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Abstract

In a recent paper, Suppes et al. (2012) used neural oscillators to create a model, based
on reasonable neurophysiological assumptions, of the behavioral stimulus-response
(SR) theory. In this paper, we describe the model in a less mathematical and more
physical and intuitive way.

1 Introduction

Understanding how we processes information is perhaps the most challenging
of the current scientific endeavors. This challenge comes from the fact that our
brain is tremendously complicated, as it is constituted of many different compo-
nents that are, by themselves, complex, but that also seem to sometimes interact
holistically with each other. Among the approaches to try and understand the
brain, the most prominent ones are the top-down and bottom-up. In the top-
down approach, we start with the higher-level functions, and we try to go from
them to their underlying mechanisms. So, an example of such approach would
be the field of cognitive neuroscience, where often one starts with experiments
in cognitive psychology and try to understand them from principles in neuro-
science (Adolphs, 2003). In the bottom-up approach, one tries to start with
neurophysiology, and by studying how each elementary component works, one
tries to see how higher functions arise from such components or their interaction
(Kandel et al., 2000).

Each of those approaches have their shortcoming. For example, one of the
main issues is what we may call a problem of scale. When trying to understand
a complex system, the first question that arrises is how detailed we need to be.
In the case of the brain, some researchers say that we need to go all the way
down to the chemical reactions in the synapses. Others argue that individual
neurons hold the key to understanding brain computation. Yet another view is
that collections of neurons are important. So, when trying to understand how
the brain works, our first problem is where to begin. Regardless of what scale is
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chosen and where we start, ultimately we would need to understand the whole
process if we were to claim to have understood the brain.

The main problem with connecting a higher scale with a lower one is due
to its complexity. For example, evidence exists that higher cognitive processes
involve tens to hundreds of thousands of neurons, interacting with each other in
very complex ways. Modeling such processes require the use of powerful com-
puters. But, even when a model is shown to work from the underlying neuronal
dynamics, the use of massive computer simulations helps little in understanding,
in an intuitive or conceptual way, what is actually happening. The system is
simply to complex.

To deal with the issue of complexity, different approaches can be taken. One
possible route is to find physically plausible arguments that impose constraints
on the system’s dynamics, therefore reducing it to fewer degrees of freedom.
This is the approach taken by Suppes et al. (2012). In their paper, a large
number of independent neurons was modeled by a single dynamical parameter
determined by the phase of a neural oscillator. They then showed that under
certain reasonable assumptions, the main characteristics of behavioral stimulus-
response (SR) theory could be described by neural oscillators. The use of neural
oscillators thus provided a significant reduction on the number of degrees of
freedom, allowing for the physical interpretation of many different parameters
in the model.

In this paper we present the work of Suppes et al. (2012) with emphasis on
the physics and intuition behind the model. Our goal is to make this model more
understandable, as many of the concepts used in our previous paper are not well-
known to certain audiences. For example, while all physicists have an excellent
knowledge of oscillations and interference and could easily follow the arguments
leading from neurons to oscillators, only a few would feel comfortable with the
mathematical learning theories used. Neuroscientists, on the other hand, would
probably feel at home with neurons and learning theories, but not so much with
oscillators and interference. Neither would most psychologists. Here we focus
on the intuitions behind the physics, with the hopes that, in conjunction with
Suppes et al. (2012), psychologists and neuroscientists could benefit more from
the insights that we obtain from the model.

2 A Brief Review of SR theory

Stimulus-response theory (or SR theory; see Suppes and Atkinson (1960)) is one
of the most successful behavioral learning theories in psychology. Though it has
decreased in importance in current psychology, we chose to model SR theory
for the following reasons. First, it is based on a rigid trial structure, which
permits its concepts to be formally axiomatized, resulting in many important
non-trivial but illuminating representation theorems (Suppes, 2002). In fact,
the theory is rich enough to represent language in it. Second, despite its few
parameters (the learning probability c and the number of stimuli), it has been
shown to fit well empirical data in a variety of experiments. Finally, as we
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showed in Suppes et al. (2012), SR theory seems to has natural counterparts at
a neuronal level, and is, in some sense (though, sadly, not in its mathematical
form) still used by neuroscientists.

