
ar
X

iv
:q

ua
nt

-p
h/

00
01

01
7v

1 
 8

 J
an

 2
00

0

Some oneptual issues involving probability in

quantum mehanis

∗

J. Aaio de Barros

†
and Patrik Suppes

‡

CSLI � Ventura Hall

Stanford University

Stanford, CA 94305-4115

November 15, 2018

1 Introdution

The issue of the ompleteness of quantum mehanis has been a subjet of

intense researh for almost a entury. One of the most in�uential papers is

undoubtedly that of Eintein, Podolski and Rosen [Einstein et al. 1935℄, where

after analyzing entangled two-partile states they onluded that quantum me-

hanis ould not be onsidered a omplete theory. In 1964 John Bell showed

that not only was quantum mehanis inomplete but, if one wanted a om-

plete desription of reality that was loal, one would obtain orrelations that

are inompatible with the ones predited by quantum mehanis [Bell 1987℄.

This happens beause some quantum mehanial states do not allow for the

existene of joint probability distributions of all the possible outomes of exper-

iments. If a joint distribution exists, then one ould onsistently reate a loal

hidden variable that would fator this distribution. The nonexistene of loal

hidden variables that would �omplete� quantum mehanis, hene the nonex-

istene of joint probability distributions, was veri�ed experimentally in 1982 by

Aspet, Dalibard and Roger [Aspet at al. 1982℄, when they showed, in a series

of beautifully designed experiments, that an entangled photon state of the form

|ψ〉 = 1√
2
(|+−〉 − | −+〉), (1)

(where |+−〉 ≡ |+〉A⊗|−〉B represents, for example, two photons A and B with

heliity +1 and −1, respetively) violates the Clauser-Horne-Shimony-Holt form

∗
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of Bell's inequalities [Clauser et al. 1969℄, as predited by quantum mehanial

omputations. More reently, Weihs et al. on�rmed Aspet's experiment with

a truly random seletion of the polarization angles, thus with a more strit

nonloality riteria satis�ed [Weihs et al. 1998℄. We note that the proof that

the Clauser et al. form of Bell's inequalities implies the existene of a joint

probability distribution of the observable random variables is the mains result

in [Fine 1982℄.

The nonexistene of joint probability distributions also omes into play in the

onsistent-history interpretation of quantum mehanis. In this interpretation,

eah sequene of properties for a given quantum mehanial system represents

a possible history for this system, and a set of suh histories is alled a family

of histories [Gell-Mann and Hartle 1990℄. A family of onsistent histories is one

that has a joint probability distribution for all possible histories in this family,

with the joint probability distribution de�ned as any probability measure on

the spae of all histories. One an easily show that quantum mehanis implies

the nonexistene of suh probability funtions for some families of histories.

Families of histories that do not have a joint probability distribution are alled

inonsistent histories.

Another important example, also related to the nonexistene of a joint prob-

ability distribution, is the famous Kohen-Speker theorem, that shows that a

given hidden-variable theory that is onsistent with the quantum mehanial re-

sults has to be ontextual [Kohen and Speker 1967℄, i.e., the hidden variable

has to depend on the values of the atual experimental settings, regardless of

how far apart the atual omponents of the experiment are loated (throughout

this paper, we will use interhangeably the onepts of loal and nonontextual

hidden variables; for a detailed disussion, see [Suppes and Zanotti 1976℄ and

[D'Espagnat 1989℄).

More reently, a marriage between Bell's inequalities and the Kohen-Speker

theorem led to the Greenberger-Horne-Zeilinger (GHZ) theorem. The GHZ the-

orem shows that if one assumes that one an onsistently assign values to the

outomes of a measurement before the measure is performed, a mathematial

ontradition arises [Greenberger et al. 1989℄ � one again, having a omplete

data table would allow us to ompute the joint probability distribution, so we

onlude that no joint distribution exists that is onsistent with quantum me-

hanial results. In this paper, we propose the usage of nonmonotoni upper

probabilities as a tool to derive onsistent joint upper probabilities for the on-

textual hidden variables.

