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Contextuality, the impossibility of assigning a single random variable to
represent the outcomes of the same measurement procedure under differ-
ent experimental conditions, is a central aspect of quantum mechanics.
Thus defined, it appears in well-known cases in quantum mechanics,
such as the double-slit experiment, the Bell-EPR experiment, and the
Kochen-Specker theorem. Here we examine contextuality in such cases,
and discuss how each of them bring different conceptual issues when
applied to quantum cognition. We then focus on the shortcomings of
using quantum probabilities to describe social systems, and explain how
negative quasi-probability distributions may address such limitations.

1. Introduction

Contextuality is defined as the impossibility of assigning a single random

variable to represent the outcomes of a measurement under different ex-

perimental conditions (thought of as contexts) [1–5]. More precisely, say

you have a series of experimental conditions where you measure a prop-

erty P , whose outcome (out of several runs) is represented by the ran-

dom variable P. Imagine that, for one of those conditions, P is measured

together with other properties A1, A2, . . . , An (whose outcomes are also

1
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represented by random variables A1,A2, . . . ,An), but also imagine that,

for another condition, P is measured with B1, B2, . . . , Bn′ , and finally as-

sume that it is not possible to create an experiment where all properties

P,A1, A2, . . . , An, B1, B2, . . . , Bn′ are measured simultaneously. Contextu-

ality, as defined informally above, is thus the impossibility of finding a

probability space (Ω,F , p) for P,A1, . . . ,An,B1, . . . ,Bn′ compatible with

the distributions observed experimentally.

As an example, take a simple situation where we have three proper-

ties X, Y , and Z corresponding to true or false statements. Observing

such properties is modeled by ±1-valued random variables, X, Y, and Z.

Assume now that we only observe two properties at a time, but never all

three together. Assume additionally that they are seen as perfectly anti-

correlated to each other for each experimental condition, i.e.

E (XY) = E (XZ) = E (YZ) = −1. (1)

Clearly no probability space giving those correlations exists, since a ω ∈ Ω

giving X (ω) = 1 implies, from the first and second expectations in (1),

Y (ω) = −1 and Z (ω) = −1, which contradicts the third expectation.

However, if we relabel the variables, in the spirit of References [3, 6–9],

making the fact that they were measured in a pairwise way explicit, it is

possible to construct a (Ω,F , p). For instance, if we have a new set of

random variables XY, XZ, YX, YZ, ZX, and ZY, such that correlations

in (1) are now

E (XYYX) = E (XZZX) = E (YZZY) = −1, (2)

the sampling of an ω ∈ Ω leads to no contradictions. It is straightforward

that the contradiction from (1) comes from assuming that the value of, say,

X when measured with Y is the same as its value when measured with

Z, i.e., it does not depend on the experimental context provided by the

simultaneous measurement of the pairs.

Contextuality as defined here is ubiquitous in quantum mechanics, and

may be at the heart of what defines quantum systems, as opposed to classi-

cal ones (see [10] in this volume). Examples of contextual quantum systems,

some of them discussed in more details in Section 2, are successive mea-

surements of spin [6, 11], the double-slit experiment [12], the Leggett-Garg

experiment [13], the EPR-Bell experiment [14, 15], and the Kochen-Specker

system of observables [16]. So, it should come as no surprise that the math-

ematical formalism developed to describe quantum systems is suitable to

describe (at least certain) contextual systems.
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It is perhaps for this reason that such formalism was successfully applied

to social systems with a certain degree of success [17, 18]. Social systems,

because of their contextuality, lack a joint probability distribution, and

the contextual calculus of probability of quantum mechanics seems to offer

a suitable framework for situations in which standard probability theory

fails. For example, Savage’s famous Sure-Thing-Principle (STP) [19], a

consequence of classical probability theory, are violated by human decision-

makers [20, 21]. Khrennikov and Haven [22] applied principles of quantum

interference and showed that certain superpositions of quantum-like states

representing mental processes could be used to describe the experimentally

verified violation of STP.

So, it is possible the relationship between quantum mechanics, its for-

malism, and social phenomena goes beyond a simple analogy, but points to

a deeper relationship between the Hilbert space formalism and the descrip-

tion of determinate contextual systems. However, arguments exist that

certain social processes may not be describable by the quantum formal-

ism [23–25], but instead by other contextual probability theories. Be that

as it may, given the increasing importance of the quantum formalism in

the social sciences [17, 18, 26], we believe that a distinction of the different

quantum process that exhibit contextuality should be fruitful. Here we an-

alyze three different quantum systems that are contextual, and show that

each have contextuality that present different conceptual features.

This paper is organized the following way. First, in Section 2, we exam-

ine contextuality in quantum mechanics, starting with the famous double-

slit experiment, and then moving to the Bell-EPR experiment and the

Kochen-Specker theorem. In Section 3, we discuss contextuality in quan-

tum cognition, and how it relates to the examples discussed from physics.

Finally, in Section 4 we present a particular alternative model of extended

probabilities that is suitable for some of the situations discussed in quantum

cognition.

2. Contextuality in QM

A fundamental question in physics is what makes quantum systems different

from classical ones (see our other contribution to this volume [10]). At the

bottom of it seems to be the apparent impossibility of describing quantum

systems in terms of concepts from classical physics, such as particles and

fields.

In the early days of the quantum revolution, physicists attempted to
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describe the microscopic phenomena observed in terms of what we know

nowadays as classical ideas. But soon many realized that causality, one

of the main tenets of classical physics, was not compatible with the quan-

tum world. For instance, Rutherford’s radioactive decay formula was seen

as corresponding to a memoryless Poissonian process, and that therefore

atoms who were about to decay had the same state as those whose decay

would happen much later. Subsequently, shortly after Bohr published his

theory explaining the spectrum of the Hydrogen atom, Rutherford himself

remarked that Bohr’s theory had a problem with causality [27]. Classi-

cal physics, a causal theoretical structure with its description in terms of

phase-space states and Hamiltonian dynamics, was thought to not be able

to account for what were essentially probabilistic processes. As such, the

unavoidable probabilistic character of quantum mechanics became a topic

of intense discussion and research.

Connected to this discussion was the idea that quantum probabilities

could have their origins in the impossibility of simultaneously observing two

complementary quantities, such as momentum and position of a particle.

For instance, for Heisenberg, a measurement of position would cause a

random disturbance on the momentum in such a way that knowing the

position of a particle at a time t0 would make a prediction of its position at

time t > t0 an impossible task. This perspective evolved into a viewpoint

some physicists put forth that two incompatible properties could not exist

at the same time, brought about by the discovery of the spatial quantization

(spin).

To see this, imagine that spin is represented by a three-dimensional

vector random variable µ (ω) (here we follow [6]). If a measurement of spin,

say, in the direction ẑ, simply reveals the value of such random variable in

such direction, without disturbing it, then its result would be µ · ẑ, which

experimentally can take only values ±1 (here we use units where ~/2 = 1).