Here we present the mathematical version of SR theory for a continuum of re-
sponses, formalized in terms of a stochastic process (here we follow Suppes et al.,
2012). Let (Ω,F , P ) be a probability space, and let Z, S, R, and E be random
variables, with Z : Ω → E|S|

S : Ω → S, R : Ω → R, and E : Ω → E, where
S is the set of stimuli, R the set of responses, and E the set of reinforcements.
Then a trial in SR theory has the following structure:

Zn → Sn → Rn → En → Zn+1. (1)

The trial structure works the following way. Trial n starts with a certain state
of conditioning and a sampled stimulus. Once a stimulus is sampled, a response
is computed according to the state of conditioning. Then, reinforcement fol-
lows, which can lead (with probability c) to a new state of conditioning for
trial n + 1 . In more detail, at the beginning of a trial, the state of condition-

ing is represented by the random variable Zn =
(

z
(n)
1 , . . . , z

(n)
m

)

. The vector
(

z
(n)
1 , . . . , z

(n)
m

)

associates to each stimuli si ∈ S, i = 1, . . . ,m, where m = |S|
is the cardinality of S, a value z

(n)
i on trial n. Once a stimulus Sn = si is sam-

pled with probability P (Sn = si|siǫS) =
1

m
, its corresponding z

(n)
i determines

the probability of responses in R by the probability distribution K
(

r|z(n)i

)

, i.e.

P
(

a1 ≤ Rn ≤ a2|Sn = si,Zn,i = z
(n)
i

)

=
∫ a2

a1

k
(

x|z(n)i

)

dx, where k
(

x|z(n)i

)

is the probability density associate to the distribution, and where Zn,i is the

i-th component of the vector
(

z
(n)
1 , . . . , z

(n)
m

)

. The probability distribution

K
(

r|z(n)i

)

is the smearing distribution, and it is determined by its variance

and mode z
(n)
i . The next step is the reinforcement En, which is effective

with probability c, i.e. P
(

Zn+1,i = y|Sn = si,En = y,Zn,i = z
(n)
i

)

= c and

P
(

Zn+1,i = z
(n)
i |Sn = si,En = y,Zn,i = z

(n)
i

)

= 1 − c. The trial ends with a

new (with probability c) state of conditioning Zn+1.

3 Oscillator model

In this section we will describe intuitively the oscillator model. We start by
arguing for the use of neural oscillators as a way to model the brain at a system
level. We then discuss how we can represent in a mathematically sensible way
these oscillators. Finally, we show how response computations and learning can
be modeled using this theoretical apparatus. Readers interested in more detail
are referred to Suppes et al. (2012).

There are many different ways in which researchers try to figure out how the
brain works. For example, in cognitive neuroscience, among the most popular
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TA
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t (a.u.)
t0 t0+TA t0+2TA

TB

V (a.u.)

t (a.u.)
t0 t0+TB t0+2TAB

Fig. 1: Approximate shape of the action potentials VA and VB as a function of
time t for two uncoupled neurons nA and nB firing periodically, with
periods TA and TB. For simplicity, we chose a t0 when both neurons fire
simultaneously.

research techniques are fMRI (functional magnetic resonance imaging), MEG
(magnetoencephalogram), and EEG (electroencephalogram). MEG and EEG
measure the electrical activities in the brain, whereas fMRI measures changes
in blood flow associated with higher metabolic rates. While fMRI’s popularity
is due to its better spatial resolution, MEG and EEG present significantly better
time resolution. However, what these techniques have in common is that, in or-
der to measure a signal from the brain, they require a large numbers of neurons
to fire synchronously. To make our point, let us focus on EEG (though MEG
would be adequate too). There are many experiments (see Carvalhaes et al.
(2012) and references) showing that the EEG data are allow a good represen-
tation of language or visual imagery. Thus, neurophysiological evidence points
toward language being an activity involving large collections of synchronizing
neurons, and we will center our model exactly on this.

