȳz) + pX;Y;Z(xyz̄)− pX;Y;Z(xȳz̄)− (41c)

pX;Y;Z(x̄yz̄) + pX;Y;Z(x̄ȳz) + pX;Y;Z(x̄ȳz̄) = 〈XY〉

Similarly, for the context X− Z, besides equations (41a) and (40b) for the mean value of X, we have:727



Version January 31, 2021 submitted to Entropy 21 of 28

pX;Y;Z(xyz) + pX;Y;Z(x̄yz) + pX;Y;Z(xȳz)− pX;Y;Z(xyz̄)− pX;Y;Z(xȳz̄)− (42a)

pX;Y;Z(x̄yz̄) + pX;Y;Z(x̄ȳz)− pX;Y;Z(x̄ȳz̄) = 〈Z〉

pX;Y;Z(xyz)− pX;Y;Z(x̄yz) + pX;Y;Z(xȳz)− pX;Y;Z(xyz̄)− pX;Y;Z(xȳz̄)+ (42b)

pX;Y;Z(x̄yz̄)− pX;Y;Z(x̄ȳz) + pX;Y;Z(x̄ȳz̄) = 〈XZ〉

Finally, for the context Y− Z, besides equation (40c) and the mean values of Y and Z (given by (41b)
and (42a), respectively), we have

pX;Y;Z(xyz) + pX;Y;Z(x̄yz)− pX;Y;Z(xȳz)− pX;Y;Z(xyz̄) + pX;Y;Z(xȳz̄)− (43a)

pX;Y;Z(x̄yz̄)− pX;Y;Z(x̄ȳz) + pX;Y;Z(x̄ȳz̄) = 〈YZ〉

Notice that the mean values of X, Y and Z are imposed only once. This is possible only because728

we have made the identifications XY ≡ XZ, ZY ≡ ZX and YX ≡ YZ. Equations (39), (41), (42), and729

(43), constitute a set of seven compatible equations for pX;Y;Z. As is well known,eight independent730

equations are needed to define pX;Y;Z. Thus, there are infinitely many solutions that satisfy our731

indistinguishability conditions for contexts. Each one of these solutions, by construction, satisfy our732

definition of signed probability given in (9). There is one parameter free for determining pX;Y;Z, namely,733

the mean value 〈XYZ〉. In order to study the space of solutions, let us write down the matrix form of734

the set of equations (39), (41), (42), and (43):735



1 −1 1 1 1 −1 −1 −1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 −1 −1 1 −1
1 −1 −1 1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 1 −1 −1 1
1 1 1 1 1 1 1 1





pX;Y;Z(xyz)
pX;Y;Z(x̄yz)
pX;Y;Z(xȳz)
pX;Y;Z(xyz̄)
pX;Y;Z(xȳz̄)
pX;Y;Z(x̄yz̄)
pX;Y;Z(x̄ȳz)
pX;Y;Z(x̄ȳz̄)


=



〈X〉
〈Y〉
〈Z〉
〈XY〉
〈XZ〉
〈YZ〉

1


The solutions are given by

pX;Y;Z(xyz) =
1
4
(1 + 〈XY〉+ 〈XZ〉+ 〈YZ〉)− α, (44a)

pX;Y;Z(x̄yz) =
1
4
(〈Y〉+ 〈Z〉 − 〈XY〉 − 〈YZ〉) + α, (44b)

pX;Y;Z(xȳz) =
1
4
(〈X〉+ 〈Z〉 − 〈XY〉 − 〈YZ〉) + α, (44c)

pX;Y;Z(xyz̄) =
1
4
(〈X〉+ 〈Y〉 − 〈XZ〉 − 〈YZ〉) + α, (44d)

pX;Y;Z(xȳz̄) =
1
4
(1− 〈Y〉 − 〈Z〉+ 〈YZ〉)− α, (44e)

pX;Y;Z(x̄yz̄) =
1
4
(1− 〈X〉 − 〈Z〉+ 〈XZ〉)− α, (44f)

pX;Y;Z(x̄ȳz) =
1
4
(1− 〈X〉 − 〈Y〉+ 〈XY〉)− α, (44g)

pX;Y;Z(x̄ȳz̄) = α, (44h)
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where α is a free parameter. It is immediate from the above solutions that for some correlations, e.g.,736

〈XY〉 = 〈XZ〉 = 〈YZ〉 = −1 no non-negative solutions exist.737

738

We use a similar notation as before (but with four jointly measurable pairs) in the following739

Proposition.740

Proposition 7. For jointly measurable pairs X − Z, X −W, Y − Z and Y −W of dichotomous random741

variables, if the indistinguishability relations XZ ≡ XW , YZ ≡ YW , ZX ≡ ZY and WX ≡ WY are satisfied,742

there exists a signed probability space (i.e., satisfying Definition 7), for which each pair is a context (satisfying743

