
NEGATIVE PROBABILITIES AND COUNTERFACTUAL

REASONING ON THE DOUBLE-SLIT EXPERIMENT

J. ACACIO DE BARROS∗, GARY OAS†, AND PATRICK SUPPES⋆

Abstract. In this paper we attempt to establish a theory of negative (quasi)
probability distributions from fundamental principles and apply it to the study
of the double-slit experiment in quantum mechanics. We do so in a way that

preserves the main conceptual issues intact but allow for a clearer analysis, by
representing the double-slit experiment in terms of the Mach-Zehnder interfer-
ometer, and show that the main features of quantum systems relevant to the
double-slit are present also in the Mach-Zehnder. This converts the problem
from a continuous to a discrete random variable representation. We then show
that, for the Mach-Zehnder interferometer, negative probabilities do not exist
that are consistent with interference and which-path information, contrary to
what Feynman believed. However, consistent with Scully et al.’s experiment,
if we reduce the amount of experimental information about the system and
rely on counterfactual reasoning, a joint negative probability distribution can
be constructed for the Mach-Zehnder experiment.

Two of the authors (JdB, GO) would like to express their gratitude for having
the honor to contribute to this volume recognizing Patrick Suppes. It is with great
sadness that Pat’s passing came so soon. He did not have a chance to contribute to
this final version, but the core ideas put forth here stem from him, and we believe
that he would be pleased with the final result. However, we emphasize that any
errors are the exclusive responsibility of the first two authors, and would not be
present if the paper had gone through Pat’s usual rigorous review. We also want
to take this opportunity to express our indebtedness to Pat for his guidance and
patience over the past few decades. Pat introduced both of us to the importance
of joint probability distributions in quantum mechanics, and was to us not only a
collaborator and mentor, but also a friend, and we heartily dedicate this paper to
him.

1. Introduction

Ever since its inception, quantum mechanics has not ceased to perplex physi-
cists with its counter-intuitive descriptions of nature. For instance, in their famous
paper Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR) argued the in-
completeness of the quantum mechanical description (Einstein et al., 1935). At the
core of their argument was the superposition of two wavefunctions where properties
of two particles far apart, A and B, were highly correlated. Since both particles
are spatially separated, EPR argued that a measurement on A should not affect B.
Therefore, we could use the correlation and a measurement on A to infer the value
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of a property in B without disturbing it. Thus, concluded EPR, the quantum me-
chanical description of nature had to be incomplete, as it did not allow the values
of a property to be fixed before an experiment was performed.

In 1964, John Bell showed that not only quantum mechanics was incomplete,
but also that a complete description of physical reality such as the one espoused by
EPR was incompatible with quantum mechanical predictions (Bell, 1964). Later on,
Alain Aspect, Jean Dalibard, and Gérard Roger, in an impressive and technically
challenging experiment, obtained correlation measurements between measurement
events separated by a spacelike interval. Their correlations supported quantum me-
chanics, in disagreement with EPR’s metaphysical views (Aspect et al., 1981, 1982).
Other puzzling results followed, like the Kochen-Specker theorem (Kochen and
Specker, 1967, 1975), Wheeler’s delayed choice experiment (Wheeler, 1978; Jacques
et al., 2007), the quantum eraser (Scully and Druhl, 1982), and the Greenberger-
Horne-Zeilinger paradox (Greenberger et al., 1989; de Barros and Suppes, 2000,
2001), to mention a few.

What most of the above examples have in common (with the exception of
Kochen-Specker) is that they all use superpositions of quantum states. There is
nothing more puzzling in quantum mechanics than the fact that a given system can
be in a state with two incompatible properties simultaneously “present.” For exam-
ple, let Ô be an observable corresponding to a property O, and |o1〉 and |o2〉 two
eigenstates of Ô with eigenvalues o1 and o2. If the quantum system is in the state
|o1〉, we may say that it has an objective property O and its value is o1, in the sense
that if we measure this system for property O, the outcome of this measurement
will be o1 with probability one. Similarly if the system is in the state |o2〉. However,
it is also in principle possible to prepare a system in a quantum state that is the
superposition of |o1〉 and |o2〉, i.e. c1|o1〉+ c2|o2〉, where c1 and c2 are any complex
numbers satisfying the constraint |c1|

2
+ |c2|

2
= 1. At a first glance, this may not

seem puzzling, as it is just telling us that the system is perhaps in a state where the
value of O is unknown, except that it can either be o1 (o2) with probability |c1|

2

(|c2|
2). The perplexing aspects of superpositions come from the study of properties

such as O taken in conjunction with other properties, say O
′, in cases where their

corresponding observables, Ô and Ô′, do not commute ([Ô, Ô′] 6= 0).
There is perhaps no simpler context in which the superposition mystery reveals

itself than single photon interference, realized in the double-slit experiment. In fact,
in his Lectures in Physics, Richard Feynman famously claimed that this experiment
contains the only mystery of quantum mechanics (Feynman et al., 2011). Although
there are other mysteries, as Silverman (1995) pointed out, the double-slit experi-
ment provides us with an understanding of some key aspects of quantum mechanics.
It may be the true mystery of quantum mechanics lies in the idea that a property
is not the same in different contexts (Dzhafarov and Kujala, 2013a; Markiewicz
et al., 2013; Howard et al., 2014; de Barros et al., 2014), and that such contexts
(perhaps freely) chosen by an observer can be spacelike separated (Bell, 1964, 1966;
Greenberger et al., 1989; de Barros and Suppes, 2000, 2001; Dzhafarov and Kujala,
2014b).

One of the main “disturbing” mysteries of the double-slit system, as described by
Feynman, is the non-monotonic character of the probabilities of detection. This was
exactly what motivated Feynman to use negative probabilities to describe quantum
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systems (Feynman, 1987). However, as Feynman remarked, such an approach did
not seem to provide any new insights into quantum mechanics.

It is our goal here to show that we can indeed gain some insight by using neg-
ative probabilities. This paper is organized the following way. First, we introduce
in Section 2 a simplified version of the double-slit experiment in the form of the
Mach-Zehnder interferometer. Then in Section 3, we present a theory of negative
probabilities. We then show, in Section 4, that proper probability measures do not
exist for the simultaneous measurements of the particle- and wave-like properties,
but negative probabilities do under certain counterfactual conditions that are often
assumed in experimental analyses.