Before we show how to describe such collections of synchronizing neurons
mathematically, it is useful to think about the physical mechanisms of synchro-
nization. Let us look first at individual neurons, and then think about ensembles
of neurons. Figure 1 shows the qualitative behavior of two neurons nA and nB

firing periodically, with TB < TA. What happens if we now couple nA to an
excitatory synapse coming from neuron nB? Because t0 + TB < t0 + TA, the
excitatory coupling will increase the membrane potential of neuron nA before
t0+TA, causing nA to fire a little earlier than it would it were not connected to
nB. So, excitatory synaptic couplings between neurons can change the timing



3 Oscillator model 5

of coupling, and this timing is changed such that the firings of both neurons
approach (in this case, the firing of nA approaches that of nB). In other words,
excitatory couplings push nA and nB toward synchronization. In fact, it is pos-
sible to prove mathematically that if the number of neurons is large enough, the
sum of the many weak synaptic interactions can cause a strong effect, making all
neurons fire closer together (Izhikevich, 2007); even when weakly coupled, en-
sembles of periodically firing neurons synchronize. It is interesting to note that
the argument shown above can be scaled up to distinct collections of neurons.
Imagine we have two ensembles of neurons, NA and NB, such that neurons in
them synchronize. If neurons in NA and NB become coupled, then the same
mechanism as above will be at play, and the ensembles will synchronize among
themselves. We will come back to this point later, when we talk about response
mechanisms.

We are now in good shape to introduce the intuition behind the mathemati-
cal description for the dynamics of synchronization. One of the main simplifying
assumptions we make is that the relevant information coded in the brain is rep-
resented by the synchronization of an ensemble of neurons. This ensemble may
include tens of thousands of neurons, but because they are synchronized, we can
represent them, at least in first approximation, by a single dynamical variable.
To understand this, let us think about the simplest case, where an oscillator
O (t) can be represented by a sine function1:

O (t) = A sinωt, (2)

where ω = ω (t) is its time-dependent frequency. Since ω may be a function of
time, the value of O (t) is completely determined by the argument of the sine, i.e.
by ϕ = ωt. The quantity ϕ is the phase of the oscillator O (t) = A sinϕ (t). Since
collections of firing neurons have very little variability in its intensity (except,
as we see below, when they interfere), we can describe a neural oscillator by its
phase. The interaction of a neural oscillator with other neural oscillators may
change the evolution of its phase.

We emphasize that there is a certain invariance of scale in the above argu-
ment: it somehow does not matter how many neurons we have; all it matters
is that their amplitude does not vary, that their couplings are strong enough
to produce synchronization, and that their dynamics is encoded in the phase.
Furthermore, in the same way that individual oscillating neurons synchronize
to each other, a collection of coherent neurons can also synchronize to another
collection of coherent neurons. Since neurons firing coherently may be described
approximately by their phase, the same we can focus on the phase dynamics,
instead of being concerned about the full description of the very complex dy-
namical system.

Now, let us look a little more into the details of the mathematics of two
synchronizing oscillators. Let us start with two oscillators, O1 (t) and O2 (t),
described by their phases ϕ1 and ϕ2. If those two oscillators are uncoupled and

1 We use a sine function for simplicity, but the following argument is valid for periodic

functions.
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their frequency ω is constant, then it is clear from equation (2) that they should
satisfy the following set of differential equations,

dϕ1

dt
= ω1, (3)

dϕ2

dt
= ω2, (4)

where ωi, i = 1, 2, are their natural frequencies. However, if they are weakly
coupled, such that their interaction does not affect the overall form of the os-
cillations given by O1 (t) and O2 (t) but affects their phase, then equations (3)
and (4) need to be modified to include changes to the phase. Furthermore, if
the underlying interaction is such that it will make the phases approach each
other, such as in the case of synaptically coupled neurons, then it is possible to
show that, in first approximation, the modified dynamical equations become

dϕ1

dt
= ω1 − k12 sin (ϕ1 − ϕ2) , (5)

dϕ2

dt
= ω2 − k21 sin (ϕ2 − ϕ1) , (6)

where kij are the phase coupling strengths. If we extend this to allow for N
oscillators, equations (5) and (6) then become

dϕi

dt
= ωi −

∑

j 6=i

kij sin (ϕi − ϕj) . (7)