Definition 4).744

Proof. Now, let us work out the example with four dychotomic random variables X, Y, Z and745

W. This example is relevant in the Alice and Bob scenario. Let us assume that X − Z, X −W746

and Y − Z and Y − W form jointly measurable quantities. Proceeding as before, we impose747

the indistinguishability conditions XZ ≡ XW , YZ ≡ YW , ZX ≡ ZY and WX ≡ WY. Again, we748

will have the Boolean algebras BX;Z, BX;W , BX;Z, BY;Z, BY;W , BXZ , BXW , and so on. In order749

to build a Boolean algebra containing all these algebras as subalgebras, consider X; Y; Z; W :=750

{xyzw, x̄yzw, xȳzw, xyz̄w, xyzw̄, x̄ȳzw, x̄yz̄w, x̄yzw̄, xȳz̄w, xȳzw̄, xyz̄w̄, x̄ȳz̄w, xȳz̄w̄, x̄yz̄w̄, x̄ȳzw̄, x̄ȳz̄w̄}751

and BX;Y;Z := P(X; Y; Z; W). It is straightforward to check that the algebras associated to all jointly752

measurable variables are subalgebras of BX;Y;Z. Let us work out an example. In order to get a753

subalgebra of BX;Y;Z isomorphic to BX;Z, consider the set:754

P ({{xyzw, xȳzw, xyzw̄, xȳzw̄}, {x̄yzw, x̄ȳzw, x̄yzw̄, x̄ȳzw̄}, (45)

{xyz̄w, xȳz̄w, xyz̄w̄, xȳz̄w̄}, {x̄yz̄w, x̄ȳz̄w, x̄yz̄w̄, x̄ȳz̄w̄}})

Proceeding similarly, we can show that all the desired algebras can be considered as subalgebras755

of BX;Y;Z. Now, we assume as before that there exist joint probability spaces (X; Z,BX;Z, pX;Z),756

(X; W,BX;W , pX;W), (Y; Z,BY;Z, pY;Z) and (Y; W,BY;W , pY;W). As before, (X; Z,BX;Z, pX;Z) is solely757

determined by the normalization condition and the values of 〈X〉, 〈Z〉 and 〈XZ〉 (and similar758

parameters for the other jointly measurable variables). In order to get a global probability, let us759

proceed us before, by imposing these conditions on pX;Y;Z;W . Given that the equations are cumbersome,760

we just write the matrix equations, which are:761
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1 −1 1 1 1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1
1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1
1 1 1 1 −1 1 1 −1 1 −1 −1 −1 −1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 −1 1 −1 1 −1 1 1
1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
1 1 −1 1 −1 −1 1 −1 −1 −1 1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


×



p(xyzw)

p(x̄yzw)

p(xȳzw)

p(xyz̄w)

p(xyzw̄)

p(x̄ȳzw)

p(x̄yz̄w)

p(x̄yzw̄)

p(xȳz̄w)

p(xyz̄w̄)

p(xȳzw̄)

p(xȳz̄w̄)

p(x̄yz̄w̄)

p(x̄ȳzw̄)

p(x̄ȳz̄w)

p(x̄ȳz̄w̄)



=



〈X〉
〈Y〉
〈Z〉
〈W〉
〈XZ〉
〈XW〉
〈YZ〉
〈YW〉

1


(46)

Each row above corresponds to a linearly independent equation, and therefore the above equations762

are compatible. Since there are fewer equations than variables, there are infinitely many solutions763

satisfying our definitions of negative probability and contexts (with seven arbitrary parameters). An764

explicit solution is shown in the Appendix.765

The above procedure can be extended to an arbitrary set of dichotomous random variables.766

Compatible equations are obtained each time we add equations that respect the indistinguishability767

condition between different random variables.768

5. Conclusions769

In this work, we have put forth the following argument. We started by pointing out a770

well-known and robust connection between contextual theories (such as quantum mechanics) and771

signed (or negative) probabilities. To generalize this connection, we presented a definition of772

signed probabilities that relies solely on the notions of signed measurable space and measurement773

contexts. As expected from previous results, the signed probabilities defined here satisfy the774

no-signaling condition. With a formal definition of negative probabilities, we followed previous775

works’ reasoning line on indistinguishability and contextuality. We discussed how the assumption776

of (ontic) particle indistinguishability leads to the following conclusion. Some of the particle testable777

propositions can be identified among different contexts. This characteristic, in turn, implies the778

non-signaling condition. Our findings suggest that, in the quantum domain, there is a robust779

connection between indistinguishability assumptions and the existence of signed probabilities. To780

generalize this connection, we presented a definition of signed probabilities that rely on the notions of781

signed measurable space and measurement contexts, extending Kolmogorov’s approach naturally.782
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It should be clear why negative probabilities are suitable to describe the states of indistinguishable783

entities. Negative probabilities are necessary and sufficient for no-signaling, and the identification of784

testable propositions imply no-signaling. Additionally, indistinguishable particles and propositions785

may lead to contradictions if we assume that their underlying logic is classic. However, as shown in786