However, there is nothing special about the direction ẑ: the Stern-Gerlach

(SG) apparatus measuring spin could be pointing in any direction of our

choice. Let us assume two other possible measurement directions, ê1 and

ê2, such that they are each at 120 degrees from each other, i.e.

ẑ + ê1 + ê2 = 0. (3)

Since any direction of the SG apparatus will result in quantized spin (we

assume the source is a proper mixture), we have at once that µ · ẑ, µ · ê1,

and µ · ê2 have values ±1. But

µ (ω) · ẑ + µ (ω) · ê1 + µ (ω) · ê2 = µ · (ẑ + ê1 + ê2) , (4)
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and we reach an apparent contradiction, since the left hand side can only

take values ±3,±1 but the right hand side is zero because of (3). It is

clear that the contradiction comes from the assumption that the ω for each

experiment (for the three different directions) is the same, since this is what

is required to go from the left to the right hand side of (4). Thus, if we

assume that spin µ (ω) exists before the measurement, the act of measuring

it in one direction, say x̂, changes it to a new µ (ω), and the process of

measurement does not “reveal” the actual state, but instead changes it to a

new state with different properties from the original one. The relationship

between µ and ω ∈ Ω can be thought as a hidden variable theory of the

outcomes of spin, using the terminology of physics [28], and the dependency

of ω on the experimental setup makes this theory contextual. So, even in

the simple case of having consecutive measurements of spin, we see the

impossibility of treating outcomes of experiments as context-independent.

But perhaps the best-known example of contextuality (again, in the

sense used above) in quantum mechanics is the famous double-slit exper-

iment [12]. In classical physics, the double-slit experiment, attributed to

Thomas Young [29], was used to demonstrate interference, thus “falsifying”

the corpuscular theory of Newton and supporting the wave theory of light.

In it, light impinges on a barrier where two small and parallel slits are cut,

allowing a small amount of the light to go through and reach a screen at

the other side (see Figure 1). Because of its wave character, an interference

Fig. 1. Double-slit experiment. A source on the left sends light onto a barrier with two

slits cut close to each other. An interference pattern appears on the screen to the right.

pattern emerges at the screen, due to differences of phase at each screen

location in a way consistent with the geometry of the setup. This interfer-

ence pattern seems to be incompatible with the Newtonian particle theory

of light, since particles arriving at a point on the screen did not interact

with both slits, and therefore a concept of phase difference for particles

would be meaningless.
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In its quantum mechanical version, the double slit needs to be examined

in a new light (no pun intended). As is well-known, Einstein used the

notion that light was made of particles to explain the photo-electric effect,

and evidenced mounted in the early days that light was actually made

of particles, called photons [27]. But if light is made of particles, what

should we conclude from Young’s experiment? An initial hypothesis was

that interference was a collective effect of many photons, similar to sound

waves being a collective effect of many atoms. However, this idea showed

to be inconsistent with experiments where the light intensity was so low

that effectively only one photon at a time was present between the slits

and the screen (or photographic plate, in this case). So, photons seem

to present self-interference, a quite mysterious property. In fact, in his

famous Lectures on Physics, Richard Feynman stated that the double-slit

experiment contained the “only mystery” of quantum mechanics [30].

To see how the double-slit experiment provides contextuality, let us

examine it in a simplified version. In the double-slit experiment, photons

are detected on a screen, thus providing a continuum of locations, with

a corresponding complicated mathematical description (see [31, 32] and

references therein). But what makes the double slit mysterious to Feynman

are interference effects, and interference can be studied without resorting to

such continuum, in a setup called the Mach-Zehnder interferometer (MZI).

So, here we analyze in more detail the contextuality of quantum systems

in the MZI.

In the MZI, a light source is directed toward a beam splitter that divides

the beam into two distinct beams of equal intensity (see Figure 2). Beam

splitters have the important characteristic that light beams reflected by

them are phase-shifted by π/2, whereas the beam’s phase going through

is not affected, and therefore a π/2 phase difference exists between beams

in arm A and B of Figure 2. After the first beam splitter, some mirrors

redirect the beams to another beam splitter, and the beams are recombined,

adding once again a π/2 phase to the reflected beam. Mathematically, we

can describe each beam impinging on the second BS with a sine function

ψA =
A

2
sinωt,

ψB =
A

2
sin
(
ωt+

π

2

)
=
A

2
cosωt,

where A is the amplitude of the source S and ω its frequency. After the
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Fig. 2. Mach Zehnder Interferometer (MZI). A light source S sends a light beam that
impinges on the first beam splitter BS. The beam is them divided by BS into equal-

intensity beams that travel to both arms (paths) A and B of the interferometer, reflecting

on mirrors MA and MB , respectively. The beams from arms A and B are then recom-
bined in the second beam splitter. The outcomes are the two beams detected at D1 and

D2.

second beam splitter, we have

ψD1 =
A

2
sin
(
ωt+

π

2

)
+
A

2
cosωt

= A,

ψD2
=
A

2
sinωt+

A

2
cos
(
ωt+

π

2

)
= 0.

We then see the main characteristic of the MZI: interference effects give a

zero amplitude at D1 and amplitude A at D2. We remark that there is

an underlying assumption in our derivation above, namely that the length

of the interferometer arms A and B were exactly the same. Were they

any different, and the phase relations would not match exactly, interference

would not be perfect as above (with 0 and A amplitudes)a.

The above description is the classical one for light waves. But what

aThat is why interferometers are very useful for measuring distances accurately.
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happens if we have classical (non-quantum) particles in a similar setup to

the MZI? Imagine we send one particle at a time through the MZI. Since

no concept of phase or phase relation exists for a classical particle, the first

beam splitter would simply reflect it to A or B, with probability 1/2 to go

to A and 1/2 to B. Once in the second beam splitter, the particle (coming

from either A or B) would be randomly sent to either detector. Thus, for

classical particles we should expect probability 1/2 of observing the particle

in D1 or D2 (but never on both detectors!).

Now, what to make of the MZI for quantum particles? If we send a

single photon through a MZI, a photodetector placed on either arm of it

will reveal the characteristic of a particle: a click on either A or B, but

never both. Furthermore, if a photodetector is placed on either A or B, the

outcomes of a measurement on D1 and D2 are exactly what we expect from

a particle: the photon shows up on each of those detectors with probability

1/2. However, if no detectors are placed on A or B, the photon shows zero

probability of detection on D2 and probability 1 on D1. In other words, in

the absence of detectors on A or B, the photon behaves as if it were a wave,

carrying information about the relative phases of the MZI’s geometry.