Equation (7) is know as Kuramoto equation (Kuramoto, 1984), and it is widely
used to describe complex systems with emergent synchronization. The strength
and usefulness of Kuramoto’s equation comes from two main points. First, it
can be solved under certain symmetric conditions and in the limit of large N ,
yielding significant insight into the nature of emerging synchronization. Second,
a set of weakly-coupled oscillating dynamical systems close to a Andronov-Hopf
bifurcation can be described, in first approximation, by Kuramoto-like equations
(see Izhikevich (2007)). For our purpose, Kuramoto’s equations are a good
approximation for the dynamics of coupled neural oscillators.

So, we now turn into the discussion of how we can think of stimulus and
response as modeled by oscillators, and in particular by Kuramoto’s equations.
The basic idea is simple. Once a distal stimulus is presented, the perceptual
system activates an ensemble of brain neurons, Ns, associated with it. This
system itself is described by Kuramoto’s equations, and, because it synchronizes,
we use its average phase to describe its mean dynamics. If this stimulus elicits a
response, the activation of the response neurons via synaptic couplings follows.
Responses, as stimuli, are also represented by synchronously firing ensemble
of neurons. The selection of a particular response happens when the stimulus
oscillator synchronizes in phase with it, and such phase is determined by the
relative couplings between stimulus and response oscillators. Let us now look
more into its detail.
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The simplest stimulus-response neural oscillator model requires three os-
cillators, Os, Or1 , and Or2 . Os is the oscillator representing firing neurons
corresponding to the sampling of a stimulus, and Or1 and Or2 are the response
oscillators. Their phases are ϕs, ϕr1 , and ϕr2 . Before we describe their dy-
namics, let us go through the process of a response computation. Whenever
Os is activated, and subsequently Or1 and Or2 , then the intensity of firings in
each response oscillator is not only due to its firing, but also to the firings of
Os. As we mentioned earlier, a collection of firing neurons may interfere, and
in this case, interference means stronger firing rates when in phase, and weaker
firing rates when off of phase. Let us analyze this with a mathematically simple
example of equal intensity harmonic oscillators, given by

Os(t) = A cos (ω0t) = A cos (ϕs(t)) , (8)

Or1(t) = A cos (ω0t+ δφ1) = A cos (ϕr1(t)) , (9)

Or2(t) = A cos (ω0t+ δφ2) = A cos (ϕr2(t)) . (10)

Equations (8)–(10) represent the case where the oscillators are already syn-
chronized with the same frequency ω0 but with relative but constant phase
differences δφ1 and δφ2. The mean intensity give us a measure of the excitation
carried by the oscillations, and for the superposition of Os(t) and Or1(t) it is
given by

I1 =
〈

(Os(t) +Or1(t))
2
〉

t

=
〈

Os(t)
2
〉

t
+
〈

Or1(t)
2
〉

t
+ 〈2Os(t)Or1(t)〉t ,

where 〈f (t)〉t0 = 1
∆T

∫ t0+∆T

t0
f (t) dt (∆T ≫ 1/ω0) is the time average . A quick

computation yields
I1 = A2 (1 + cos (δφ1)) ,

and, similarly for I2,
I2 = A2 (1 + cos (δφ2)) .

Therefore, the intensity depends on the phase difference between the response-
computation oscillators and the stimulus oscillator.