2 The GHZ Theorem

In 1989 Greenberger, Horne and Zeilinger (GHZ) proved that if the quantum

mehanial preditions for entangled states are orret, then the assumption

that there exist nonontextual hidden variables that an aommodate those

preditions leads to ontraditions [Greenberger et al. 1989℄. Their proof of the

inompatibility of nonontextual hidden variables with quantum mehanis is



3

now known as the GHZ theorem. This theorem proposes a new test for quantum

mehanis based on orrelations between more than two partiles. What makes

the GHZ theorem distint from Bell's inequalities is the fat that they use only

perfet orrelations. The argument for the GHZ theorem, as stated by Mermin

[Mermin 1990a℄, goes as follows. We start with a three-partile entangled state

|ψ〉 = 1√
2
(|+〉1|+〉2|−〉3 + |−〉1|−〉2|+〉3), (2)

where we use a notation similar to that of equation (1). This state is an eigen-

state of the following spin operators:

Â = σ̂1xσ̂2yσ̂3y, B̂ = σ̂1y σ̂2xσ̂3y, (3)

Ĉ = σ̂1y σ̂2yσ̂3x, D̂ = σ̂1xσ̂2xσ̂3x. (4)

If we ompute the expeted values for the orrelations above, we obtain at one

that E(Â) = E(B̂) = E(Ĉ) = 1 and E(D̂) = −1. Let us now suppose that the

value of the spin for eah partile is ditated by a hidden variable λ, and let us

all this value sij(λ), where i = 1...3 and j = x, y. Then, we have that

E(ÂB̂Ĉ) = (s1xs2ys3y)(s1ys2xs3y)(s1ys2ys3x) (5)

= s1xs2xs3x(s
2

1ys
2

2ys
2

3y). (6)

Sine the sij(λ) an only be 1 or −1, we obtain

E(ÂB̂Ĉ) = s1xs2xs3x = E(D̂). (7)

But (5) implies that E(ÂB̂Ĉ) = 1 whereas (7) implies E(ÂB̂Ĉ) = E(D̂) = −1,
a lear ontradition. It is lear from the above derivation that one ould avoid

ontraditions if we allowed the value of λ to depend on the experimental setup,

i.e., if we allowed λ to be a ontextual hidden variable. In other words, what the

GHZ theorem proves is that nonontextual hidden variables annot reprodue

quantum mehanial preditions.

This striking harateristi of GHZ's preditions, however, has a major prob-

lem. How an one verify experimentally preditions based on orrelation-one

statements, sine experimentally one annot obtain events perfetly orrelated?

This problem was also present on Bell's original paper, where he onsidered

ases where the orrelations were one. To �avoid Bell's experimentally unrealis-

ti restritions�, Clauser, Horne, Shimony and Holt [Clauser et al. 1969℄ derived

a new set of inequalities that would take into aount imperfetions in the mea-

surement proess. However, Bell's inequalities are quite di�erent from the GHZ

ase, where it is neessary to have experimentally unrealisti perfet orrela-

tions. This an be seen from the following theorem (a version for a 4 partile

entangled system is found in [Suppes et al. 1998℄).

Theorem 1 Let A, B, and C be three ±1 random variables and let

(i) E(A) = E(B) = E(C) = 1,
(ii) E(ABC) = −1,
then (i) and (ii) imply a ontradition.
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Proof: By de�nition

E(A) = P (a)− P (a), (8)

where we use a notation where a is A = 1, a is A = −1, and so on. Sine

0 ≤ P (a), P (a) ≤ 1, it follows at one from (i) that

P (a) = 1 (9)

and similarly

P (b) = P (c) = 1. (10)

Using again the de�nition of expetation and the inequalities P (abc) ≤ P (a) =
0, et., we have

E(ABC) = P (abc) + P (abc) + P (abc) + P (abc)

= P (abc)− [P (abc) + P (abc) + P (abc) + P (abc)]
= 1,

(11)

from (9) and (10), sine all but the �rst term on the right is 0, and thus by

onservation of probability P (ABC) = 1. But (11) ontradits (ii).
It is important to note that if we ould measure all the random variables

simultaneously, we would have a joint distribution. The existene of a joint

probability distribution is a neessary and su�ient ondition for the existene

of a nonontextual hidden variable [Suppes and Zanotti 1981℄. Hene, if the

quantum mehanial GHZ orrelations are obtained, then no nonontextual

hidden variable exists. However, this abstrat version of the GHZ theorem

still involves probability-one statements. On the other hand, the orrelations

present in the GHZ state are so strong that even if we allow for experimental

errors, the non-existene of a joint distribution an still be veri�ed, as we show

in the following theorem [Barros and Suppes 2000℄.