2. The Mystery of the double-slit Experiment

In this section we reproduce Feynman’s discussion of the double-slit experiment,
and why he considered it mysterious (Feynman et al., 2011). Feynman’s argument
involves the idea that classically we think of systems in terms of two distinct and
incompatible concepts, particles or waves1. Such concepts are incompatible because
particles are localized and waves are not. To see this, let us start with a point
particle. In classical mechanics, the main characteristic of particles is that they are
objects localized in space, and therefore can only interact with other systems that
are present in their localized position. For example, let us consider a particle P
whose position at time t is described by the position vector rP (t). At time t0, P
can only interact with another physical entity that is also at rP (t0), either another
particle S such that rS (t0) = rP (t0) or a field that is nonzero at rP (t0). For
instance, when a particle is subject to no external fields (of course an idealization),
such as gravity, it travels in a straight line at constant speed, since no interaction
is present. If this particle then collides with another particle, say a constituent of
a wall placed in the way of the original particle, an interaction will appear2. But,
as soon as the particle looses contact with the wall, the interaction ceases to exist.
In other words, particles interact locally.

The second basic concept is that of waves. Historically, the physics describing
a point particle was extended to include the description of continuous media, and,
more important to our current discussion, the vibrations of such media in the form
of waves. Waves, therefore, were considered vibrations of a medium made out of
several point particles, and the local interactions between two neighboring particles
would allow for a perturbation in one point of the medium to be propagated to
another point of the medium. Without going into the discussion of the particulars
of electromagnetic waves, the main point is that because a single particle has an
infinite number of neighbors, a disturbance on its position propagates to all of its
neighbors and to all directions. Thus, the effect of such perturbation on particle S′

belonging to this medium due to a perturbation on particle P ′ does not depend on
the direct contact of S′ and P ′. More importantly, such effect depends not only on
P ′, but also possibly on all other particles that make up the medium, and also on
all interactions or boundary conditions that such particles need to satisfy. In other
words, waves interact non-locally.

1You could also have fields, but in the context of the double-slit experiment, as it will become
clear later, the relevant property of a field would be its spatial oscillations as a wave.

2There is, of course, the obvious issue of how could this interaction be relevant, given that it
would occur with probability zero.
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Figure 2.1. Schematics of the double-slit experiment. A source
S emits a physical object towards a barrier, where two slits, A and
B, are cut to allow for its passage. Then, at a screen D, the object
is detected.
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Figure 2.2. Probability density of observation for the double-slit
experiment, assuming a particle model.

Going back to the double-slit experiment, let us analyze it from the point of
view of what one should expect to happen were it being modeled with particles or
with waves. Figure 2.1 shows a typical double-slit setup. We start with particles.
Let us assume that S sends particles in random directions. A particle leaving S
would interact only locally with the barrier and nothing else. This means that
in between S and the barrier, this particle travels along a straight line. Once it
reaches the barrier, it either goes through one of the slits and reaches D, or is
reflected back (or absorbed, depending on the barrier’s properties). While going
through a slit, the particle may interact with the walls, perhaps bouncing off of it,
and therefore causing some scattering from the direct path between S and D. Thus,
if we run this experiment many times, we should expect the observed probability
distribution of particles on D to be somewhat like as depicted in Figure 2.2. The
resulting probability is simply the (normalized) sum of the probability of a particle
going through slit A and B.

A wave analysis of the experiment shows something quite different. First, a wave
is the result of a perturbation of a medium. In this case, the source S disturbs the
medium, and such disturbance is propagated in all directions. One characteristic of
such propagation is that its speed is dependent on the medium, and for the double
slit experiment this is reflected in the arrival of a wave crest (or valley) in A at the
same time that a crest (or valley) arrives in B. If A and B are small compared to the
wavelengths, we can think of them as secondary wave sources oscillating in phase.
Thus, when they arrive at D, in some places they will be in phase, whereas in other
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Figure 2.3. Intensity (arbitrary units) of the wave at D for the
double-slit experiment.

places they will be out of phase. The result is the constructive and destructive
interference pattern that we know for waves, shown in Figure 2.3.

Now for the puzzling aspect of it all: quantum systems, e.g. electrons, have
particle-like characteristics while at the same time being prone to wave-like inter-
ference. Here is how those aspects manifest themselves. Experimentally, electrons
are particles. We know this because they are localized, in the sense that when we
measure an electron, it shows up as a point in a fluorescent screen or a localized
detector. This is to be contrasted with waves, which are spread out, and therefore
have measurable components (i.e., momentum and energy) in more than one place.
Thus, as particles, when an electron leaves the source S, it will either go to slit A
or B. Since its interactions are solely local, if it goes through, say, A, it can only
interact with A, and not with B. Therefore, to a particle, it makes no difference
at all if slit B is open or not when it goes through A, and vice versa. This is why
we should expect a distribution like that on Figure 2.2. The disturbing fact is that
an electron, if both slits are open, satisfies, after many runs, the distribution given
in Figure 2.3. So, here is the puzzle. For a wave, the intensity is zero at several
points, e.g. at position 0.5. How can this zero intensity be understood? How can
the particle “know” (in the sense of interacting) about B if only interacting locally
with A? To make this point even clearer, we will examine this question in detail in
Section 4, using a simplified case of the double-slit experiment, the Mach-Zehnder
interferometer, together with a framework of extended probabilities. But first, let
us examine the concept of negative probabilities.

3. Negative Probabilities

In this Section we lay out the main relevant results and definitions for negative
probabilities. We start by first defining it in a way that is related to Kolmogorov’s
(1950) probability measure. We then prove some simple but relevant results.

Definition 1. Let Ω be a finite set, F an algebra over Ω, and p a real-valued
functions, p : F → R. Then (Ω,F , p) is a probability space, and p a probability
measure, if and only if:

K1. 0 ≤ p ({ωi}) ≤ 1, ∀ωi ∈ Ω

K2. p (Ω) = 1,

K3. p ({ωi, ωj}) = p ({ωi}) + p ({ωj}) , i 6= j.

The elements ωi of Ω are called elementary probability events or simply elementary
events.
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Definition 1 is the finite version of Kolmogorov’s standard definition of proba-
bility measure. In the usual definition, Ω can be an infinite set, and then F needs
to be a σ-algebra. However, for the purpose of this article, we will restrict our
discussions to finite sets Ω. For that reason, we will also refer to p as a proper
probability distribution or joint probability distribution.

It is a well know fact that for some systems it is not possible to define a proper
probability distribution. This is, in fact, the heart of Bell’s inequalities showing that
for an EPR-Bohm type experiment no local hidden-variable theories exist that are
compatible with quantum mechanics (Bell, 1964, 1966). In fact, a hidden variable
exists if and only if a joint probability distribution exists (Suppes and Zanotti, 1981;
Fine, 1982), and Bell’s inequalities are a necessary and sufficient condition for the
existence of a joint probability distribution (Fine, 1982; Suppes et al., 1996a).

To overcome this difficulty, the use of upper probabilities, where K3 is modified to
include subadditivity, has been proposed (Suppes and Zanotti, 1991; de Barros and
Suppes, 2001; Hartmann and Suppes, 2010). The main reason for such a proposal
is that quantum mechanics, as suggested by Feynman’s remarks, is nonmonotonic,
and upper probabilities offer a framework where nonmonotonicity can be described
mathematically. Thus, before we define negative probabilities, it is useful to start
with the more well-known theory of upper probabilities.

