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Abstract

In this paper, we use a homodyne detection of a classical field to
violate Bell’s inequalities. This violation is achieved with local random
variables that are continuous, which does not preclude the existence of a
joint probability distribution. This result and meanings are discussed.

We dedicate this article to Professor Francisco Doria (FAD) on the occasion
of his 70th birthday. We believe it is apt to honor him with this article for
several reasons. First, this paper is an update of a previous article co-authored
with Pat Suppes (available on arXiv:quant-ph/9606019). Pat and Doria were
good friends, and Pat would have been delighted to contribute to this volume.
Second, Doria spent a one-year sabbatical leave in the 90s as a Fulbright scholar
visiting Pat at Stanford University’s Institute for Mathematical Studies in the
Social Sciences (IMSSS), which Pat founded and directed. This contact between
Pat and Doria led to ASS and JAB spending some time at the IMSSS, where
this paper’s ideas germinated. Third, this paper exemplifies the type of research
that Doria does: foundation issues in physics and mathematics that lead to
different insights. Finally, both ASS and JAB owe their passion for science and
mathematics to Doria’s guidance and tutoring. So, this work would not have
been written without his early support and involvement.

Most of the outcomes of this paper are not new. As mentioned above,
the main result of a violation of Bell’s inequalities with classical fields was
present in our '96 manuscript with Pat Suppes. However, that article was never
published. Furthermore, in recent years much interest appeared in connection
with violations of quantum inequalities with classical systems (see [26] and
references therein). In a certain sense, our paper came to this area too early
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when few worked on it. Thus, we believe it is as relevant today as it was more
than 20 years ago.

1 Introduction

Quantum theory is bizarre. This strangeness comes mostly from assigning
properties to a quantum system, famously exemplified by the Einstein-Bohr
dialogues. Bohr believed that a property of physical systems only existed if an
observer made an actual measurement of this property. To Bohr, talking about
properties that were not measured was nonsensical. Einstein, on the other hand,
believed that properties had a reality independent of the observer. To him, the
reality of a system’s property did not require performing an actual measurement.
Since quantum theory did not provide a way to talk about unobserved quantities,
the observer-independent reality, Einstein concluded that quantum theory was
incomplete and that a complete theory should be developed. Such theories that
extended quantum mechanics are known as hidden-variable theories.

Perhaps the most persuasive argument in favor of a hidden variable theory
was that of Einstein, Podolsky, and Rosen (EPR) [19]. Consider two spin-1/2
particles are produced in the singlet state!

1
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where |+) and |—) are the eigenvectors of the spin operator (say, in direction
z). One of the particles is sent to Alice’s laboratory (A) and the other to
Bob’s lab (B). EPR noticed that if Alice measured the spin to be “+” she
could immediately infer that Bob’s measurement of the spin would be “—.” To
EPR, this meant that we could infer the value of the particle’s spin at Bob’s
without interacting with it, i.e., without disturbing it, since we should rule out
non-local interactions between particles in Alice and Bob’s labs, as those labs
can be placed as far as we want. Thus, EPR concluded that quantum theory
was incomplete, as there were elements of reality (the value of spin) that could
be inferred without any measurement. To complete quantum mechanics, one
would need a hidden variable theory.

There are several obstacles to developing hidden-variable theories. For
example, without resorting to EPR’s argument, a question remains as to
whether we can simultaneously assign values to complementary properties,
such as momentum and position. In a famous paper, Kochen and Specker [23]
showed that if we try to do so, we reach a contradiction, unless we assume that
a property changes with the experimental context. For example, imagine a
quantum system with four properties, A, B, C, and D. Further assume that

!The version of the argument presented here is Bohm’s, and not EPR’s [9]. EPR used
momentum and position as correlated variables instead of spin.
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we can create experiments where we can only measure the following variables
simultaneously: A and C; A and D; B and C'; and B and D. In this example, A
shows up in two measuring contexts: A in the context of C' and A in the context
of D. Given that an experimenter can choose at will which context to measure,
for the property A to be independent of the experimenter’s capricious choices,
it needs to be independent of the experimental context. However, Kochen and
Specker proved that this idea that a property, in this case, A, is independent of
those two contexts, leads to contradictions. In other words, Kochen and Specker
showed that any hidden-variable theory has to be contextual.