Theorem 2 If A, B, and C are three ±1 random variables, a joint probability

distribution exists for the given expetations E(A), E(B), E(C), and
E(ABC) if and only if the following inequalities are satis�ed:

− 2 ≤ E(A) + E(B) + E(C)− E(ABC) ≤ 2, (12)

− 2 ≤ −E(A) + E(B) + E(C) + E(ABC) ≤ 2, (13)

− 2 ≤ E(A) − E(B) + E(C) + E(ABC) ≤ 2, (14)

− 2 ≤ E(A) + E(B)− E(C) + E(ABC) ≤ 2. (15)

Proof: First we prove neessity. Let us assume that there is a joint probability

distribution onsisting of the eight atoms abc, abc, abc, ...abc. Then,

E(A) = P (a)− P (a),

where

P (a) = P (abc) + P (abc) + P (abc) + P (abc),
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and

P (a) = P (abc) + P (abc) + P (abc) + P (abc).

Similar equations hold for E(B) and E(C). For E(ABC) we obtain

E(ABC) = P (ABC = 1)− P (ABC = −1)

= P (abc) + P (abc) + +P (abc) + P (abc)

−[P (abc) + P (abc) + P (abc) + P (abc)].

Corresponding to the �rst inequality above, we now sum over the probability

expressions for the expetations

F = E(A) + E(B) + E(C)− E(ABC),

and obtain the expression

F = 2[P (abc) + P (abc) + P (abc) + P (abc)]

−2[P (abc) + P (abc) + P (abc) + P (abc)],

and sine all the probabilities are nonnegative and sum to ≤ 1, we infer at one
inequality (12). The derivation of the other three inequalities is very similar.

To prove the onverse, i.e., that these inequalities imply the existene of a

joint probability distribution, is slightly more ompliated. We restrit ourselves

to the symmetri ase

P (a) = P (b) = P (c) = p,

P (ABC = 1) = q

and thus

E(A) = E(B) = E(C) = 2p− 1,

E(ABC) = 2q − 1.

In this ase, (12) an be written as

0 ≤ 3p− q ≤ 2,

while the other three inequalities yield just 0 ≤ p+ q ≤ 2. Let

x = P (abc) = P (abc) = P (abc),

y = P (abc) = P (abc) = P (abc),

z = P (abc),
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and

w = P (abc).

It is easy to show that on the boundary 3p = q de�ned by the inequalities the

values x = 0, y = q/3, z = 0, w = 1 − q de�ne a possible joint probability

distribution, sine 3x + 3y + z + w = 1. On the other boundary, 3p = q + 2 a

possible joint distribution is x = (1 − q)/3, y = 0, z = q, w = 0. Then, for any
values of q and p within the boundaries of the inequality we an take a linear

ombination of these distributions with weights (3p− q)/2 and 1 − (3p− q)/2,
hosen suh that the weighed probabilities add to one, and obtain the joint

probability distribution:

x =

(
1− 3p− q

2

)
1− q

3
,

y =

(
3p− q

2

)
q

3
,

z =

(
1− 3p− q

2

)
q,

w =
3p− q

2
(1− q) ,

whih proves that if the inequalities are satis�ed a joint probability distribution

exists, and therefore a nonontextual hidden variable as well, thus ompleting

the proof. The generalization to the asymmetri ase is tedious but straightfor-

ward.

As a onsequene of the inequalities above, one an show that the orre-

lations present in the GHZ state are so strong that even if we allow for ex-

perimental errors, the non-existene of a joint distribution an still be veri�ed

[Barros and Suppes 2000℄.

Corollary Let A, B, and C be three ±1 random variables suh that

(i) E(A) = E(B) = E(C) ≥ 1− ǫ,
(ii) E(ABC) ≤ −1 + ǫ,
where ǫ represents a derease of the observed GHZ orrelations due to ex-

perimental errors. Then, there annot exist a joint probability distribution

of A, B, and C if

ǫ <
1

2
. (16)

Proof: To see this, let us ompute the value of F de�ne above. We obtain at

one that

F = 3(1− ǫ)− (−1 + ǫ).