Now, the maximum intensity of I1 and I2 is 2A2, whereas their minimum
intensity is zero. If we think of I1 and I2 as competing possible responses, the
maximum difference between them happens when one of their relative phases
(with respect to the stimulus oscillator) is zero while the other is π. It is standard
to use the contrast, defined by

b =
I1 − I2
I1 + I2

, (11)

as a measure of how different the intensities are. From its definition, b takes
values between −1 and 1. When I1 and I2 are as different as possible, |b| = 1;
if, on the other hand, I1 and I2 are the same, b = 0.
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The contrast provides us with a useful way to think about responses that
are between r1 and r2. To see this, let us impose

δφ1 = δφ2 + π ≡ δφ, (12)

which results in
IL1 = A2 (1 + cos (δφ)) , (13)

and
IL2 = A2 (1− cos (δφ)) . (14)

In this case, the single parameter δφ is sufficient to determine the contrast, as

b = cos (δφ) , (15)

0 ≤ δϕ ≤ π. So, the phase difference δφ between stimulus and response oscilla-
tors codes a continuum of responses between −1 and 1 (more precisely, because
δϕ is a phase, the interval is in the unit circle T, and not in a compact interval
in R). For arbitrary intervals (ζ1, ζ2), all that is required is a re-scaling of b.

To summarize the above arguments. When a stimulus and response oscil-
lators fire periodically, their couplings lead to synchronization. This synchro-
nization does not have to be in phase. But since they synchronize, their phase
relation is constant after activation. This phase relation causes interference,
which in turn determines the relative strength of the intensities for each re-
sponse. Thus, responses are determined by the interference of oscillators, which
is itself affected by the neural oscillators’ couplings.

We now examine in more detail the mathematics of the stimulus and response
model. Let us look at each step of (1).

Sampling

When a stimulus is sampled, a collection of neurons start firing synchronously,
corresponding to the activation of a neural oscillator, sn. Such activation leads
to a spreading of activation to oscillators coupled to the stimulus oscillator, in-
cluding the response ones, r1 and r2. Since the selection and activation of sn
involves the perceptual system, we do not attempt to model with neural oscil-
lators this step, but simply assume their activation in a way that is consistent
with the stochastic process represented in SR theory by the random variable
Sn. Furthermore, though it would be important to develop a detailed theory of
spreading activation, we do not, as for our current purposes it suffices to simple
assume the activation of r1 and r2.

Response

After the stimulus sn is sampled, the active oscillators evolve for the time inter-
val ∆tr, the time it takes to compute a response, according to the following set
of differential equations, known as the Kuramoto equations (Kuramoto, 1984).

dϕi

dt
= ωi −

∑

i6=j

kij sin (ϕi − ϕj + δij) , (16)
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where kij is the coupling constant between oscillators i and j, and δij is an
anti-symmetric matrix representing phase differences, and i and j can be either
sn, r1, or r2. Equation (16) can be rewritten as

dϕi

dt
= ωi −

∑

j

[

kEij sin (ϕi − ϕj) + kIij cos (ϕi − ϕj)
]

, (17)

where kEij = kij cos (δij) and kIij = kij sin (δij), which has an immediate phys-

ical interpretation: kEij corresponds to excitatory couplings, whereas kIij corre-
sponds to inhibitory ones. These are the 4N excitatory and inhibitory coupling
strengths between oscillators.

dϕsn

dt
= ω0 − kEsn,r1 sin (ϕsn − ϕr1)

−kEsn,r2 sin (ϕsn − ϕr2)

−kIsn,r1 cos (ϕsn − ϕr1)

−kIsn,r2 cos (ϕsn − ϕr2) , (18)

dϕr1

dt
= ω0 − kEr1,sn sin (ϕr1 − ϕsn)

−kEr1,r2 sin (ϕr1 − ϕr2)

−kIr1,sn cos (ϕr1 − ϕsn)

−kIr1,r2 cos (ϕr1 − ϕr2) , (19)

dϕr2

dt
= ω0 − kEr2,sn sin (ϕr2 − ϕsn)

−kEr2,r1 sin (ϕr2 − ϕr1)

−kIr2,sn cos (ϕr2 − ϕsn)

−kIr2,r1 cos (ϕr2 − ϕr1) , (20)

where ϕsn , ϕr1 , and ϕr2 are their phases, and ω0 their natural frequency. The
solutions to (18)–(20) and the initial conditions randomly distributed at activa-
tion give us the phases at time tr,n = ts,n+∆tr. The coupling strengths between
oscillators determine their relative phase locking, which in turn corresponds to
the computation of a given response, according to equation (11).