The disturbing aspects of this wave/particle duality for photons has

been discussed at length for almost one hundred years, and the interested

readers are referred to the many excellent sources (we can particularly rec-

ommend the historical account found in Abraham Pais’s volume [27]). Here

we focus only on the contextual aspects of it. To see them, we start with

two ±1-valued random variables, P and D, representing the which-path

information and detection, respectively. P is defined such that P = 1 if the

particle is detected on A and −1 otherwise, whereas D is defined such that

D = 1 if the photon was detected in D1 and −1 if detected in D2.

We have for the MZI two different experimental conditions: one in which

no detector is placed on A or B and another where a detector is placed on

either A or B (or both), thus yielding which-path information encoded in

the outcomes of P. Measuring D under the no-which-path condition results

in E (D) = 1, whereas measuring it together with P gives as marginal

expectation the result E (D) = 0. Thus, according to the above definition

of contextuality, the random variable D is contextualb.

The double-slit experiment provides a dramatic type of contextuality,

bDzhafarov and Kujala refer to this type of strong contextuality as direct influences,
meaning that the measurement of P directly influences the outcomes of random variable

D [8, 9]. They, on the other hand, reserve the label contextual to refer to other cases

where the influences of P over D cannot be accounted for by direct influences.
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but it is not as surprising as Feynman makes it seem. In fact, not only can

we “solve” the mystery of quantum mechanics for this case, if we were to

accept a (contextual) hidden-variable theory such as Bohm’s [33, 34]c, but

we can also clearly understand the possibility of a direct influence from P

to D. In fact, that is exactly what Heisenberg tried to do with his analysis

of the wave/particle duality in the double-slit experiment by using what is

now known as the Heisenberg microscope [35]. Thus, even though it has

at its core one of the main characteristics of QM, i.e. the interference of

particles, it is far from containing its only mystery.

Perhaps a deeper mystery comes from a variation in the experiment

proposed by Einstein, Podolsky, and Rosen’s seminal 1935 paper on the

completeness of quantum mechanics [14], now simply known as EPR. In

Bohm’s version of the EPR argument [15], two correlated photonsd in the

state

|ψ〉 =
1√
2

(|+ +〉+ | − −〉) , (5)

where | + +〉 corresponds to the state where both photons have vertical

polarization and | − −〉 horizontal, are sent in two different directions. In

one direction, an experimenter, Alice, chooses whether to measure the linear

polarization of the photon or not, and if she does, she either observes + or

− (see Figure 3). In the other direction, Bob can also measure polarization

A A' B B'

Alice BobSource

Fig. 3. Bell-EPR experiment. A source emits two photons, one toward Alice’s lab and

another toward Bob’s. Each experimenter can make a decision on which direction of
spin to measure, represented in the figure by the settings A and A′ for Alice and B and

B′ for Bob. Outcomes of measurements are ±1, with equal probabilities.

in the same direction as Alice. However, if Alice already did, Bob does not

need to, because if Alice measures − Bob knows for sure that the photon

getting to him will also be − (due to the correlations contained in the state

(5)).
cSuch hidden variable theory provides a mechanism that accounts for the experimental

outcomes of the double-slit experiment. As expected, Bohm’s theory cited here is a
contextual theory, in the sense that the hidden variable needs to be context-dependent.
dBohm’s version actually used spin 1/2 particles, not photons, but for our purposes we

can use photons.
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Up to now there is no mystery from the correlated outcomes of Alice

and Bob. What we know is that for state (5) the outcomes of experiments

for Alice are the same as for Bob’s. But that, according to EPR, presents

a problem for QM, since Alice and Bob can perform their measurements

as far away from each other as possible. If they do, argue EPR, then it is

possible to determine the value of the spin for Bob’s particle, say, without

ever affecting its state, since all we need to do is use Alice’s value. Alice’s

measurement does not affect the state at Bob’s because special relativity

forbids faster-than-light interactions. So, continue EPR, the values of the

polarization for both particles must come from some state of the system

that is not represented in |ψ〉, and therefore the QM description of nature

is incomplete.

A theory that completes QM, in the sense given by EPR, is called a

hidden-variable theory, and it so happens that (local) hidden-variable the-

ories are not compatible with the predictions of QM. The first person to

point out an empirical incompatibility between QM and (local) hidden vari-

able theories was John Bell. In a seminal paper [36], Bell derived a set

of inequalities that were necessary for local hidden variable theories, and

proceeded to show that for certain quantum states those inequalities were

violated. More than a decade later, Aspect, Grangier, and Gérard [37]

showed, in a tour de force experiment where for the first time correlations

between spacelike separated events were recorded, that the quantum me-

chanical predictions were correct.

To understand Bell’s results, let us examine the setup he discussed. It

can be shown that a hidden-variable λ explaining the experimental out-

comes of polarization for Alice and Bob exists if and only if a joint prob-

ability distribution exits for all possible outcomes [38, 39]. To show that

a hidden-variable theory is not compatible with QM, we need to show an

QM example that does not allow a joint probability distribution. However,

this setup needs to have some constraints, since we saw that the double-slit

experiment does not have a joint probability but is also compatible with

a (contextual) hidden-variable theory. A suggestion for this constraint is

present in EPR’s example: the outcomes of a variable A cannot be (su-

perluminally) influenced by what happens at another far away location. In

other words, from EPR’s point of view relativity theory is incompatible

with events that are contextual and spacelike separated.

We now proceed to show Bell’s argument and setup. Imagine that we

have now two possible experimental (and incompatible) measurements of

polarization for Alice in two different directions, and the same for Bob (not
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necessarily the same directions as Alice). Let us represent the outcomes

of measurements with ±1-valued random variables, namely A and A′ for

both of Alice’s directions, and B and B′ for Bob’s (see Figure 3). We can

construct a random variable S defined simply by

S = AB + A′B + AB′ −A′B′. (6)

If a joint probability exists, for each ω ∈ Ω there are associated outcomes for

A, A′, B, and B′ and a corresponding probability. Since A, A′, B, and B′

are ±1-valued random variables, it follows that for all possible combinations

of values for A, A′, B, and B′ the value of S is either 2 or −2 (for example,

if A = 1, A′ = −1, B = −1, and B′ = 1, then S = −1 + 1 + 1 + 1 = 2).

Therefore, the expected value of S must be a number between −2 and 2,

i.e.

−2 ≤ 〈AB〉+ 〈A′B〉+ 〈AB′〉 − 〈A′B′〉 ≤ 2. (7)

This inequality is one of the Clauser-Horne-Shimony-Holt (CHSH) inequal-

ities [40] (the others are obtained simply by moving the “−” sign in (6) to

other terms), and a joint probability distribution exits if and only if they

are satisfied [41]. It is possible to show that, for a proper choice of angles

of measurement for Alice and Bob, their observed correlations result in an

〈S〉 = 2
√

2, which violates (7). Therefore, no joint probability distribution

exists, and as consequence, no hidden-variable theory exists that explains

the correlations between the observables. Furthermore, because no joint

exists, the assumption that an A under experimental condition where it is

measured together with B (as in 〈AB〉) is the same as when it is measured

with B′ is not correct: the system A, A′, B, and B′ is contextual.