But the observed orrelations are only ompatible with a nonontextual hid-

den variable theory if F ≤ 2, hene ǫ < 1

2
. Then, there annot exist a joint

probability distribution of A, B, and C satisfying (i) and (ii) if

ǫ <
1

2
. (17)
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From the inequality obtained above, it is lear that any experiment that

obtains GHZ-type orrelations stronger than 0.5 annot have a joint proba-

bility distribution. For example, the reent experiment made at Innsbruk

[Bouwemeester et al. 1999℄ with three-photon entangled states supports the quan-

tum mehanial result that no nonontextual hidden variable exists that explain

their orrelations [Barros and Suppes 2000℄. Thus, with this reformulation of

the GHZ theorem it is possible to use strong, yet imperfet, experimental or-

relations to prove that a nonontextual hidden-variable theory is inompatible

with the experimental results.

3 Upper and Lower Probabilities and the GHZ

theorem

We saw at the previous setion that quantum mehanis does not allow, for

some ases, the de�nition of a joint probability distribution for all the ob-

servables. However, if we weaken the probability axioms, it is possible to

prove that one an �nd a onsistent set of upper probabilities for the events

[Suppes and Zanotti 1991℄. Upper probabilities are de�ned in the following way.

Let Ω be a nonempty set, F a boolean algebra on Ω and P ∗
a real valued fun-

tion on F. Then the triple (Ω, F, P ∗) is an upper probability if for all ξ1 and ξ2
in F we have that

(i) 0 ≤ P ∗(ξ1) ≤ 1,

(ii) P ∗(∅) = 0,

(iii) P ∗(Ω) = 1,

and if ξ1 and ξ2 are disjoint, i.e. ξ1 ∩ ξ2 = ∅, then

(iv) P ∗(ξ1 ∪ ξ2) ≤ P ∗(ξ1) + P ∗(ξ2).

As we an see, this last property weakens the standard axioms for probability,

as one of the onsequenes of these axioms is that it may be true, for an upper

probability, that

ξ1 ⊆ ξ2 and P ∗(ξ1) > P ∗(ξ2),

a quite nonstandard property. In a similar way, lower probabilities are de�ned

as satisfying the triple (Ω, F, P∗) suh that for all ξ1 and ξ2 in F we have that

(i) 0 ≤ P∗(ξ1) ≤ 1,

(ii) P∗(∅) = 0,

(iii) P∗(Ω) = 1,

and if ξ1 and ξ2 are disjoint, i.e. ξ1 ∩ ξ2 = ∅, then
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(iv) P∗(ξ1 ∪ ξ2) ≥ P∗(ξ1) + P∗(ξ2).

Let us see how upper and lower probabilities an be used to obtain joint upper

and lower probability distributions. We an start with the standard Bell's vari-

ables X, Y and Z, where eah random variable represents a di�erent angles for

the Stern-Gerlah apparatus (we follow the example in [Suppes and Zanotti 1991℄).

In the experimental setup used by Bell, a two-partile system with entangled

spin state was used, and for that reason we an only measure two variables

at the same time. However, sine they are spin measurements, we have the

onstraint

P (X = 1) = P (Y = 1) = P (Z = 1) =
1

2
.

The question that Bell posed is whether we an �ll the missing values of the

data table in a way that is onsistent with the orrelations given by quantum

mehanis for the pairs of variables, that is, E(XY), E(XZ), E(YZ). It is well
known that for some sets of angles, the joint probability distribution of X, Y,
and Z exists, while for other set of angles it does not exist. We an prove that

the joint doesn't exist in the following way. We start with the values for the

orrelations used by Bell:

E(XY) = −
√
3

2
, (18)

E(XZ) = −
√
3

2
, (19)

E(YZ) = −1

2
. (20)

The orrelations above orrespond to the angles X̂Y = 30o, ŶZ = 30o and

X̂Z = 60o for the detetors, and require that

E(XY) = E(XY|Z = 1)P (Z = 1) + E(XY|Z = −1)P (Z = −1),

E(XZ) = E(XZ|Y = 1)P (Y = 1) + E(XZ|Y = −1)P (Y = −1),

E(YZ) = E(YZ|X = 1)P (X = 1) + E(YZ|X = −1)P (X = −1),

whih an be written as

2E(XY) = E(XY|Z = 1) + E(XY|Z = −1), (21)

2E(XZ) = E(XZ|Y = 1) + E(XZ|Y = −1), (22)

2E(YZ) = E(YZ|X = 1) + E(YZ|X = −1), (23)

beause P (Z = 1) = P (Z = −1), et. Symmetry requires that

E(XY|Z = 1) = E(YZ|X = 1), (24)

E(XY|Z = −1) = E(YZ|X = −1) (25)

and if we use the requirement that all probabilities must sum to one we have

six equations and six unknown onditional expetations. It is easy to see that
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the system of linear equations (21)�(25) does not have a solution for the or-

relations shown in (18), hene no joint probability distribution exists. What

happened? The orrelations are too strong for us to �ll up a table with all the

experimental results, inluding the ones that did not our. One extreme exam-

ple an be obtained if we use the extreme ase of orrelation one expetations,

given by

E(XY) = −1,

E(YZ) = −1,

E(XZ) = −1,

where one again no joint probability distribution exists.