Definition 2. Let Ω be a finite set, F an algebra over Ω, and p∗ a real-valued
functions, p∗ : F → R. Then (Ω,F , p∗) is an upper-probability space, and p∗ an
upper-probability measure, if and only if:

U1. 0 ≤ p∗ ({ωi}) ≤ 1, ∀ωi ∈ Ω

U2. p∗ (Ω) = 1,

U3. p∗ ({ωi, ωj}) ≤ p∗ ({ωi}) + p∗ ({ωj}) , i 6= j.

Remark 3. The main difference between upper and proper probabilities is the sub-
stitution K3 for U3.

Remark 4. In many systems of interest, where the probabilities of elementary events
are computed from a set of given marginal probabilities, the inequalities from U3
imply an underdetermination for the possible values of the joint upper probability
distribution for all ωi ∈ Ω.

Remark 5. If follows from K2 and K3 that
∑

ωi∈Ω

p ({ωi}) = 1,

but because of U3 is
∑

ωi∈Ω

p∗ ({ωi}) ≥ 1.

One of the main difficulties with upper probabilities is that, because it uses
subadditivity, it is very hard in practice to compute it. Subaditivity also implies
that a large number of different upper measures exist, even when all moments are
given. An usual approach is to request p∗ to be as close as possible to a proper
measure by minimizing the value of

∑

ωi∈Ω
p∗ ({ωi}), which can be greater than one

when no proper joint exists (Suppes and Zanotti, 1981, 1991; Fine, 1994; de Barros
and Suppes, 2001; Hartmann and Suppes, 2010).
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Another possible approach was proposed by Feynman (1987) in connection to
the two slit experiment: negative probabilities. Though Feynman could not find
any use for negative probability, recent research has shown that there may be
some advantage for using them (Abramsky and Brandenburger, 2011; Al-Safi and
Short, 2013; Zhu et al., 2013; de Barros, 2014; Oas et al., 2014; Abramsky and
Brandenburger, 2014; de Barros and Oas, 2014; de Barros et al., 2014). To define
negative probabilities, we first need to set forth a description of certain systems
where no proper probability distribution exists. This is the goal of the following
definition.

Definition 6. Let Ω be a finite set, F an algebra over Ω, and let (Ωi,Fi, pi), i =
1, . . . , n, a set of n probability spaces, Fi ⊆ F and Ωi ⊆ Ω. Then (Ω,F , p),where p is
a real-valued function, p : F → [0, 1], p (Ω) = 1, is compatible with the probabilities
pi’s if and only if

∀ (x ∈ Fi) (pi (x) = p (x)) .

Furthermore, the marginals pi are viable if and only if p is a probability measure.

Remark 7. Intuitively, we can think of the pi’s as observable marginals. The defini-
tion above says that such marginals are viable if it is possible to sew them together
to produce a larger probability function over the whole space Ω (in the same spirit
of Dzhafarov and Kujala (2013a, 2014d); de Barros et al. (2014)). Our definition
is an extension of Halliwell and Yearsley (2013), as we consider not only the case
where viable distributions exist, but also when they do not.

For some experimental situations, such as the EPR-Bell setup, the marginals
are not viable, but are compatible with a p that has the characteristic of being
negative for some elements of Ω (but not negative for the observable marginals).
This motivates the following definition of a p that may take negative values.

Definition 8. Let Ω be a finite set, F an algebra over Ω, P and P ′ real-valued
functions, P : F → R, P ′ : F → R, and let (Ωi,Fi, pi), i = 1, . . . , n, a set of n
probability spaces, Fi ⊂ F and Ωi ⊆ Ω. Then (Ω,F , P ) is a negative probability
space, and P a negative probability, if and only if (Ω,F , P ) is compatible with the
probabilities pi’s and

N1. ∀ (P ′)

(

∑

ωi∈Ω

|P ({ωi})| ≤
∑

ωi∈Ω

|P ′ ({ωi})|

)

N2.
∑

ωi∈Ω

P ({ωi}) = 1

N3. P ({ωi, ωj}) = P ({ωi}) + P ({ωj}) , i 6= j.

In the above definition, we replace axiom K1 of nonnegativity with a minimiza-
tion of the L1 norm of the function P . Intuitively, as with uppers, we seek a
quasi-probability distribution that is as close to a proper distribution as possible.
Furthermore, the departure from such proper distributions, which would have no
negative numbers, motivates the following definition of M∗ as a measure of this
departure. Throughout this paper we use p for proper probability measures (Def-
inition 1), p∗ for upper and lower probabilities (Definition 2), and P for negative
probabilities (Definition 8).
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Definition 9. Let (Ω,F , P ) be a negative probability space. Then, the minimum
L1 probability norm, denoted M∗, or simply minimum probability norm, is given
by M∗ =

∑

ωi∈Ω
|P ({ωi})|.

Proposition 10. Let (Ω,F , P ) be a negative probability space and (Ω,F , p) a (Kol-
mogorov) probability space. Then p = P iff M∗ =

∑

pi.

Proof. Let us start with M∗ =
∑

pi. It follows from it that all elementary events
satisfy the condition 0 ≤ P ({ωi}) ≤ 1, which is K1. Together with N2 and N3, then
P is also a probability measure, and (Ω,F , P ) a probability space. Now, if (Ω,F , p)
is a probability space, it follows from K1 that M∗ =

∑

ωi∈Ω
|P ({ωi})| =

∑

pi. �

Remark 11. Proposition 10 tells us that axioms N1-N3 include, as a special case, K1-
K3. In other words, in the special case when a proper Kolmogorovian distribution
exists (M∗ =

∑

pi), P coincides with p.

We end this section with one last definition that is relevant to physical systems.

Definition 12. Let Ω be a finite set, F an algebra over Ω, and let (Ωi,Fi, pi),
i = 1, . . . , n, a collection of n probability spaces, Fi ⊆ F and Ωi ⊆ Ω. Then the
probabilities pi are contextually biased3 if there exists an a in Fi and in Fj, i 6= j,
b 6= a 6= b′,

∑

∀b∈Fj
p (a ∩ b) 6=

∑

∀b′∈Fi
p (a ∩ b′).

Remark 13. In physics, for multipartite systems, this definition is equivalent to the
no-signaling condition.

Proposition 14. Let Ω be a finite set, F an algebra over Ω, and let (Ωi,Fi, Pi),
i = 1, . . . , n, a set of n probability spaces, Fi ⊆ F and Ωi ⊆ Ω. The probabilities
Pi are not contextuality biased if and only if there exists a negative probability
(Ω,F , P ) compatible with the pi’s.