Another important obstacle to hidden-variable theories was shown in 1963
by John Bell [6, 7]. In his paper, Bell discussed Bohm'’s setup for the Einstein-
Podolsky-Rosen’s (EPR) Gedankenexperiment [9, 19]. By assuming EPR’s
criteria of realism and locality, Bell derived a set of inequalities that any local
hidden-variable theory had to satisfy, known as Bell’s inequalities. Bell then
proceeded to show that, for certain situations, quantum mechanics violated
his inequalities. In other words, if EPR was right that quantum theory was
incomplete and should be substituted by a local hidden-variable theory, then
Bell determined that certain predictions of quantum mechanics had to be wrong.
In 1982 Alain Aspect and collaborators confirmed that correlated quantum
systems indeed violate Bell’s inequalities. Thus, local hidden-variable theory
are wrong [4, 3, 2.

Bell’s assumptions are considered equivalent to an underlying physical reality,
with added locality conditions. As such, they are equivalent to the existence of
a joint probability distribution for all possible outcomes of an experiment in all
possible contexts [32, 20]. What this means is that, for particular conjunction
of properties, one cannot assign a probability value consistent with the observed
marginals?. This is equivalent to saying that properties are contextual (see [15]
and references therein).

Because quantum non-locality and contextuality are among the most disturb-
ing aspects of the theory, it was commonly believed that any classical system
satisfies Bell’s inequalities. In this paper, we show that classical fields do not
satisfy Bell’s inequalities. Hence classical fields, e.g., electromagnetic fields, are
not Bell-type hidden variables. We do this by using a simple experimental setup
proposed by Tan et al. [33, 34, 35] for single photons. We then reinterpret
this setup for classical electromagnetic fields with randomized phase. For this
proposed experiment, we derive from the classical field properties a violation of
Bell’s inequalities [6, 7, 8, 32], with, at the same time, locality being preserved
in a sense to be made precise.

Most of the outcomes of this paper are not new. As we mentioned above,
the main result of a violation of Bell’s inequalities with classical fields was
present in our ’96 paper with Pat Suppes. However, that paper was never

2An alternative is to use extended probabilities. See [30, 31, 17, 18, 16, 15] for examples
using non-monotonic upper probabilities as well as (signed) negative probabilities.
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published. Furthermore, in recent years much interest appeared in connection
with violations of quantum inequalities with classical systems [24, 1, 11, 22, 28,
5, 27, 26, 25|. In a certain sense, our paper came to this area too early when
nobody was working on it. Thus, we believe it is as relevant today as it was
more than 20 years ago.

2 Experimental Setup

As mentioned above, we use a similar experimental scheme to that of Tan,
Walls, and Collett [34]. In their experiment, Tan et al. used a single-photon
source and a beam splitter to create an entanglement between a single photon
and the vacuum in two separate beams. Each beam’s phase was measured
via two homodyne detections [14] with same frequency but fixed phases 6,
and 6. They showed that for two different homodyne phases #; and 65, the
detection statistics showed correlations between each detector that violated
Bell’s inequalities. Equally important, according to Tan et al., a classical
coherent field would not violate Bell’s inequalities. Here we argue that their
conclusion about classical fields is not correct, as they assumed a fixed phase
for the coherent state. In what follows, we show that a uniformly distributed
phase in the interval [0, 27] yields a correlation between detectors that violates
Bell’s inequalities.

Our experimental scheme uses three classical coherent sources: a4 (6;), with
fixed phase 01; a2(6s), with fixed phase 03; and u(6), with a unknown stochastic
phase 0. The geometry of the setup is shown in Figure 1. The experimental
configuration has two homodyne detections, (D1, D) being one and (D3, Dy)
the other, such that the measurements are sensitive to phase changes in u(6).
Similarly to Tan et al.’s experiment, in Figure 1, BS, BS7, and BS3 are beam
splitters that reflect 50% of the incident electromagnetic field and let 50% of it
pass. When the electromagnetic field is reflected, the mirrors add a phase of /2
to the field, while no phase is added when the field passes through BS, BSy, or
BS5. We will look for correlations between the pairs of detectors (Dy, D) and
(D3, Da).