It is hard to overplay the importance of Bell’s results. For example,

Henry Stapp famously stated it to be “the most profound discovery of sci-

ence” [42]. The reason is that Bell’s theorem clearly shows that far away

measurements indeed affect the outcomes of a nearby measurement for en-

tangled systems. In other words, quantum mechanics is non-local, which

seems to be incompatible with the principles behind relativity [43]. Further-

more, both quantum mechanics and relativity are tremendously successful

theories, from an empirical point of view.

As we saw, Bell’s setup differs significantly from the double-slit experi-

ment. First, it does not allow for direct influences between the observable

quantities, which if allowed would be in direct conflict with special rela-

tivity. Instead, the absence of a joint probability distribution (and there-

fore of a non-contextual hidden-variable theory) comes from the non-trivial
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correlations imposed by QM (and experimental observations). But, more

importantly, Bell’s setup provides a case where a system with two (or more)

parts can have such non-trivial correlations even when the measurements

of those parts are spacelike separated.

We end this section with one last example of contextuality, the Kochen-

Specker paradigm [16]. In quantum mechanics, projection operatorse con-

stitute the “simplest” type of measurement possible. For example, for a

spin 1/2 particle, its Hilbert space is two dimensional. In this Hilbert

space, the projector Pz = |+〉〈+| is an observable with eigenvalues 0 and 1,

corresponding to not having and having the property “spin + in direction

ẑ.” So, projection operators correspond to measurements whose outcomes

tell you whether the system has the property measured (0) or not (1).

In their paper, Kochen and Specker asked whether it is possible to assign

values 0 or 1 to projection operators in a way that is consistent. To show

that this is not possible, they used a Hilbert space of dimension three and

a total of 117 projectors. However, to understand how their results come

about, we show here a simpler version of 18 projectors in a four dimensional

Hilbert space, due to Cabello, Estebaranz, and Alcaine [44]. In this version,

we have the set of projection operators Pi with corresponding dicotomic

random variables Vi taking values 0 or 1 depending on whether the property

is false or truef . The index i in Pi corresponds to a vector in the four

dimensional space where Pi projects onto. Below is a list of combinations

of random variables, and we see that each line corresponds to a set of

projectors that commute, and can therefore be measured simultaneously,

though this is not true for projectors in different lines.

eA Hermitian operator P is a projection operator if P 2 = P .
fTechnically, it is not necessary to use random variables, since the Kochen-Specker ex-
ample uses deterministic (probability one) events. The use of random variables ex-

tends this setup to more realistic situations, where probability one events are never

observed [45, 46].
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V0,0,0,1 + V0,0,1,0 + V1,1,0,0 + V1,−1,0,0 = 1,

V0,0,0,1 + V0,1,0,0 + V1,0,1,0 + V1,0,−1,0 = 1,

V1,−1,1,−1 + V1,−1,−1,1 + V1,1,0,0 + V0,0,1,1 = 1,

V1,−1,1,−1 + V1,1,1,1 + V1,0,−1,0 + V0,1,0,−1 = 1,

V0,0,1,0 + V0,1,0,0 + V1,0,0,1 + V1,0,0,−1 = 1,

V1,−1,−1,1 + V1,1,1,1 + V1,0,0,−1 + V0,1,−1,0 = 1,

V1,1,−1,1 + V1,1,1,−1 + V1,−1,0,0 + V0,0,1,1 = 1,

V1,1,−1,1 + V−1,1,1,1 + V1,0,1,0 + V0,1,0,−1 = 1,

V1,1,1,−1 + V−1,1,1,1 + V1,0,0,1 + V0,1,−1,0 = 1.

Now, since Vi is either 0 or 1, we can sum all the random variables on the

left hand side of the previous set of equations, and because each random

variable appears exactly twice, this must be an even number. However,

because we have only 9 equations, the sum of the right hand side yields an

odd number. This is clearly a contradiction, and as with the spin case at

the beginning, the problem comes from identifying a random variable (say,

V0,0,0,1) in a given experimental context (say, when measured together

with V0,0,1,0, V1,1,0,0, V1,−1,0,0, as in line one) with the same variable in a

different experimental context (in our example, V0,1,0,0, V1,0,1,0, V1,0,−1,0,

as in line two). In other words, the Kochen-Specker theorem shows that

the algebra of observables in QM is such that it is impossible to assign non-

contextual values to certain properties of a system, independent of what

the system is.

To summarize, in this section we presented several different examples

of contextual quantum systems, per our definition of contextuality. We see

that each example presents its own subtle issues. In the double-slit exper-

iment, contextuality comes mainly from direct influences on the detection

random variable due to a measurement that leads to which-path informa-

tiong. The direct influence arises from the choice of successively measuring

incompatible observables, D and P . In one case, observable D is measured

first (i.e., without P ), and the wave function arriving to it leads to interfer-

ence. In the other case, P is measured first, collapsing the wave function,

and leading to a different quantum state reaching D. So, P directly influ-

gThough direct influences may not account for the totality of contextual effects. See [47]

for an example in the context of the Leggett-Garg experiment, which is formally related
to the double-slit experiment.
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ences D. To distinguish it from the other cases, we call this contextuality

by direct influences.

In the Bell-EPR experiment, direct influences are forbidden by special

relativity, and are not observed. Because two observables, say A and B′,

commute, the changes to the wave function made by A do not affect the

outcomes of B′. However, the correlations between A and B′ are affected

by their simultaneous measurement. So, the most striking feature of Bell’s

setup was the contextual dependency of outcomes of experiments in systems

that are spacelike separated, suggesting some type of superluminal influence

[43], or, as Einstein called it, “spukhafte Fernwirkung” (spooky action at

a distance). The contextuality for observables that are spacelike separated

are called nonlocal contextuality, or simply nonlocality .

Finally, the Kochen-Specker theorem showed that the algebra of ob-

servables is such that the random variables representing the outcomes of

any state of a measurable experimental system will present contextuality.

This is a fact that comes simply from the observables themselves and, con-

trary to the Bell-EPR experiment, which requires an entangled state, has

nothing to do with the state of the system being measured (i.e., is state

independent). Consistently with the physics literature, we refer to this as

state-independent contextuality or simply contextuality.

We emphasize that all the physical systems discussed here satisfy the

criteria of contextuality put forth in the Introduction. From a device in-

dependent framework [48, 49], where experiments involve black boxes with

local inputs (settings for a measurement) and outputs (measurement out-

comes), we look only at random variables. Then, in this framework, the two

types of contextuality would be contextuality by direct influences and con-

textuality not by direct influences. So, the double-slit experiment would

fall into the category of contextuality by direct influences, whereas both

Bell-EPR and Kochen-Specker would be contextual not by direct influ-

ences. The distinction between Bell-EPR and Kochen-Specker (i.e., local

vs. nonlocal, state-dependent vs. state-independent) is based on physical

principles, and not on probabilistic principles alone.