Reinforcement and Conditioning

As we saw above, the computation of a response depends on the inhibitory and
excitatory couplings between neural oscillators. Therefore, when an effective
reinforcement Yn corresponding to changes in the conditioning Zn+1 occurs,
the coupling strengths change. As with stimulus and responses, we represent
a reinforcement by a neural oscillator. Such oscillator, with frequency ωe, is
activated during reinforcement, and we assume that it forces the reinforced
response-computation and stimulus oscillators to synchronize with the same
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phase difference of δϕ, while the two response-computation oscillators are kept
synchronized with a phase difference of π. Let the reinforcement oscillator be
activated on trial n at time te,n, tr,n+1 > te,n > tr,n, for an interval of time
∆te. Let K0 be the coupling strength between the reinforcement oscillator
and the stimulus and response-computation oscillators. In order to match the
probabilistic SR axiom governing the effectiveness of reinforcement, we also
assume that there is a normal probability distribution governing the coupling
strength K0 between the reinforcement and the other active oscillators with
density

f (K0) =
1

σK0

√
2π

exp

{

− 1

2σ2
K0

(

K0 −K0

)2
}

. (21)

When a reinforcement is effective, all active oscillators phase-reset at te,n, and
during reinforcement the phases of the active oscillators evolve according to the
following set of differential equations.

dϕsn

dt
= ω0 − kEsn,r1 sin (ϕsn − ϕr1)

−kEsn,r2 sin (ϕsn − ϕr2)

−kIsn,r1 cos (ϕsn − ϕr1)

−kIsn,r2 cos (ϕsn − ϕr2)

−K0 sin (ϕsn − ωet) , (22)

dϕr1

dt
= ω0 − kEr1,sn sin (ϕr1 − ϕsn)

−kEr1,r2 sin (ϕr1 − ϕr2)

−kIr1,sn cos (ϕr1 − ϕsn)

−kIr1,r2 cos (ϕr1 − ϕr2)

−K0 sin (ϕr1 − ωet− δϕ) , (23)

dϕr2

dt
= ω0 − kEr2,sn sin (ϕr2 − ϕsn)

−kEr2,r1 sin (ϕr2 − ϕr1)

−kIr2,sn cos (ϕr2 − ϕsn)

−kIr2,r1 cos (ϕr2 − ϕr1)

−K0 sin (ϕr2 − ωet− δϕ+ π) . (24)
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The excitatory couplings are reinforced if the oscillators are in phase with each
other, according to the following equations.

dkEsn,r1
dt

= ǫ (K0)
[

α cos (ϕsn − ϕr1)− kEsn,r1

]

, (25)

dkEsn,r2
dt

= ǫ (K0)
[

α cos
(

ϕsj − ϕr2

)

− kEsn,r2
]

, (26)

dkEr1,r2
dt

= ǫ (K0)
[

α cos (ϕr1 − ϕr2)− kEr1,r2
]

, (27)

dkEr1,sn
dt

= ǫ (K0)
[

α cos (ϕsn − ϕr1)− kEr1,sn
]

, (28)

dkEr2,sn
dt

= ǫ (K0)
[

α cos (ϕsn − ϕr2)− kEr2,sn
]

, (29)

dkEr2,r1
dt

= ǫ (K0)
[

α cos (ϕr1 − ϕr2)− kEr2,r1
]

. (30)

Similarly, for inhibitory connections, if two oscillators are perfectly off sync,
then we have a reinforcement of the inhibitory connections.

dkIsn,r1

dt
= ǫ (K0)

[

α sin (ϕsn − ϕr1)− kIsn,r1
]

, (31)

dkIsn,r2

dt
= ǫ (K0)

[

α sin (ϕsn − ϕr2)− kIsn,r2
]

, (32)

dkIr1,r2
dt

= ǫ (K0)
[

α sin (ϕr1 − ϕr2)− kIr1,r2
]