To compute the correlation functions, we first define the continuous random
variables in terms of which we derive the Bell-type correlations. On this matter
we shall be as explicit as possible. Associated to the source u(6) at D; is the
random variable Uy (t), whose value at ¢ is just the value of the classical field at
D1, namely,

Ui(t) = iﬁcos(wt—i—ﬁ—l—ﬂ'/Q), (1)

where (3 is the amplitude of the field at the source, € is the unknown phase and
7/2 is a phase gained when w is reflected at BSs.
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Figure 1: Experimental configuration. A laser v with stable phase 6 impinges
on a 50:50 beam splitter (BS). The two equal-intensity beams then impinge
on two additional 50:50 beam splitters, BS; and BSs. At BS; and BS,, the
beam from u is combined with lasers ay and as (with half the intensity of ),
respectively, with phases 6; and 6,. Detectors Dy, ..., Dy register the intensity
of the fields at each arm of the beam splitters.

Probability enters initially by using the time average to compute the expec-
tation of Uy (t)?

U2 = (Ui(0?) = (3B cos(wt + 0 + /)],

which is just the standard intensity, but here we treat it probabilistically. In
the above expression, (f(t)) is defined as the temporal expectation given by
1 T

(@) = tim = [ ft)dt. (2)

We emphasize that (2) is expressed in terms of a limit as T’ goes to infinity
for mathematical simplicity, but in practice it suffices that T is large enough
to stabilize the expectation values (e.g., if T' > 1/w). In a similar fashion,
associated to the source (1) at D; is the random variable A;(¢),

Aq(t) = %a cos(wt + 01 + 7/2)

and thus )
AT = (A(t)?) = < Ba cos(wt + 61 + 77/2)] > .
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At Dy, the total field is the random variable F(t) = U; (t) + A1(t). So, the
intensity of the total field at D; is just the second moment of Fy(t), i.e.,

L(0) = F?=(Fi(t)* =(Ui(t) + A1 (1))
= (U1(t)*) + 2((U1(t) A1 (1)) + (A1(1)?),

where we used 0 as an argument for I; to make it explicit that it depends on
0. We can see that the cross moment in the expression above is the classical
interference term.

We can compute I directly from the expression for Uy (t) and A;(t) in the
following way

T
Li(#) = lim —/ Bacos(wt+01+7r/2)+
0
1 2
4ﬁcos(wt+6‘+7r/2)] dt,

which yields
1 1 1
L(9) = 3—2ﬁ2+§a6c08(9—91)+§a2. (3)
In similar fashion, we can compute for the other three detectors,

1

I,(0) = 3352 — éaﬁ cos(d — 6,) + %oﬂ, (4)
I3(0) = 371252 - %aﬂ sin(f — ;) + éaQ, (5)
and 1 1 )

The intensities obtained are conditional on 6. To obtain the unconditional
intensities we assume a uniform distribution for € and integrate the expressions
for all possible values of #. Not only is # unknown, but the phase would vary
randomly for repeated runs of the experiment. If 6§ were a coherent source with
fixed 6, Bell’s inequalities would not be violated [33].

The unconditional intensities Iy, I, I3, and I for the detectors Dy, Do, D3,
and D, are

1 1
I =—f*+-a? 7
1 326 +8a7 ()
1 1
I, = 2 -2
2 32ﬂ +8aa (8)
1 1
I; = —B% 4+ =a? 9
3 326 +8aa ()
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Lo 1o
Iy = 55 5% + go®. (10)
We can see from (7)—(10) that the intensities are the same for all detectors, and
are similar to those given by Walls and Milburn [35] in the case of a classical
source. This is expected, since (7)-(10) express the concept that the intensity
at the detectors is the sum of the intensities from the two sources.

We now start computing the covariance between intensities in the homodyne
detectors. The covariance we are interested in is between (I; — I2) and (I3 — I).

Cov(h~Tnhi=1) = 5 [ (1 (6) = 12(6) x (1 6) ~ L G))]}d9
ORI
2m Jo
X QL " (I3 (0) — I, (9)) db. (11)
T Jo

It is straightforward to show from (3)-(6) and (11) that
1
Cov (Il - 12713 - 14) = —3—252042 sin (91 - 92) .