Proof. See Al-Safi and Short (2013); Oas et al. (2014); Abramsky and Branden-
burger (2014) for different proofs. �

3.1. Interpretations of Negative Probabilities. As we mentioned above, both
Dirac and Feynman saw negative probabilities as computational devices. Though
we can take such pragmatic view, as negative probabilities help explore certain
situations of interest in quantum mechanics (see Oas et al. (2014) for an example),
the question still remains as to their meaning. Here we discuss some proposals on
how to interpret negative probabilities.

Let us start with the interpretation of negative probabilities in terms of two
disjoint probability measures, µ+ and µ−, initially suggested by Burgin (2010);
Burgin and Meissner (2012) and then expanded and formalized by Abramsky and
Brandenburger (2014). Here we follow the interpretation as presented by Abramsky
and Brandenburger (2014). The main idea of this interpretation comes from the
well-known fact (see Rao and Rao (1983)) that it is possible to decompose a signed
measure µ into two non-negative ones, µ− and µ+, such that

µ = µ+ − µ−.

Following this idea, Abramsky and Brandenburger (2014) creates two copies of the
sample space, namely Ω×{+,−}, giving them a new dimension corresponding to +
or −. For example, for the case of three random variables X, Y, and Z, the set of all

3Here we adopt and adapt the terminology of Dzhafarov and Kujala (2014d).
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elementary events would be {ωxyz, ωxyz, . . . , ωxyz, ωxyz}, whereas the expanded set
Ω×{+,−} would have as elementary events {ωxyz+, . . . , ωxyz+, ωxyz−, . . . , ωxyz−}.
Because of the above decomposition, they define a probability over the set + and
− such that

P = p+ − p−,

where now P is the negative probability and p+ and p− can be interpreted as proper
probability distributions over (Ω,±). To interpret P , Abramsky and Brandenburger
(2014) proposes an effect akin to interference. When we observe an event, say
corresponding to the element ωxyz+, we use p+ as the distribution to create our
data table, and similarly for ωxyz−. However, the counting due to a − element
can annihilate a counting for a + element, and vice versa. In a certain sense,
this interpretation of negative probabilities is conceptually similar to some hidden
variable approaches in the literature, as for example the virtual photon model of
Suppes and de Barros (Suppes et al., 1996c; Suppes and de Barros, 1994b; Suppes
et al., 1996b,d; Suppes and de Barros, 1994a; Suppes et al., 1996a) or the ESR
model (Garola and Sozzo, 2009; Sozzo and Garola, 2010; Garola and Sozzo, 2011a,b;
Garola et al., 2014), to cite a few. In these approaches, an underlying hidden process
can erase an outcome that would be possible if it were not for the interference of
non-observable events. However, the problem with this interpretation is that, even
though it is based on a frequentist view, it does not provide a way of counting
actual observable clicks on a measurement device and interpret them as negative
probabilities; in other words, it assumes some non-accessible reality.

We now turn to another frequentist interpretation of negative probabilities, this
one proposed by Khrennikov (Khrennikov, 1993a,b, 1994b,a, 2009). Khrennikov
starts with the idea that, in the frequentist view, the probability of an event is
defined as by the number of times such an event occurs in an infinite sequence of
possible outcomes or ensembles. Following Khrennikov (2009), let SN be a sequence
of N ensembles with, SN = {s1, s2, . . . , sN}. For each of the ensembles si, one can
ask whether the property represented by the random variable A has the value a or
not, and let S (A = a) be the subset of all ensembles such that A = a. Then, in
the standard frequentist interpretation, the probability p (A = a) is given by

(3.1) p (A = a) = lim
N→∞

|S (A = a) ∩ SN |

|S|
,

where |·| represents the cardinality of a set. Khrennikov then argues that there are
ensembles for which the limit in (3.1) does not converge, and for such cases negative
probabilities can be obtained as the result of a regularization procedure or order. In
such sense, negative probabilities come as the result of quasi-random sequences that
violate the principle of statistical stabilization (Khrennikov, 1993a). Khrennikov
then proposes to generalize probabilities coming from sequences that violate the
principle of statistical stabilization as measures taking values not only on the field
R, but also on the p-adic extensions of the set of rationals Q, i.e. Qp. We recall that
R is defined, through Cauchy sequences, as the completion of Q under the Euclidian
norm. Similarly, Qp is the completion of Q under the p-adic norm (see Khrennikov
(2009) for a clear exposition of Qp and its properties). Once he does that, he shows
that certain sequences that have probability zero in the sense of (3.1) would have
negative probabilities in their p-adic extension, whereas sequences of probability
one would have p-adic values greater than one. Thus, according to Khrennikov, we
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can interpret negative (greater than one) probabilities as events of probability zero
(one) for sequences that violate the principle of statistical stabilization. Here we
note that contextual random variables are quasi-random, and violate the principle
of statistical stabilization.

We now turn to the meaning of the minimum L1 norm we propose for negative
probabilities. Similarly to negative probabilities, the sub or super additivity of
upper and lower probabilities allows for a large number of solutions to the joint
probability that is consistent with the marginals. One possibility is to think of
upper and lowers as subjective measures of belief based on inconsistent information
(Suppes and Zanotti, 1991). As such, it can be argued that, since upper and
lowers do not add to one as standard probabilities do, one should choose among
the many different distributions those whose sums are as close to one as possible.
This is, in a certain sense, similar to what the minimum L1 norm does for negative
probabilities. As such, this norm, which quantifies how much a negative probability
deviates from a proper probability, provides us a measure of how inconsistent the
correlations between random variables are (de Barros, 2014).

We end this section with one last general comment. Instead of using negative
probabilities, it is possible to simply extend the probability space such that when we
talk about correlations between experimentally observable variables, as proposed
by Dzhafarov and Kujala (2012, 2013a). To understand this point, imagine we start
with three variables X, Y, and Z, as in the above example. Instead of thinking of
them as three variables, we could think of them as six, one for each experimental
context: XY , XZ , ..., ZY . It is easy to show that in some important physical
examples, such as the famous Bell-EPR setup, such extension of the probability
space is sufficient to grant the existence of a joint probability distribution, but at
the cost of having XY 6= XZ . Thus, the apparent inconsistencies mentioned in the
previous paragraph could be argued to come from an identity assumption for the
random variables: that a random variable remains the same in different contexts
(Dzhafarov and Kujala, 2013b,a, 2014d,c). As such, the minimum norm could be
interpreted as a measure of contextuality (de Barros et al., 2014; de Barros and
Oas, 2014; Oas et al., 2014).

4. The Mach-Zehnder Interferometer and Negative Probabilities

Now that we saw the basic relationships between negative probabilities and upper
and Kolmogorovian probabilities, we turn our attention to the two slit experiment
its simplified version of the Mach-Zehnder interferometer, schematically shown in
Figure 4.1. We will not attempt to give a full quantum-mechanical description
of this experiment, but instead focus on an elementary representation of the main
ideas behind it. Intuitively, each arm of the interferometer, A and B, corresponds to
a possible path the particle can take, which is equivalent to a particle going through
one slit or the other on the two slit experiment. However, the Mach-Zehnder differs
from the double-slit experiment as the particle only has two possible outcomes, a
detection in D1 or D2, as opposed to an infinite number of points on a screen. Such
two possible outcomes could be thought as two points on the screen on the screen
corresponding to a maximum and minimum intensities in the interference pattern.