We saw that exemplary physical systems exhibit contextuality, but from

a physical point of view their contextuality is different. This leads to the

definition of at least three types of contextuality: contextuality by direct

influences, non-locality, and state-independent contextuality. In the next

section we examine quantum cognition, and discuss how quantum contex-

tuality shows up in them.
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3. Contextuality in quantum cognition

In this section we will examine some examples from the burgeoning field

of quantum cognition. Quantum cognition is the use of the mathematical

formalism of quantum mechanics to model cognitive processes. As such, it

should not be confused with the idea that in order to describe cognition

(or consciousness) we need to use quantum mechanics, as is espoused by

Penrose and Hammerof [50–52], or by Stapp [53–56], among others. To

researchers in quantum cognition, the quantum comes from the use of the

contextual probability theory given by the Hilbert space formalism to de-

scribe cognitive systems, but the underlying processes that govern it can

be classical [57–59].

This section is not intended to be an exhaustive review of this field,

but instead to provide an example to illustrate some of the main features

of quantum cognition models. Quantum models were used to model the

conjunction and disjunction paradoxes [60–63], the Ellsberg paradox [22,

64, 65], order effects [66–68], similarity effects [69], and the Guppy effect

[70, 71], to name a few. The interested reader is referred to many of the

useful reviews on the subject, such as Khrennikov [26], Busemeyer and

Bruza [17], Khrennikov and Haven [18], and Ashtiani and Azgomi [72].

We focus on one of the first applications of the quantum formalism, the

modeling of the violation of Savage’s Sure-Thing Principle (STP). Simply

put, Savage’s STP states that if a person holds the subjective view that A

is preferred over ¬A if B is trueh, but is also preferred if B is false, then A

should be preferred regardless of whether the person knows which is true, B

or ¬B. In Savage’s own words [19, pg. 21], “A businessman contemplates

buying a certain piece of property. He considers the outcome of the next

presidential election relevant to the attractiveness of the purchase. So, to

clarify the matter for himself, he asks whether he should buy if he knew

that the Republican candidate were going to win, and decides that he would

do so. Similarly, he considers whether he would buy if he knew that the

Democratic candidate were going to win, and again finds that he would do

so. Seeing that he would buy in either event, he decides that he should buy,

even though he does not know which event obtains, or will obtain, as we

would ordinarily say. It is all too seldom that a decision can be arrived at on

the basis of the principle used by this businessman, but, except possibly for

the assumption of simple ordering, I know of no other extralogical principle

governing decisions that finds such ready acceptance.” Formally, let us

hThe notation ¬A means “not A.”
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imagine a ±1-valued random variable A (A = 1 is buy and A = −1 is not

buy), and let another ±1-valued variable B be 1 if a Democrat wins −1 if

a Republican wins. If A = 1 is preferred over A = −1 when B = 1 and

also when B = −1, then A = 1 is always preferred.

Even though most people would agree with Savage that his principle

“finds such ready acceptance,” in some experimental conditions, human

decision makers violate it. For example, in Tversky and Shafir’s 1992 paper

[20], participants were told about a two-step gamble. In the first step, which

was compulsory for all players, there was a 50/50 probability of winning

$200 or loosing $100. The second step was not compulsory, and the person

could choose whether or not to make a second gamble with the same odds

and payoffs. After winning the first bet, 69% of participants chose to place

a second gamble, and after loosing 59% also chose to gamble a second time.

In terms of probabilities, we have

P (“gamble again”|“won”) = 0.69 > P (“not gamble again”|“won”) = 0.31,

P (“gamble again”|“lost”) = 0.59 > P (“not gamble again”|“lost”) = 0.41.

Since “gamble again” is preferred over “not gamble again” for both situ-

ations, “won” or “lost” the first step, STP tells us that “gamble again”

should be preferred over “not gamble again.” However, in a later time, the

same participants were asked about the second gamble, but this time they

were not told whether they won or lost the first step. Under this unknown

condition, 64% of the participants rejected the second gamble. But this

corresponds to

P (“gamble again”) = 0.36 < P (“not gamble again”) = 0.64,

a clear violation of the STP.

Violations of STP are violations of the standard calculus of probabil-

ity. To see this, imagine you have two sets, A and B, and we define the

conditional probability of A given B as

P (A|B) =
P (A ∩B)

P (B)
,

for P (B) 6= 0. In this notation, the STP conditions are equivalent to

P (A ∩B) > P
(
A ∩B

)
, P

(
A ∩B

)
> P

(
A ∩B

)
, (8)

where A denotes the complement of A. But from the calculus of probability,

P (A ∩B) + P
(
A ∩B

)
= P (A)
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and

P
(
A ∩B

)
+ P

(
A ∩B

)
= P

(
A
)
,

and adding each term in (8) we obtain

P (A) > P
(
A
)
.

Notice that the violation of the law of probabilities happens because we

assume there is a joint probability distribution for A and B, which of course

in this case is clear there should be, since we are dealing with the conditional

probability of A given B as something given subjectively by the decision

maker.

How can we model such violations of classical probability theory with

a quantum formalism? The answer to this particular case is given by the

quantum description of the double-slit experiment [22, 63, 70] in the MZI

paradigm. In the MZI, let us have the statement “detector D1 is preferred

over D2” as corresponding to a higher probability of detecting a particle in

D1 instead of D2. In the notation of Section 2, this corresponds to

p (D = 1) > p (D = −1) . (9)

The which-path information is given by P, and for the MZI we have

p (D = 1|P = 1) = p (D = −1|P = 1)

= p (D = 1|P = −1)

= p (D = −1|P = −1)

=
1

2
.

Similarly to violations of STP, because of the symmetry of the probabilitiesi,

we have no reason to prefer D = 1 over D = −1 or vice versa, as from

the symmetry and classical probability theory we have that p (D = 1) =

p (D = −1), in disagreement with (9). So, to model a violation of STP for

human decision makers, all we need to do is map the MZI, with responses

“gamble again” or “not gamble again” corresponding to D = 1 and D = −1,

and which path information corresponding to “won” or “lost.” The “won”

and “lost” intermediate states are though as mental states that “collapse”

once the decision maker becomes knowledgeable of the outcome of the first

gamble.
iThis symmetry is not necessary, and we put it here to make the argument simpler and to
have a direct connection to the experimental setup shown in Section 2. The MZI can be

modified to introduce biases that would make the probabilistic system non-symmetric,

but would still lead to a violation of STP (using the same mapping as we have here).
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We remark that, as far as we know, all the quantum cognition models

have similar characteristics to the MZI. What we mean by this is the fol-

lowing. In the MZI the violation of classical probability theory comes from

two incompatible sets of experimental data due to different contexts. In

one context, which-path information is not present, and the quantum state

reaching detectors D1 and D2 is in a superposition with components from

both paths. In the other context, a which-path measurement is performed,

and the wave function collapses, with a corresponding loss of quantum su-

perposition. So, differences in probabilities usually come from collapse/no-

collapse of the wave function due to a measurement.