In order to compute the correlation we have to know the variance of the
random variables (I1 — I3) and (I3 — I), which are defined in a standard way as

2

1 27 1 27
V1) = o [ 00 - mo)a0 - [ [T (00) - L))
1
_ @52C¥2
and
27 27 2
V- 1) = o [ 00 - 1020 - [ [ (00) - 1]
1
= 552(12.

Finally, we are in a position to compute the correlation between the two random
variables A = (I — I3) and B = (I3 — I). This is done in a standard way by
just dividing the covariance by the square-root of the variances [29]:

Cov(A, B)

P4, B) = Var(A) Var(B)’

and we have the following expression for the correlation

p(A7 B) = —sin(01 — 92),
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which we may rewrite as
p(A(61), B (02)) = —sin(61 — 62), (12)

to make explicit the dependency of A and B on homodyning phase angles 6,
and 6y. This correlation is the same as the well-known correlations for Bell’s
setup [6].

So, we are now in a position to show that we can violate Bell-type inequalities.
We may now choose angles 61, 02, 0], and 6} such that we obtain at once, for
the four correlations p(61,62), p(01,05), p(0,02) and p(6},05) a violation of
Bell’s inequalities in the form due to Clauser, Horne, Shimony, and Holt (CHSH)
[12, 13], by choosing the four angles such that

01 — 05 = 0} — 0, = 60°,

6, — 05 = 30°,
0 — 0, = 90°.
In particular,
V3 1 V3
p(01,02) — p(01,05) + p(07,602) + p(67,05) = T + 5 1- 5 —2.

However, in the case of continuous random variables, which is what we
have in the present context for intensity, or differences of intensity, failure to
satisfy Bell’s inequalities in the CHSH form does not imply that there can be
no joint distribution of the four random variables compatible with the four
given correlations. It is easy to show that for selected values of the two missing
correlations, there does, for this example, exist a joint probability of the four
random variables compatible with the four given correlations.

3 Measurement and Photon Counts

Because classical field theory is a deterministic theory, our introduction of
expectations and probabilities might be questioned. Our response is that the
strength of a classical field at a space-time point cannot be measured, as was
emphasized long ago by Bohr and Rosenfeld [10]. As they pointed out, classical
field strength cannot be represented by true point functions, but by average
values over space-time regions. This is exactly what we have done in introducing
random variables and their expectations. The casual reader might claim that
we should do an analysis of coincidence counts with photocounters. This makes
no sense in the case of classical fields, where the number of photons arriving at
the same time at each detector is incredibly large. What makes sense is not
discrete but continuous measurement of intensity.
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Despite that, we are going to use the previous result to model discrete photon
counts, and show that this time it does not in such a way that they violate Bell’s
inequalities. For this, we define two new discrete random variables X = +1 and
Y = £1. These random variables correspond to nearly simultaneous correlated
counts at the detectors, and are defined in the following way.

Y +1 if detector D; triggers a count
| —1 if detector Dy triggers a count

+1 if detector D3 triggers a count
Y = . .
—1 if detector Dy triggers a count.

To compute the expectation of X and Y we use the stationarity of the process
and do the following. First, let us note that

I —I,=Nx-P(X=1)—Nx -P(X =-1),

where Nx is the expected total number of photon counts at D; and D, and
P(X = +1) is the probability that the random variable X has values +1. The
same relation holds for

Is—I, =Ny -P(Y=1)— Ny - P(Y = —1).

To simplify we put as a symmetry condition that Nx = Ny = N, i.e., the
expected number of photon counts at each homodyne detector is the same. But
we know that

L+, =N-P(X=1)+N-P(X =—-1) =N,

and
Is+I,=N-P(X=1)+N-P(X=-1)=N.

Then we can conclude from equations (3)—(6), assuming maximum visibility,

that
L — I

Ea(X10) = 77 = cos(0 — 04),
Eq4(Y]0) = g ;z‘ — sin(0 — 0;),

where Ey represents the expected value of the counting random variable. It is
clear that if 6 is uniformly distributed we have at once:

E(X) = Eg(Ea(X]0)) =0, (13)

E(Y) = Eg(Ea(X]0)) = 0. (14)
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We can now compute Cov(X,Y’). Note that

Cov(X,Y) = E(XY)-E(X)E(Y)
= Ep(E4(XY10)) — Eo(Ea(X|0))Eo(Ea(Y]0))
and so
Cov(X,Y) = 2i QWEd(XY|9)d9
T Jo