[19] and [7], such contradictions rely on counterfactual reasoning that assumes the classical theory of787

identity for particles and properties. Therefore, in this situation, we can interpret negative probabilities788

as the consequence of imposing on indistinguishable particles a classical way of counting, i.e., a789

Boolean algebra. When doing so, we need to allow for negative counts to correct for the over-counting790

of different but indistinguishable particles. This different accounting for events is, in a certain sense,791

similar to Abramsky and Brandenburger’s operational interpretation of negative probabilities [5].792

However, contrary to their interpretation, here we propose that this accounting comes from an error793

in identifying properties, which is due to a fundamental ontological property of particles: they are794

indistinguishable.795

Paul Dirac was the first to use negative probabilities in physics. He used them to deal with796

the problem of infinities in quantum field theory [35]. Later, Richard Feynman tried to use negative797

probabilities in quantum mechanics [36]. It is fair to say that, though such influential physicists worked798

with them, negative probabilities remain outside of mainstream physics. The reason is likely not about799

a lack of meaning for the concept of negative probabilities, as we saw multiple references proposing800

different interpretations. Perhaps the main reason is that, albeit interesting and easy to compute,801

negative probabilities did not produce yet any exciting insights into quantum mechanics. We hope that802

with a well-defined concept of negative probabilities and a connection to a clear ontology inspired by803

quantum mechanics, negative probabilities can yield new understanding about the quantum world.804
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Appendix980

Here we write down an explicit solution for the Alice-Bob system of equations (46). Since (46) has981

16 variables but nine equations, the solution will have seven arbitrary parameters, αi, i = 1, . . . , 7. It is982

straightforward to compute that a general solution for (46) is the following:983

p(xyzw) = α1, (47a)

p(xyzw̄) = α2, (47b)
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p(xyz̄w) = α3, (47c)

p(xyz̄w̄) = α4, (47d)

p(xȳzw) = α5, (47e)

p(xȳzw̄) =
1
4
(1 + 〈XZ〉)− α1 − α2 − α5, (47f)

p(xȳz̄w) =
1
4
(1 + 〈XW〉)− α1 − α3 − α5, (47g)

p(xȳz̄w̄) = −1
4
(〈XZ〉+ 〈XW〉) + α1 − α4 + α5, (47h)

p(x̄yzw) =
1
4
(1 + 〈YW〉)− α1 − α3 + α6, (47i)

p(x̄yzw̄) =
1
4
(〈YZ〉 − 〈YW〉)− α2 + α6 + α3, (47j)

p(x̄yz̄w) = α6, (47k)

p(x̄yz̄w̄) =
1
4
(1− 〈YZ〉)− α3 − α4 − α6, (47l)

p(x̄ȳzw) = −1
4
(〈YW〉+ 〈XW〉) + α1 + α3 − α7, (47m)

p(x̄ȳzw̄) =
1
4
(−〈XZ〉+ 〈XW〉 − 〈YZ〉+ 〈YW〉) + α2 − α3 + α7, (47n)

p(x̄ȳz̄w) = α7, (47o)

p(x̄ȳz̄w̄) =
1
4
(〈XZ〉+ 〈YZ〉) + α3 + α4 − α7. (47p)

It is straightforward to see that for correlations violating the CHSH form of Bell’s inequalities, the984

above solutions cannot be in the interval [0, 1], and are therefore not standard probabilities. For985

example, for the PR-box correlation of −〈XZ〉 = 〈XW〉 = 〈YZ〉 = 〈YW〉 = −1, it follows that986

p(xȳz̄w) = −(α1 + α3 + α5), which implies that α1 = α3 = α5 = 0 for it to be non-negative. This987

implies, similarly, that α7 = 0 from p(x̄yzw), α2 from p(x̄yzw̄), α4 from p(xȳz̄w̄), α6 from p(x̄ȳz̄w̄), and988

α7 from p(x̄yzw). But since αi must be zero for i = 1, . . . , 7, it follows that p(x̄ȳzw̄) = −1/2, a negative989

value. Thus, as expected, the PR box maximally violating the CHSH does not have a non-negative990

joint probability distribution but has a negative probability. Similar results can be obtained for other991

PR boxes as well as for the QM correlations for the Alice-Bob experiment.992
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