, (33)

dkIr1,sn
dt

= ǫ (K0)
[

α sin (ϕr1 − ϕsn)− kIr1,sn
]

, (34)

dkIr2,sn
dt

= ǫ (K0)
[

α sin (ϕr2 − ϕsn)− kIr2,sn
]

, (35)

dkIr2,r1
dt

= ǫ (K0)
[

α sin (ϕr2 − ϕr1)− kIr2,r1
]

. (36)

In the above equations,

ǫ (K0) =

{

0 if K0 < K ′

ǫ0 otherwise,
(37)

where ǫ0 ≪ ω0, α and K0 are constant during ∆te, and K ′ is a threshold con-
stant throughout all trials. We can think of K ′ as a threshold below which
the reinforcement oscillator has no (or very little) effect on the stimulus and
response-computation oscillators. For large enough values of ∆te, the behav-
ioral probability parameter θ of effective reinforcement is, from (21) and (37),
reflected in the equation:

θ =

∫ ∞

K′

f (K0) dK0. (38)
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This relationship comes from the fact that, if K0 < K ′, there is no effective
learning from reinforcement, since there are no changes to the couplings due to
(25)–(36), and (18)–(20) describe the oscillators’ behavior. Intuitively K ′ is the
effectiveness parameter: the larger it is, the smaller the probability of effective
reinforcement.

4 Final remarks

In this paper we described the neural oscillator model presented in Suppes et al.
(2012), with particular emphasis to the physics and intuition behind many of the
processes represented by equations (18)–(36). To summarize it, the coded phase
differences were used to model a continuum of responses within SR theory in
the following way. At the beginning of a trial a stimulus oscillator is activated,
and with it the response oscillators. Then, the coupled oscillator system evolves
according to (18)–(20) if no reinforcement is present, and according to (22)–
(36) if reinforcement is present. The coupling constants and the conditioning
of stimuli are not reset at the beginning of each trial, and changes to couplings
correspond to effective reinforcement. Because of the finite amount of time for
a response, the probabilistic characteristics of the initial conditions lead to the
smearing of the phase differences after a certain time, with an effect similar to
that of the smearing distribution in the SR model for a continuum of responses
(Suppes, 1959).

SR theory has enjoyed tremendous success in the past, and, in a certain
sense, its main features are still present in modern day neuroscience. We be-
lieve that by showing how neurons may result in theoretical structures that are
somewhat similar to SR ones, as done in Suppes et al. (2012), we can provide the
basis for an extension of SR theory that could be considered more realistic. For
example, in our model, many parameters, such as time of response, frequency
of oscillations, coupling strengths, etc., were fixed based on reasonable assump-
tions. However, a more detailed and systematic study should be able to relate
such parameters to either underlying physiological constraints or to behavioral
variations, thus opening up the possibilities for new empirical studies that go
beyond SR theory. Also, in our model we postulated many features without
showing or proving their dynamics from underlying neuronal dynamics. This
was the case for the activation of a stimulus and the spreading of activation of
a stimulus and responses. A more detailed theory based on neural oscillators of
such dynamics would certainly provide with interesting empirical tests.

Finally, the use of neural oscillators and interference may also help explain
certain aspects of cognition that are considered “non-classical” (de Barros and Suppes,
2009). For example, a well studied quantum-like decision making process is the
violation of Savage’s sure-thing principle, shown in a series of experiments by
Tversky and Shaffir (Shafir and Tversky, 1992; Tversky and Shafir, 1992). Sim-
ilar violations do not need any quantum-like representation in the form of a
Hilbert space, as proposed in the literature, but instead can be obtained by
interference of neural oscillators (de Barros, 2012b). Furthermore, the use of
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neural oscillator interference even leads to predictions that are not compatible
with a Hilbert space structure (de Barros, 2012a), suggesting that the use of
quantum-like processes is not as quantum as many would wish.

J. Acacio de Barros and G. Oas dedicate this paper to Pat Suppes, mentor
and friend, on the occasion of his 90th birthday.
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