What hanges with upper probabilities? The system of linear equations (21)

beomes a system of inequalities:

2E∗(XY) ≥ E∗(XY|Z = 1) + E∗(XY|Z = −1), (26)

2E∗(XZ) ≥ E∗(XZ|Y = 1) + E∗(XZ|Y = −1), (27)

2E∗(YZ) ≥ E∗(YZ|X = 1) + E∗(YZ|X = −1), (28)

plus the symmetry

E∗(XY|Z = 1) = E∗(YZ|X = 1), (29)

E∗(XY|Z = −1) = E∗(YZ|X = −1), (30)

and the fat that the sum of all upper probabilities must be greater or equal

than one. It is straightforward to obtain solutions to (26)�(30), and then we an

�nd upper probabilities that are onsistent with the onditional expetations.

The following theorem shows that the GHZ theorem fail if we allow lower

probabilities.

Theorem 3 Let A, B, and C be three ±1 random variables and let

(i) E∗(A) = E(A) = 1,
(ii) E∗(B) = E(B) = 1,
(iii) E∗(C) = E(C) = 1,
(iv) E∗(ABC) = E(ABC) = −1.
Then, there exist a lower joint probability distribution that is ompatible

with (i)�(iv).

Proof: We will prove this theorem by expliitly onstruting a lower joint prob-

ability distribution. First, we note that

E∗(A) = P∗(a)− P∗(a) = 1,

E∗(B) = P∗(b)− P∗(b) = 1,

E∗(C) = P∗(c)− P∗(c) = 1,
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and hene

P∗(a) = 1, P∗(a) = 0, (31)

P∗(b) = 1, P∗(b) = 0, (32)

P∗(c) = 1 P∗(c) = 0. (33)

From the de�nition of lowers and from (31)�(33) we have

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) ≤ 1, (34)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) ≤ 1, (35)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) ≤ 1, (36)

and from (iv)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc)+ (37)

−P∗(abc)− P∗(abc)− P∗(abc)− P∗(abc) = −1. (38)

The lowers must also be superadditive in the whole probability spae, and we

have

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc)+ (39)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) ≤ 1. (40)

From (38) and (40) we have

P∗(abc) = P∗(abc) = P∗(abc) = P∗(abc) = 0

and the system redues to

P∗(abc) + P∗(abc) ≤ 1, (41)

P∗(abc) + P∗(abc) ≤ 1, (42)

P∗(abc) + P∗(abc) ≤ 1, (43)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) = 1. (44)

A possible solution for the system (41)�(44) is

P∗(abc) = P∗(abc) = P∗(abc) =
1

3

P∗(abc) = 0,

as we wanted to prove. In a similar way, we have the following:

Theorem 4 Let A, B, and C be three ±1 random variables and let

(i) E∗(A) = E(A) = 1,
(ii) E∗(B) = E(B) = 1,
(iii) E∗(C) = E(C) = 1,
(iv) E∗(ABC) = E(ABC) = −1.
Then, there exist an upper probability distribution that is ompatible with

(i)�(iv).
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Proof: Similar to the proof for the lower.

We note that the nonmonotoni upper and lower probabilities shown to exist

in Theorems 3 and 4 do not, beause of their nonmonotoniity, satisfy the usual

de�nitional relation between upper and lower probabilities, for any event A:

P ∗(A) = 1− P∗(A).

4 Final Remarks

To apply the upper probabilities to the GHZ theorem, we gave a probabilisti

random variable version of it. We then showed that, if we use upper probabil-

ities, the GHZ theorem does not hold anymore, and hene the inonsistenies

annot be proved to exist for the upper probabilities. Suh upper probabilities

are a natural way to deal with ontextual problems in statistis. Whether they

lead to fruitful theoretial developments in a new diretion is, however, an open

question.
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