Some researchers have suggested that other quantum-like effects may

exist in cognitive systems, such as entanglement [70, 73, 74]. Entangle-

ment comes from states such as (5), where for N -partite systems (N ≥ 2),

the outcomes of a property of a subsystem are connected to another prop-

erty of another subsystem in a way that cannot be explained by common

causes (i.e., hidden variables), as it was the case with the Bell-EPR setup.

We have argued elsewhere that, because we cannot rule out other physi-

cal mechanisms, such types of entanglement are not as unexpected as the

quantum mechanical ones [75], and in fact can be derived by classical-like

models [59]. Exactly because of this reason, there are no principles denying

violations of the no-signaling condition (corresponding to direct influences

between different subsystems), as we have in actual quantum systems [76].

Furthermore, it seems that most of the cases of violations of inequalities

such as (7) also violate a form of the no-signaling condition, and no contex-

tuality from entanglement is detectable, suggesting that direct influences

are more important in quantum cognition [77].

We can also emphasize that, in quantum cognition, violations of the

CHSH inequalities do not necessarily mean nonlocality. To demonstrate

non-locality, one needs to not only show violations of the CHSH of events

that are spacelike separated (a seemingly impossible task for cognitive

events), but also that such violations are not subject to standard loop-

holes [78]. To see how difficult this task is, attempts to create a loophole

free test of nonlocality for quantum systems have yet to be successful, even

after many decades of intensive research [79]. One can only imagine the

technical and conceptual difficulties that would make it hopeless to show

nonlocality for cognitive systems. Other difficulties are also present in the

Kochen-Specker system [80]. So, from an empirical point of view, it seems

that the predominant “quantum” effect in cognition is related to the MZI.

Let us end this Section with one important example. To motivate it, let
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us recall that quantum cognition relies on using the quantum mechanical

mathematical apparatus to social systems. However, this seems too con-

straining, leaving out many situations that would not be describable by the

formalism. As an example, mentioned in the previous paragraph, there are

no reasons to require cognitive systems to satisfy the no-signaling condition,

and we even have evidence that it is violated for some cognitive systems.

However, the no-signaling condition is a direct consequence of the quan-

tum formalism: we can derive it from the structure of the Hilbert space.

Furthermore, other forms of “superluminal” communications are strictly

forbidden by quantum mechanics. This is the case with the no-cloning the-

orem [81]; if cloning were possible, one could devise a method of sending

communications between Alice and Bob in the EPR setup discussed above.

But we have no a priori reason to rule out state cloning for social systems.

So, is the quantum mechanical apparatus too constraining?

As a toy example, we refer back to the ±1-valued random variables,

X, Y, and Z, discussed in the Introduction. It is possible to concoct

artificial (but reasonable) cases where those random variables have no joint

probability distribution, presenting contextuality [24]. Furthermore, it is

also possible to show that, under reasonable assumptions, neural models

that lead to similar outcomes described by quantum mechanics [59, 82, 83],

may also generate correlated variables X, Y, and Z that have no joint

[23, 25]. However, such simple example cannot be described by quantum

mechanics (unless we create a contrived model of it [24]), since the existence

of observed correlations corresponds to pairwise commutations between the

quantum operators representing X, Y, and Z, and from the algebra of

operators it follows that all three variables X, Y, and Z are simultaneously

observable. Since they are all simultaneously observable, a joint probability

distribution must exist. So, the quantum formalism rules out situations

such as those described in [23–25]j.

To summarize, we sketched in this section how the formalism of quantum

mechanics is often used in quantum cognition. We claimed that among the

many different cases where contextuality shows up in quantum mechanics,

it seems that the only relevant case may be the double-slit experiment. We

also saw that the quantum formalism may present too many restrictions to

certain contextual situations. In the next section, we discuss an alternative

formalism that we have proposed in previous papers: negative probabilities.

jFor a more detailed discussion of the neural model and its connection to quantum

cognition and to the issues mentioned in this paragraph, the reader is referred to [84].
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4. Describing contextual probabilities

We saw that contextuality is a key factor in quantum cognition, and the

main push for using the quantum mechanical mathematical apparatus was

the better fit it provided for certain experiments. This should not come

too much as a surprise, as this apparatus was developed to deal with sys-

tems that are contextual, such as the double-slit experiment. But we also

saw that there may be cases where quantum mechanics imposes too many

restrictions that would make its Hilbert space formalism inadequate to rep-

resent them. So, the question is how to develop a theory of probabilities

that have the same ability to describe contextual systems as quantum me-

chanics, but also has the flexibility of describing the systems discussed

above.

There are many attempts to describe quantum contextual systems, such

as contextuality by default [3, 7, 8] or upper and lower probabilities [85–

88]. Here we present a possible theory, first appearing in Physics in the

works of Wigner [89], but later on considered more seriously by Dirac [90]

and Feynman [91] (for a historical but not up-to-date survey of negative

probabilities in physics, the reader is referred to [92]).

As mentioned, negative probabilities showed up in quantum mechanics,

when Wigner asked which joint probability distributions for momentum and

position would result in the same outcomes predicted by quantum statistical

mechanics [89]. When such joint probability distributions were computed

for some physical systems (see, e.g. [93]), it became clear that they could

take negative values, and were therefore discarded as non-physical probabil-

ities (Wigner called them quasi-probability distributions). Though agree-

ing with Wigner’s claim of no physical meaning, Dirac thought negative

probabilities could be as useful as negative numbers were in mathematics,

and attempted to apply them to the description of quantized fields [90],

with no success. Decades later, Feynman also tried to use negative prob-

abilities, but, to his disappointment, thought that they did not offer any

new insights or results in quantum-field theory [91]. However, since then,

some researchers have been using negative probabilities to help understand

certain physical systems, mainly when violations of classical probabilities

occur because of contextuality [76, 94–105].

Let us start by defining negative probabilities (we follow [84, 106]). We

start with a preliminary definition.

Definition 1 (compatibility). Let Ω be a finite set, F an algebra over Ω,



May 20, 2015 23:17 World Scientific Review Volume - 9in x 6in Winer˙Contextual˙deBarrosOas page 21

Contextuality in Physics and Quantum Cognition 21

and let (Ωi,Fi, pi), i = 1, . . . , n, a set of n probability spaces, Fi ⊆ F and

Ωi ⊆ Ω. Then (Ω,F , p),where p is a real-valued function, p : F → [0, 1],

p (Ω) = 1, is compatible with the probabilities pi’s iff

∀ (x ∈ Fi) (pi (x) = p (x)) .