To elaborate on the analogy with the two slit experiment, let us think about
the experiment in terms of particles. First, we can select an interferometer setup
such that we have constructive interference in D1 and destructive in D2. In other



DOUBLE-SLIT WITH NEGATIVE PROBABILITIES 11

DA

DB

S BS1

BS2

MA

MB
D1

D2

A

B

Figure 4.1. Schematics of a Mach-Zehnder interferometer. A
light beam from a source S is divided into two equal-intensity
beams by the beamsplitter BS1. The beams are reflected by mir-
rors MA and MB, and then recombined by the beamsplitter BS2.
Photons from S are then detected by photodetectors D1 or D2.
The count rates on D1 and D2 depend on the geometry of the sys-
tem, in particular the optical distances between BS1, BS2, andMA

and MB. In the which-path version of this experiment, detectors
DA and/or DB may be placed on each arm of the interferometer
to determine the trajectory of the photon.

words, the lengths of the interferometer arms are chosen such that P (D1 = 1) = 1
and P (D2 = 1) = 0, where D1 (D2) is a ±1-valued random variable representing
a detection on D1 (D2) when its value is 1 and no detection when −1. From
now on we will use the standard notation pd1

= P (D1 = 1), pd1

= P (D1 = −1),
pd2

= P (D2 = −1) and so on. With this notation, our interferometer is such that
pd1

= pd2
= 1 and pd1

= pd2
= 0.

Now that the interferometer is set up, let us examine the two possible classical
models (according to Feynman) behind it: the wave and particle models. We start
with the wave point of view. Let ψ = A cos (ωt) represent a coherent wave arriving
at the beam splitter BS1 at time t and being split in both directions, A and B. The
wave going through A is unchanged by BS1, and arrives at MA as A

2
cos (ωt+ φ1),

where φ1 is a phase that depends on the geometry of the interferometer, specifically
on the distance between BS1 and MA. At MA it becomes −A

2
sin (ωt+ φ1) due

to a π/2 phase shift upon reflection, and arrives at BS2 as −A
2
sin (ωt+ φ1 + φ2).

For the wave going through B, it arrives at MB as −A
2
sin (ωt+ φ2) and at BS2

as −A
2
cos (ωt+ φ2 + φ1), where we assume for the geometry that distance between

BS1 and MB is the same as the distance between MA and BS2 (and similarly for
BS1to MA and MB to BS2). The beam splitter BS2 now recombines the two waves
coming from A and B, and the outputs on D1 and D2 are the superposition of those
waves. In other words,

ψD1
= −

A

2
sin
(

ωt+ φ1 + φ2 +
π

2

)

−
A

2
cos (ωt+ φ2 + φ1)(4.1)

= −
A

2
cos (ωt+ φ)−

A

2
cos (ωt+ φ)

= −A cos (ωt+ φ) ,



DOUBLE-SLIT WITH NEGATIVE PROBABILITIES 12

where the first term on the rhs is the reflected wave from A, and φ = φ1 + φ2. For
D2 we obtain, with now the wave B getting a phase of π/2,

ψD2
= −

A

2
sin (ωt+ φ)−

A

2
cos
(

ωt+ φ+
π

2

)

(4.2)

= −
A

2
sin (ωt+ φ) +

A

2
sin (ωt+ φ) = 0.(4.3)

We can now compute the mean intensity of the entering wave, ψ,

IS = 〈ψ2〉t =
A2

2
,

where

〈f〉t =
1

T
lim

ωT≫1

ˆ t+T

t

f dt′

represents the time average. The intensity at D1, is

ID1
=

A2

2
,

whereas the intensity at D2 is

ID2
= 0,

consistent with the value for the source S. These particular values for the intensities
at D1 and D2 present the highest contrast between the intensities at each detector,
or, as it is often referred, maximum visibility (of interference). So, to summarize,
according to the wave model we see no wave energy arriving at D2 because of
destructive interference due to the relative phases of the different paths the wave
traveled.

Now let us examine the view that photons are particles, and let us assume that
we can control the intensity of the source such that one particle at a time goes
through the interferometer. A particle comes out of the source S and enters the
interferometer through the beam splitter BS1. Beam splitters divide beams into
two equal intensity ones. This translates into a particle having probability 1/2 of
going to either arm A or B. For the sake of argument, let us assume that the
particle went into arm A. Once it leaves the interferometer, it is reflected at mirror
MA and reaches another beam splitter BS2. Once again, it has probability 1/2 of
going on either direction, since it interacts only locally with BS2. In other words,
it cannot possibly have any information about the geometry of path B, or even
if it is not simply closed with the presence of a physical barrier. Therefore, the
probability of this particle reaching D1 is the same as D2, and it equals 1/2. The
same analysis can be applied to the photon going through arm B. Therefore, from
a particle point of view, pd1

= pd2
= 1/2. This is in stark contradiction with the

wave result.
In the standard interpretation of quantum mechanics, this contradiction is re-

solved by stating that one cannot simultaneously assign two complimentary proper-
ties to a quantum system. In the above case, we cannot assign the property of going
through path A or B (which is what happens if we have a particle). To be able to
say that a particle went through A or B, we need to actually place a detector DA

and DB in the paths. At the same time, if we place such detectors, we destroy the
wave-like behavior, and its associated probabilities at D1 and D2. If the detectors
simply destroy the particle, then we have obviously an impossibility in obtaining
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the joint probability distribution in a trivial way, as we can show by the following
simple example (which we also spell out in more detail below).

Let DX and DY be two detectors that absorb photons, and let us put DY at the
end of a source S that produces photons. So, if a photon is emitted, the probability
of observing it is pdy

= 1. However, if we put DX in between S and DY , we will
have that pdx

= 1 and pdy
= 0. The observable terms are the following.

pdxdy
= pdxdy

= pdxdy
= 0,

pdxdy
= 1.

But this leads to a contradiction, as

pdy
= 1 = pdxdy

+ pdxdy
= 0.

That contradiction comes from an obvious reason: we have different experiments,
and therefore the random variable DY representing a measurement in one experi-
ment cannot be the same as the DY in the other experiment. The assumption of
the existence of a joint distribution is equivalent to the assumption that both DY ’s
are the same.

In the Mach-Zehnder, an analogous case to the example above would be the
following. With the setup in Figure 4.1, we split the experiment into two types: de-
structive and non-destructive measurements. A destructive measurement happens
when the observed system is not available for any other measurements afterward.
For example, in many photodetection apparatuses, the photon is absorbed by the
device and ceases to exist. A non-destructive measurement is the one where the
system is available for later measurements. For each type of experiment, there are
four possible experimental conditions, which we label as Case 1 to Case 8. We start
with destructive measurements.