1 27 1 27
_7/ Eq(X|0)d x 7/ Eq(Y0)d6.
2 0 21 0

In order to compute the covariance, we also use the conditional independence
of X and Y given 6, which is our locality condition:

Eqy(XY0) = Ea(X|0)Ea(Y]0),

because given 6, the expectation of X depends only on 6¢;, and of Y only on 6;.
Then, it is easy to see that

p(X,Y) = Cov(X,Y) = —sin(6; — 0;). (15)

The correlation equals the covariance, since X and Y are discrete +1-valued
random variables with zero mean, as shown in (13) and (14), and so Var(X) =
Var(Y) = 1. It follows at once from (15) that for a given set of 6;’s and 6,’s
Bell’s inequalities are violated.

However, there is an important detail underlying our computations above.
When we are looking for correlations, we are only considering the cases where
an “observation” is made on both detectors, i.e., we have coincidence counts for
X and Y. However, to have a coincidence count, there are two assumptions
that were tacitly introduced. First, for the given observation time window,
the assumption is that we have a detection in one of the photodetectors. For
the hidden-variable model that associates with field intensity a probability of
photo detection, there should be a non-zero probability that no “detection”
happens during a time window. This was not included in our model. Second,
even if we accounted the no-detection event, and conditioned on coincidence
detections, we would have to use a non-enhancement hypothesis [21] to compute
the correlations in the way we are doing.

4 Final Remarks

The experiment proposed in [34] supposes a single photon source that is split
into the two homodyne detectors. Tan et al. also analyze the classical case and
get no violation of Bell’s inequalities. However, they assume a weak coherent
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source with randomized phase as the classical analogue of their single photon
source. This would be equivalent to having a classical thermal source, where
coherence would not be a strong feature. In our experiment we suppose that
this source is not only classical, i.e., with high intensity, but also that it is
coherent with the phase unobservable and varying randomly on repeated runs.
The different source used here, as opposed to that used in [34] implies that the
expectations given by (3)—(10) are computed in a different way than in [34].
Here we first integrate with respect to ¢ and then 0. It is easy to supply a
source that would fit our requirements. This would be, for example, a radio
source, a microwave, or a laser source, all with unstabilized phases. To realize
this experiment, one must also use two additional coherent sources with stable
known phases and with the same frequency as the nonstabilized source. If a data
table is then built that keeps track of all the measured values on the detectors,
we can compute the correlations and see a violation of Bell’s inequalities.

There are several other remarks that we must add in order to clarify some
points. First, when using classical fields the number of photons is overwhelmingly
large. For that reason, we would not need to compute any photon count
correlation. What we measure is intensity. On the other hand, Bell’s inequalities
are not enough to show that we do not have a joint probability distribution
for classical fields, because they assume a continuous range of values. That
is why we computed the correlation matrix, showing that for this case a joint
probability distribution does indeed not exist.

Another point is that intensity of classical fields does not satisfy the basic
assumption made by Bell, because it can take an infinite range of values; Bell
considered spin measurements that can take only two possible values. To show
that this does not present any constraint, we did an analysis of photon counts,
which can only take, as in Bell’s assumptions, two discrete values. However,
to violate Bell’s inequalities here, we must use an enhancement strategy. This
strategy requires communication between the two different homodyne detectors,
and it would not be non-local, as opposed to the true quantum example.

Finally, the last point. One can argue that if classical fields violate Bell’s
inequalities, then, since they are classical, Bell’s theorem must be wrong, and we
must show why it is wrong. First, we did not show that Bell’s theorem is wrong;
we just showed that a classical field approximates the quantum correlations
and that Bell’s inequalities are violated for them. Second, we emphasized
that classical fields are continuous, and Bell’s inequalities are derived from
dichotomous random variables. Therefore, the conclusion that there does not
exist a joint probability distribution for the intensities does not follow from
violations of Bell’s inequalities®.

3In our arXiv:quant-ph/9606019 paper, we claimed that the correlation matrix for the
intensities had negative and positive eigenvalues, which implied the non-existence of a joint
probability distribution. This claim is incorrect, as our claim was based in a specific assumption
for the hidden-variable model. However, as our example shows, a joint probability does exist,
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