The marginals pi are called viable iff p is a probability measure.

The idea of the previous definition is that for contextual systems, our

observations are always in subspaces of a larger sample space Ω. If it is

not possible to put all the observed marginals in those systems in a single

space, then the marginals are not viablek, i.e. there does not exists a joint

probability distribution over Ω that explains all correlations.

In QM (and, perhaps, social sciences), the marginals are not always vi-

able. This means that no proper joint probability distribution exists, but

perhaps a real-valued function (but sometimes negative) p exists that pro-

vides all the correct marginals. This p, if normalized, would be a negative

probability.

Definition 2 (negative probabilities). Let Ω be a finite set, F an al-

gebra over Ω, P and P ′ real-valued functions, P : F → R, P ′ : F → R,

and let (Ωi,Fi, pi), i = 1, . . . , n, a set of n probability spaces, Fi ⊂ F and

Ωi ⊆ Ω. Then (Ω,F , P ) is a negative probability space, and P a negative

probability, if and only if (Ω,F , P ) is compatible with the probabilities pi’s

and

N1. ∀ (P ′)

(∑
ωi∈Ω

|P ({ωi})| ≤
∑
ωi∈Ω

|P ′ ({ωi})|

)
N2.

∑
ωi∈Ω

P ({ωi}) = 1

N3. P ({ωi, ωj}) = P ({ωi}) + P ({ωj}) , i 6= j.

In the above definition, the standard axiom of nonnegativity [107] is

replaced with a minimization of the L1 norm of P (we use P for nega-

tive joint probability distributions, and p for proper probability distribu-

tions). Intuitively, we minimize the L1 norm to find a quasi-probability

distribution that is as close as possible to a proper probability distribu-

tion, since relaxing the nonnegativity axiom leads to an infinite number of

quasi-probabilities consistent with the marginals. The value of the mini-

mum L1 probability norm is denoted M∗, and is mathematically given by
kA term coined in Reference [100].
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M∗ =
∑

ωi∈Ω |P ({ωi})|. This is a useful quantity, since P is a proper

probability (and therefore (Ω,F , P ) is a probability space) if and only if

M∗ = 1 [106]. Furthermore, we can think of M∗ as a measure of contextu-

ality: the larger its value, the more contextual the system [5, 76].

Not all contextual systems allow for negative probabilities. For instance,

in references [76, 97, 99, 105] it was independently proven that negative

probabilities exist if and only if the marginals pi do not allow for direct

influences (we called such systems contextually biased in [84]). An example

of a system that allows for direct influences are the MZI and the double

slit.

So, we see that negative probabilities are a possible extension of stan-

dard probability. It is not clear how this extension can be used to describe,

in general, random variables that are directly influenced by others. But, in

some of the cases treated in quantum cognition, it is possible, by reasoning

in a counterfactual way as to preserve the possibility of identifying random

variables in different contexts (see [106, 108] for a detailed analysis of the

MZI with negative probabilities). But the question remains as to whether

negative probabilities provide any advantages over other approaches.

Before we continue our exposition of negative probabilities, we should

address the issue of interpretation, which surely is being asked by many

at this point. There are many different ways to interpret negative proba-

bilities, such as Khrennikov’s quasi-stochastic p-adic processes [109–111],

Abramsky and Brandembuerger’s negative and positive types [103], or

Szekely’s square-root of a coin [112], to mention a few. Here we take a

more subjective (and pragmatic) approach, where negative probabilities

are seem as a computational device to help establishing truth values to

propositions (say, the proposition “the random variable A has value 1”).

As such, the minimization of the L1 norm is nothing but a requirement

that this computation should give us a quasi-probability distribution that

is as close as possible to a (non-existent) proper probability distribution.

In other words, as Feynman and Dirac, we see negative probabilities as a

computational device, without necessarily having a meaning.

We now turn to an example, first analyzed in [24], and based on the

three ±1-valued random variables X, Y, and Z. Imagine a decision maker,

here named Deanna, who wants to invest in the stocks of three companies,

X, Y , and Z. Knowing nothing about the stock market, Deanna hires three

experts, Alice, Bob, and Carlos, to give her advice. Their range of expertise

overlaps, but are not the same: Alice knows only about X and Y , but knows

nothing about Z; Bob knows about X and Z, but not about Y ; and Carlos
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knows about Y and Z, but not X. All experts agree that the chances of

X, Y , and Z going up are the same as them going down. Alice also tells

Deanna that she thinks that whenever X goes up, Y is sure to go down, and

vice versa. Bob tells her that whenever X goes one way, Z goes the other

way with probability 3/4, and they go the same way with probability 1/4.

Finally, Carlos tells her that he sees no relationship whatsoever between

Y and Z. Associating a +1 value of a random variable with stock-values

going up, and −1 with going down, Deanna has the following expectations

for X, Y, and Z.

E (X) = E (Y) = E (Z) = 0, (10)

E (XY) = −1, (11)

E (XZ) = −1

2
, (12)

and

E (YZ) = 0. (13)

It is not hard to see, using Suppes and Zanotti’s inequalities [38], that

there is no joint probability distribution for X, Y, and Z consistent with

the expectations (10)–(13).

How should Deanna proceed? There are some alternatives in the litera-

ture, but perhaps the most common one would be the Bayesian approach,

where Deanna starts with a prior probability distribution which is updated

with the experts opinions [113, 114]. However, as we pointed out else-

where, this approach has problems. First, the triple moment E (XYZ) is

invariant under Bayesian updates of the pairwise moments. This means

that whatever values of triple moments Deanna starts with, those values

are not updated [24]. This lack of update presents problems when we ex-

pect Deanna to get information about the triple moment in cases where

the three experts agree. For instance, if Alice, Bob, and Carlos all say

that the stocks are perfectly correlated, Deanna’s update should lead to

E (XYZ) = 1. Furthermore, for certain “inconsistent” (with a joint) cor-

relations given by Alice, Bob, and Carlos, weakening them would lead to

a restricted value of the triple moment [84]. But how to extract such in-

formation from the inconsistent beliefs given by the experts? When a joint

negative probability distribution is constructed, not any distribution is al-

lowed, but only those minimizing the L1 norm. We can show that, for the



May 20, 2015 23:17 World Scientific Review Volume - 9in x 6in Winer˙Contextual˙deBarrosOas page 24

24 J. A. de Barros, G. Oas

above example, minimizing the L1 norm constrains the values of the triple

moment to be in the range

−1

4
≤ E (XYZ) ≤ 1

2
.

Therefore, negative probabilities provide information about the range of

values of the triple moment that is not part of the standard Bayesian up-

date. With such range, it should be possible, under certain conditions, to

formulate a Dutch book.