Case 1 (D1, D2 only): This case corresponds to the standard Mach-Zehnder
with no which-path information, since no detector is put on either arm of
the interferometer. Thus, a joint probability distribution exists for all the
random variables involved. When this is the case, we have that pd1d2

= 1
and pd1d2

= pd1d2
= pd1d2

= 0. Here pd1d2
and pd1d2

are set to zero almost
by definition, as we are considering cases where we have one and only one
photo-detection.

Case 2 (D1, D2, DA): In this case, if we have a detection on DA, we have
no detection on D1 and D2 (intuitively, the photon was absorbed by the
detector). On the other hand, if we have no detection on DA, D1 and
D2 are equiprobable, since the interference effects are destroyed by the
presence of a detection. Thus, pdad1d2

= pdad1d2
= pdad1d2

= pdad1d2
=

pdad1d2
= pdad1d2

= 0, and pdad1d2
= pdad1d2

= 1

2
.

Case 3 (D1, D2, DB): Similarly to Case 2 above, here pdbd1d2
= pdbd1d2

=

pdbd1d2
= pdbd1d2

= pdbd1d2
= pdbd1d2

= 0, and pdbd1d2
= pdbd1d2

= 1

2
.

Case 4 (D1, D2, DA, and DB): This simply tells us that we can only ob-
serve in A or B, but nowhere else, since the detectors in A and B de-
stroy the photon, not allowing it to reach D1 or D2. Then pdadbd1d2

=
pdadbd1d2

= pdadbd1d2
= pdadbd1d2

= 0, pdadbd1d2
= pdadbd1d2

= pdadbd1d2
=

0, pdadbd1d2
= pdadbd1d2

= pdadbd1d2
= 0, pdadbd1d2

= pdadbd1d2
= pdadbd1d2

=

pdadbd1d2
= 0, and pdadbd1d2

= pdadbd1d2
= 1

2
.
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It is easy to see that we have inconsistencies between the random variables for each
case, because Case 4 gives us a joint probability distribution for all observables that
is inconsistent with Case 1. This simply tells us that each experimental context
gives different distributions to the random variables, as the marginal expectations
are different for each experimental condition.

For the non-destructive measurement we have the following experimental out-
comes.

Case 5 (D1, D2 only): This is clearly identical to Case 1, where pd1d2
= 1

and pd1d2
= pd1d2

= pd1d2
= 0.

Case 6 (D1, D2, DA): In this case, if we have a detection on DA, but there
will also be a detection on either D1 or D2. Furthermore, regardless of
the outcomes on DA, detections on D1 and D2 are equiprobable, since the
interference effects are destroyed by the presence of a detection. Thus,
pdad1d2

= pdad1d2
= pdad1d2

= pdad1d2
= 0, and pdad1d2

= pdad1d2
=

pdad1d2
= pdad1d2

= 1

4
.

Case 7 (D1, D2, DB): Similarly to Case 2 above, here pdbd1d2
= pdbd1d2

=

pdbd1d2
= pdbd1d2

= 0, and pdbd1d2
= pdbd1d2

= pdbd1d2
= pdbd1d2

= 1

4
.

Case 8 (D1, D2, DA, and DB): This simply tells us that we can only ob-
serve in A or B, but nowhere else, since the detectors in A and B absorb
the photon, not letting it reach D1 or D2. Then pdadbd1d2

= pdadbd1d2
=

pdadbd1d2
= pdadbd1d2

= pdadbd1d2
= pdadbd1d2

= pdadbd1d2
= pdadbd1d2

=
pdadbd1d2

= pdadbd1d2
== pdadbd1d2

= pdadbd1d2
= 0, and pdadbd1d2

=

pdadbd1d2
= pdadbd1d2

= pdadbd1d2
= 1

4
.

As with the destructive measurements, we have inconsistencies between the two
complementary experimental conditions. This shows that which-path information
creates a context that is different from the one leading to interference. In other
words, the joint probabilities obtained in the non-destructive measurement are once
again incompatible with the marginals for the interference patterns contained in
Case 5.

In both types of experiments, described by Cases 1 through 8, the incompatibil-
ity of contexts is reflected in the non-existence of a joint (quasi) negative probability
distribution for all possible outcomes. This reflects the strong contextuality of each
setup, interference or which-path, leading to observables D1 and D2 that are con-
textuality biased. It is interesting at this point to notice that this would represent,
in a trivial way, a case where an experimenter could choose to observe or not DA or
DB, and such observation would change the probabilities in D1 and D2. Thus, in
a trivial sense, the observation of, say, DA or not could be used to signal another
experimenter at D1. Though this is not what is usually called signaling in the liter-
ature, as it does not involve any spacelike separations between a transmitter and a
receiver, it does clarify the relationship between the absence of contextual bias and
the no-signalling condition. To distinguish this, Kofler and Brukner (2013) coined
the term signaling in time, but here we use the term contextual measurement biases
suggested by Dzhafarov and Kujala (2014d). See Oas et al. (2014); Dzhafarov and
Kujala (2014d) for a somewhat more detailed discussion of this point, including the
relationship between the existence of probability distributions (including negative
ones) and signaling.
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Case 5-8 are equivalent to the spirit of Feynman’s discussions about the double-
slit in his 1987 paper, and has been experimentally realized by Scully et al. (1994).
Even though Scully et al. (1994) had access to the outcomes of Case 6, 7, and 8
to infer the joint probability distribution, they used counterfactual reasoning to
compute a negative probability distribution that was consistent with Case 5. To
do so, they had to discard certain measurements from their marginals, say, by
only looking at cases where no detection happened at detector B in case 7. Let
us examine the details of this counterfactual computations. First one needs to
determine what are the actual observable conditions that constrain the marginal
distributions. If we put detectors on both paths, we observe

(4.4) P (dadb) = 0,

(4.5) P (dadb) =
1

2
,

(4.6) P (dadb) =
1

2
,

and

(4.7) P (dadb) = 0,

which corresponds to having only one photon at a time.
Whenever we observe in detector D1 we do not observe in D2, and vice versa.

Furthermore, since we have a single photon, we never observe in both detectors or
in neither. Finally, interference requires that we only observe in D1. Therefore,

(4.8) P (d1d2) = 1

(4.9) P (d1d2) = P (d1d2) = P (d1d2) = 0.

Now for what Feynman considered the disturbing issue. If we put a detector in
arm A or B, from (4.4)-(4.7) we can “infer” that whenever we observe the particle
not being in A, then the particle must be (probability 1) in B. But when we block
the path, the probabilities are

(4.10) P (dad1d2) = P (dad1d2) =
1

2
,

and

(4.11) P (dbd1d2) = P (dbd1d2) =
1

2
.

The “disturbing” aspect comes from the nonmonotonicity of the above probabilities.
How can P (d1d2) = 0, according to (4.9), while P (dad1d2) = 1

2
, from (4.10), given

that dad1d2 is a proper subset of all events where d1d2?
Of course, this nonmonotonic property cannot be reproduced by Kolmogorov’s

axioms. To see this, let S1 and S2 be two sets in F such that S1 ⊆ S2 (as is the case
for S1 = {ωi ∈ Ω|D1 = −1,D2 = 1} and S2 = {ωi ∈ Ω|A = −1,D1 = −1,D2 = 1}
above). Then, we can construct a set S′

1 = S2\S1 such that S1 ∪ S′
1 = S2 and

S1∩S′
1 = ∅. From K3 we have that p (S1 ∪ S′

1) = p (S1)+p (S
′
1) = p (S2), and from

K1 we have at once that p (S1) ≤ p (S2) if S1 ⊆ S2, which is clearly violated by the
probabilities above. Notice that in order to prove monotonicity, we had to use the
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non-negativity axiom K1. However, since negative probabilities violate K1, they
may be nonmonotonic. For instance, from P (S1 ∪ S′

1) = P (S1) + P (S′
1) = p (S2),

it is possible to have P (S1) > P (S2) if P (S′
1) < 0.

Before we compute the joint (quasi) negative probabilities from the assumptions
above, let us examine in more detail (4.10) and (4.11). The fact that each add to
one corresponds to a selection of experiments where no detection happens on DA

or DB. In other words, we are only looking at a subset of all possible experimental
outcomes (essentially, this is equivalent to a postselection of data). In fact, we can
see that (4.10) and (4.11) are distinct from what one observes in Case 2 and Case 3
or Case 6 and Case 7, which, as we pointed out earlier, are incompatible with Case
1 or Case 5, respectively. In this restricted data set, the counterfactual reasoning
leads to a weaker context-dependency between variables, allowing for the existence
of a joint negative probability distribution, as we now show.

From (4.10) and (4.11) we obtain the following set of linear equations

(4.12) P
(

da · d1d2
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

=
1

2
,

(4.13) P
(

da · d1d2
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

=
1

2
,

(4.14) P
(

·dbd1d2
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

=
1

2
,

and

(4.15) P
(

·dbd1d2
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

=
1

2
.

From (4.8)–(4.9), we also obtain that
(4.16)
P (· · d1d2) = P (dadbd1d2) + P

(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

= 0,

(4.17)
P
(

· · d1d2
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

= 1,

(4.18)
P
(

· · d1d2
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

= 0,

(4.19)
P
(

· · d1d2
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

= 0.

Finally, (4.4)–(4.7) yields
(4.20)
P (dadb · ·) = P (dadbd1d2) + P

(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

= 0,

(4.21)

P
(

dadb · ·
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

=
1

2
,
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(4.22)

P
(

dadb · ·
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

=
1

2
,

(4.23)
P
(

dadb · ·
)

= P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

= 0.

As a last condition, from axiom N2, all probabilities of elementary events must add
to one, i.e.,

P (dadbd1d2) + P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+(4.24)

P
(

dadbd1d2
)

+ P
(

adbd1d2
)

+ P
(

adbd1d2
)

+ P
(

adbd1d2
)

+

P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+

P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

= 1

The general solution to the underdetermined (and not independent) system of equa-
tions (4.12)–(4.24) is
(4.25)

P (dadbd1d2) = α, P
(

dadbd1d2
)

= θ + 1

2
(δ − γ + β − α) ,

P
(

dadbd1d2
)

= − 1

2
− θ, P

(

dadbd1d2
)

= 1

2
+ 1

2
(−δ + γ − β − α),

P
(

dadbd1d2
)

= 1

2
(−δ − γ + β − α), P

(

dadbd1d2
)

= 1

2
− θ + 1

2
(−δ + γ − β + α)

P
(

dadbd1d2
)

= θ, P
(

dadbd1d2
)

= δ,

P
(

dabdbd1d2
)

= 1

2
(δ − γ − β − α), P

(

dadbd1d2
)

= 1

2
− θ + 1

2
(−δ + γ − β + α),

P
(

dadbd1d2
)

= θ, P
(

dadbd1d2
)

= β,

P
(

dadbd1d2
)

= γ, P
(

dadbd1d2
)

= θ + 1

2
(δ − γ + β − α),

P
(

dadbd1d2
)

= 1

2
− θ, P

(

dadbd1d2
)

= − 1

2
+ 1

2
(−δ − γ − β + α),

where α, β, γ, δ, and θ are arbitrary constants. It is clear from (4.25) that no
nonnegative solution exists for (4.12)–(4.24). Furthermore, because the system
is underdetermined, there are an infinite number of solutions that satisfy (4.12)–
(4.24). To find the negative probabilities, though, we need to minimize the L1
norm, M∗. Doing so for (4.25) is straightforward but tedious, and we can show
that such minimum happens when 0 ≤ α ≤ 1

2
, β = 0, δ = 0, θ = 0, and α = −γ.

This gives us the general solution minimizing M∗ as

(4.26) P (dadbd1d2) = α, P
(

dadbd1d2
)

= 0,

P
(

dadbd1d2
)

= − 1

2
, P

(

dadbd1d2
)

= 1

2
− α,

P
(

dadbd1d2
)

= 0, P
(

dadbd1d2
)

= 1

2
,

P
(

dadbd1d2
)

= 0, P
(

dadbd1d2
)

= 0,

P
(

dadbd1d2
)

= 0, P
(

dadbd1d2
)

= 1

2
,

P
(

dadbd1d2
)

= 0, P
(

dadbd1d2
)

= 0,

P
(

dadbd1d2
)

= −α, P
(

dadbd1d2
)

= 0,

P
(

dadbd1d2
)

= 1

2
, P

(

dabdbd1d2
)

= − 1

2
+ α,

0 ≤ α ≤ 1

2
, clearly showing that M∗ = 3. We should notice that this value of M∗ is

greater than the M∗ = 2 for the Bell-EPR case (Oas et al., 2014), perhaps already
suggesting that the double-slit is more contextual (see de Barros et al. (2014) for
a discussion of M∗ as a measure of contextuality). This stronger contextuality
probably comes from the use of triple moments in the Mach-Zehnder as opposed to
only pairwise two-moments in the case of the standard Bell-EPR setup.
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Now that we have a negative probability distribution, we can use it to compute
conditional probabilities based on the previous counterfactual assumptions. For
instance, a standard question is this: if a photon is detected on D1, what is the
probability that this photon went through A and B? Using

P (da|d1) =
1

N

[

P (dadbd1d2) + P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadad1d2
)]

,

where

N = P (dadbd1d2) + P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

,

and (4.26) we have that

P (da|d1) =
1

2
+ α,

and
1

2
≤ P (da|d1) ≤ 1.