5. Final Remarks

In this paper we examined different examples of contextuality in physics,

namely the double-slit experiment, in the form of the Mach-Zehnder inter-

ferometer (MZI), the Bell-EPR entanglement experiment, and the Kochen-

Specker theorem. We argued that among those cases, the one that relates

more closely to what is usually done in quantum cognition is the MZI,

and that both the Bell-EPR and the Kochen-Specker paradigms have only

marginal interest (from an empirical point of view).

We also discussed the restrictions on types of systems that can be mod-

eled by the Hilbert space formalism of quantum mechanics. Such formalism

cannot model certain systems that are not, in principle, forbidden by any

cognitive or behavioral principle. It also implies constraints such as the no-

cloning theorem [81], the no-signaling condition [115], and the monogamy of

quantum correlations (from entanglement) [116], to name a few cases. Such

constraints are almost necessary for Physical systems, or there would be se-

vere conflicts with the (empirically verified) theory of relativity, but they

are not at all necessary for cognitive systems. In fact, the Hilbert space

formalism is so restrictive that it even forbids the simple three-random-

variable example we showed in Section 4.

With the examples presented, we are not attempting here to discourage

the use of the quantum formalism in cognition. We believe that the quan-

tum mathematical structure inspired many interesting results in quantum

cognition, and the large volume of papers in the subject attest to its impor-

tance. Our goal is instead to point out that there are other tools, such as

negative probabilities, that should not be neglected, and perhaps studied

side-by-side with the quantum structures (this is the subject of our other

paper in this book [10]), and to challenge the quantum interactions commu-

nity to think about cases where the quantum formalism may be inadequate

or (at least) cumbersome. For instance, the examples we presented raise
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some questions about the quantum models. Can the (apparent) advantage

of negative probabilities, in certain examples, over the Bayesian approach

be reproduced with the quantum formalism? What principles would have

to be added to them? Do human-decision makers follow a process similar

to the minimization of the L1 norm for inconsistent situations? If so, how

would such process be described in the quantum formalism? Those are

open questions that would need to be addressed.
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M. Rédei, EPSA Philosophical Issues in the Sciences, pp. 93–103. Springer
Netherlands (Jan., 2010).

[87] F. Holik, M. Saenz, and A. Plastino, A discussion on the origin of quantum
probabilities, Annals of Physics. 340(1), 293–310 (Jan., 2014).

[88] P. Suppes and M. Zanotti, Existence of hidden variables having only upper
probabilities, Foundations of Physics. 21(12), 1479–1499 (1991).

[89] E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium,
Physical Review. 40(5), 749–759 (June, 1932).

[90] P. Dirac, {B}akerian Lecture. {T}he Physical Interpretation of Quantum
Mechanics, Proceedings of the Royal Society of London B. A180, 1–40
(1942).

[91] R. Feynman. Negative probability. In eds. B. Hiley and F. Peat, Quantum
implications: essays in honour of David Bohm, pp. 235–248. Routledge,
London and New York (1987).

[92] G. Mückenheim, A review of extended probabilities, Physics Reports. 133
(6), 337–401 (1986).

[93] P. Suppes, Probability concepts in quantum mechanics, Philosophy of Sci-
ence. 28(4), 378–389 (1961).

[94] M. O. Scully, H. Walther, and W. Schleich, Feynman’s approach to negative
probability in quantum mechanics, Physical Review A. 49(3), 1562–1566
(Mar., 1994).

[95] R. W. Spekkens, Negativity and Contextuality are Equivalent Notions of
Nonclassicality, Physical Review Letters. 101(2), 020401 (July, 2008).

[96] J. B. Hartle, Quantum mechanics with extended probabilities, Physical
Review A. 78(1), 012108 (July, 2008).

[97] S. Abramsky and A. Brandenburger, The sheaf-theoretic structure of non-



May 20, 2015 23:17 World Scientific Review Volume - 9in x 6in Winer˙Contextual˙deBarrosOas page 31

Contextuality in Physics and Quantum Cognition 31

locality and contextuality, New Journal of Physics. 13(11), 113036 (Nov.,
2011).

[98] V. Veitch, C. Ferrie, D. Gross, and J. Emerson, Negative quasi-probability
as a resource for quantum computation, New Journal of Physics. 14(11),
113011 (Nov., 2012).

[99] S. Al-Safi and A. Short, Simulating all Nonsignaling Correlations via Clas-
sical or Quantum Theory with Negative Probabilities, Physical Review Let-
ters. 111(17), 170403 (Oct., 2013).

[100] J. J. Halliwell and J. M. Yearsley, Negative probabilities, Fine’s theorem,
and linear positivity, Physical Review A. 87(2), 022114 (Feb., 2013).

[101] V. Veitch, Negative Quasi-Probability in the Context of Quantum Compu-
tation (Aug., 2013).

[102] X. Zhu, Q. Wei, Q. Liu, and S. Wu, Negative probabilities and information
gain in weak measurements, Physics Letters A. 377(38), 2505–2509 (Nov.,
2013).

[103] S. Abramsky and A. Brandenburger. An Operational Interpretation of
Negative Probabilities and No-Signalling Models. In eds. F. van Breugel,
E. Kashefi, C. Palamidessi, and J. Rutten, Horizons of the Mind. A Trib-
ute to Prakash Panangaden, number 8464 in Lecture Notes in Computer
Science, pp. 59–75. Springer Int. Pub. (2014).

[104] A. J. Bracken and G. F. Melloy, Waiting for the quantum bus: The flow of
negative probability, Studies in History and Philosophy of Science Part B:
Studies in History and Philosophy of Modern Physics. 48, Part A, 13–19
(Nov., 2014).

[105] E. R. Loubenets, Context-invariant quasi hidden variable (qHV) modelling
of all joint von Neumann measurements for an arbitrary Hilbert space,
Journal of Mathematical Physics. 56(3), 032201 (Mar., 2015).

[106] J. A. de Barros, G. Oas, and P. Suppes. Negative probabilities and Coun-
terfactual Reasoning on the double-slit Experiment. In eds. J.-Y. Beziau,
D. Krause, and J. Arenhart, Conceptual Clarification: Tributes to Patrick
Suppes (1992-2014). College Publications, London (2015).

[107] A. Kolmogorov, Foundations of the theory of probability, 2nd edn. Chelsea
Publishing Co., Oxford, England (1956).

[108] J. A. de Barros and G. Oas, Negative probabilities and counter-factual
reasoning in quantum cognition, Physica Scripta. T163, 014008 (2014).

[109] A. Khrennikov, p-Adic probability theory and its applications. {T}he prin-
ciple of statistical stabilization of frequencies, Theoretical and Mathematical
Physics. 97(3), 1340–1348 (Dec., 1993).

[110] A. Khrennikov, p-adic statistical models, Doklady Akademii Nauk. 330(3),
300–304 (1993).

[111] A. Khrennikov, Interpretations of probability. Walter de Gruyter, Berlin
(2009).
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