Similarly,

P (db|d1) =
1

N

[

P (dadbd1d2) + P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)]

,

where

N = P (dadbdd2) + P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+P
(

dadbd1d2
)

+ P
(

dadbd1d2
)

+ P
(

dadbdd2
)

+ P
(

dadbd1d2
)

,

and we get

P (db|d1) =
1

2
+ α,

the same value we got for the conditional P (db|d1). For d2, the conditional prob-
ability is not defined, as the probability for d2 from the joint is zero. However, if
we set the interferometer such that the probability of d2 is not zero, but close to it,
then P (b|d2) can be shown to approach P (db|d2) = − 1

2
+α. If that is the case, it is

reasonable to assume that α = 1/2, such that we do not have negative probabilities
for db (conditioned on d2). If we do so, we reach the interesting conclusion that both
db and da have probability 1 given an observation on d1. In other words, if we use
the counterfactual reasoning from negative probabilities, we reach the conclusion,
as Feynman often said, that the particle goes through both paths simultaneously.

We now end this section with a discussion of some well-known uses of counterfac-
tual reasoning in quantum mechanics and their relationship to our discussion above.
First, it is worth mentioning that the famous Leggett and Garg (1985) setup can be
thought of as similar to our double-slit experiment (Kofler and Brukner, 2013). To
see this, we recall that in Leggett and Garg (LG), measurements in three distinct
times can coded by three ±1-valued random variables, say X, Y, and Z (Bac-
ciagaluppi, 2014; Dzhafarov and Kujala, 2014d; de Barros et al., 2014; Dzhafarov
and Kujala, 2014a). In an analogy with the double-slit, and following Kofler and
Brukner (2013), we can think of X as a measurement of position before BS1, Y as a
measurement of which path (say, with Y = 1 corresponding to A and Y = −1 to B),
and Z corresponding to a detection in either D1 (for Z = 1) or D2 (Z = −1). This
case would correspond to contextual bias, and would not include counterfactual
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reasoning. However, in the original LG paper, counterfactual reasoning happens
by not measuring Y, but instead making inferences about Y from an absence of
detection in one of the paths. As we mentioned above, such contextual bias is not
surprising, as the effect of measuring could be thought as interfering with the ex-
perimental conditions themselves. This is similar to what happens in our analysis
above.

Something analogous happens with the argument given by Scully et al. (1994).
In his paper, he talks about negative probabilities, and shows that they lead to
the interference between two possible modes. However, it is easy to see that the
negative probabilities so obtained are only existent because of the same type of
counterfactual reasoning shown above. That should be clear by the fact that,
in their experiment, the interference pattern is existent, and therefore we have
observational contextual bias, similar to the Leggett-Garg setup.

5. Final Remarks

In this paper we presented a proposed theory of negative probabilities that could
be used to describe non-monotonic reasoning. Such theory was shown to be equiva-
lent, in the case when a proper probability distribution exists, to the standard Kol-
mogorov probability, as the requirement of minimizing the total probability mass
leads to a Kolmogorovian distribution. Furthermore, in cases where no proper
joint probability exists, the minimization of the total negative mass is simply a
requirement that our quasi-probability distribution is as close to a proper one as
possible. Such minimization is similar to the requirement with upper probabilities
of minimizing the total sum of probabilities, which may exceed one.

We did not attempt to interpret negative probabilities, but instead took the
approach that they constitute a bookkeeping tool that meets a minimum rationality
criteria of minimization of the L1 probability norm. This criteria is perhaps not
without practical consequences. For instance, in de Barros (2014), we showed
that in certain cases where the pairwise correlations lead to contradictions, this
minimization results in constraints to the triple moments. In addition, in Oas
et al. (2014), it was shown that the minimized L1 norm is equivalent to the CHSH
parameter, S, as used in measures of non-locality (Cirel’son, 1980), specifically
M∗ = S/2. Finally, the L1 norm can be thought of as a measure of contextuality
for random variables, and is closely related to other measures of contextuality, at
least for three and four random-variables, and for more variables it suggests possible
different classifications for contextuality (de Barros et al., 2014).

Though the double-slit experiment is the archetypical in discussions of how quan-
tum mechanics leads to violation of the laws of probability or logic (Dalla Chiara
and Giuntini, 2014), it is not the simplest and most accessible example that con-
tains the key conceptual elements relevant to the subject. In fact, the Mach-Zehnder
interferometer, as we showed above, presents the same characteristics as the double-
slit experiment that are relevant to conceptual discussions of quantum mechanics,
without the complications associated with the details of continuous interference pat-
terns present in the double-slit. For that reason, in our discussion of the double-slit
experiment in terms of negative probabilities, we resorted to the simpler case of the
Mach-Zehnder interferometer. As we saw, the Mach-Zehnder interferometer allows
us to talk about the features of double-slit experiment in terms of discrete random
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variables, which tremendously reduce the mathematical complexity without loosing
any conceptual generality.

As we showed, the two possible setups for the Mach-Zehnder interferometer,
one with which-path information and another with interference, present contextual
biases. This has, as a consequence, the non-existence of a joint negative (quasi)
probability distribution consistent with all observations of the two Mach-Zehnder
interferometer setups. This clearly corresponds to two different experimental con-
texts, and not only does a joint probability consistent with both contexts not exist,
but no negative joint distribution exists either. This type of system, where contex-
tuality comes from contextual biases, exhibit what one could think of as stronger
contextuality than other systems, such as EPR.

This stronger contextuality may be what is reflected in the large values of M∗

for the two slits, but such a connection has not been studied in detail. In fact, it is
interesting to notice that the large values of M∗ is associated to a set of observables
that do not provide a complete picture of the experimental conditions, as it relies
on counterfactuals. Perhaps there is a connection between large M∗ for a restricted
set of observables and contextual biases for an extended set, which could provide
an interesting criteria for contextual biases. Notice that, as mentioned in Section
4, contextual biases are equivalent to the violation of the no-signaling condition in
multipartite systems.

Finally, we would like to comment on Feynman’s (1987) discussion of the double-
slit experiment. In this paper, he argues that the non-monotonic character of quan-
tum probabilities could be represented by non-observable negative probabilities. He
then goes on and constructs (in a very informal way) a possible negative proba-
bility that could explain the outcomes of the experiment. However, as we pointed
out above, negative probabilities consistent with the outcomes of the double-slit
experiment are impossible, unless we make use of certain specific counterfactual
reasoning. It is interesting to note that in his actual experimental realization of
Feynman’s double-slit experiment, Scully et al. (1994) construct a negative proba-
bility distribution, and their probabilities rely exactly on the type of counterfactual
reasoning used above. Were they to try and construct a negative probability from
the full range of experimental data, they would not be able to do so. A similar case
is present in the LG experiment also discussed above.
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