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1 Introdu
tion

The issue of the 
ompleteness of quantum me
hani
s has been a subje
t of

intense resear
h for almost a 
entury. One of the most in�uential papers is

undoubtedly that of Eintein, Podolski and Rosen [Einstein et al. 1935℄, where

after analyzing entangled two-parti
le states they 
on
luded that quantum me-


hani
s 
ould not be 
onsidered a 
omplete theory. In 1964 John Bell showed

that not only was quantum me
hani
s in
omplete but, if one wanted a 
om-

plete des
ription of reality that was lo
al, one would obtain 
orrelations that

are in
ompatible with the ones predi
ted by quantum me
hani
s [Bell 1987℄.

This happens be
ause some quantum me
hani
al states do not allow for the

existen
e of joint probability distributions of all the possible out
omes of exper-

iments. If a joint distribution exists, then one 
ould 
onsistently 
reate a lo
al

hidden variable that would fa
tor this distribution. The nonexisten
e of lo
al

hidden variables that would �
omplete� quantum me
hani
s, hen
e the nonex-

isten
e of joint probability distributions, was veri�ed experimentally in 1982 by

Aspe
t, Dalibard and Roger [Aspe
t at al. 1982℄, when they showed, in a series

of beautifully designed experiments, that an entangled photon state of the form

|ψ〉 = 1√
2
(|+−〉 − | −+〉), (1)

(where |+−〉 ≡ |+〉A⊗|−〉B represents, for example, two photons A and B with

heli
ity +1 and −1, respe
tively) violates the Clauser-Horne-Shimony-Holt form

∗
It is a pleasure to dedi
ate this arti
le to Arthur Fine. The subje
t of our paper is 
lose

to one of Arthur's best known arti
les on the foundations of physi
s [Fine 1982℄.

†
On leave from: Departamento de Físi
a � ICE, Universidade Federal de Juiz de Fora, Juiz

de Fora, MG 36036-330, Brazil. E-mail: barros�o
kham.stanford.edu.

‡
E-mail: suppes�o
kham.stanford.edu.

1

http://arxiv.org/abs/quant-ph/0001017v1


2

of Bell's inequalities [Clauser et al. 1969℄, as predi
ted by quantum me
hani
al


omputations. More re
ently, Weihs et al. 
on�rmed Aspe
t's experiment with

a truly random sele
tion of the polarization angles, thus with a more stri
t

nonlo
ality 
riteria satis�ed [Weihs et al. 1998℄. We note that the proof that

the Clauser et al. form of Bell's inequalities implies the existen
e of a joint

probability distribution of the observable random variables is the mains result

in [Fine 1982℄.

The nonexisten
e of joint probability distributions also 
omes into play in the


onsistent-history interpretation of quantum me
hani
s. In this interpretation,

ea
h sequen
e of properties for a given quantum me
hani
al system represents

a possible history for this system, and a set of su
h histories is 
alled a family

of histories [Gell-Mann and Hartle 1990℄. A family of 
onsistent histories is one

that has a joint probability distribution for all possible histories in this family,

with the joint probability distribution de�ned as any probability measure on

the spa
e of all histories. One 
an easily show that quantum me
hani
s implies

the nonexisten
e of su
h probability fun
tions for some families of histories.

Families of histories that do not have a joint probability distribution are 
alled

in
onsistent histories.

Another important example, also related to the nonexisten
e of a joint prob-

ability distribution, is the famous Ko
hen-Spe
ker theorem, that shows that a

given hidden-variable theory that is 
onsistent with the quantum me
hani
al re-

sults has to be 
ontextual [Ko
hen and Spe
ker 1967℄, i.e., the hidden variable

has to depend on the values of the a
tual experimental settings, regardless of

how far apart the a
tual 
omponents of the experiment are lo
ated (throughout

this paper, we will use inter
hangeably the 
on
epts of lo
al and non
ontextual

hidden variables; for a detailed dis
ussion, see [Suppes and Zanotti 1976℄ and

[D'Espagnat 1989℄).

More re
ently, a marriage between Bell's inequalities and the Ko
hen-Spe
ker

theorem led to the Greenberger-Horne-Zeilinger (GHZ) theorem. The GHZ the-

orem shows that if one assumes that one 
an 
onsistently assign values to the

out
omes of a measurement before the measure is performed, a mathemati
al


ontradi
tion arises [Greenberger et al. 1989℄ � on
e again, having a 
omplete

data table would allow us to 
ompute the joint probability distribution, so we


on
lude that no joint distribution exists that is 
onsistent with quantum me-


hani
al results. In this paper, we propose the usage of nonmonotoni
 upper

probabilities as a tool to derive 
onsistent joint upper probabilities for the 
on-

textual hidden variables.

2 The GHZ Theorem

In 1989 Greenberger, Horne and Zeilinger (GHZ) proved that if the quantum

me
hani
al predi
tions for entangled states are 
orre
t, then the assumption

that there exist non
ontextual hidden variables that 
an a

ommodate those

predi
tions leads to 
ontradi
tions [Greenberger et al. 1989℄. Their proof of the

in
ompatibility of non
ontextual hidden variables with quantum me
hani
s is
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now known as the GHZ theorem. This theorem proposes a new test for quantum

me
hani
s based on 
orrelations between more than two parti
les. What makes

the GHZ theorem distin
t from Bell's inequalities is the fa
t that they use only

perfe
t 
orrelations. The argument for the GHZ theorem, as stated by Mermin

[Mermin 1990a℄, goes as follows. We start with a three-parti
le entangled state

|ψ〉 = 1√
2
(|+〉1|+〉2|−〉3 + |−〉1|−〉2|+〉3), (2)

where we use a notation similar to that of equation (1). This state is an eigen-

state of the following spin operators:

Â = σ̂1xσ̂2yσ̂3y, B̂ = σ̂1y σ̂2xσ̂3y, (3)

Ĉ = σ̂1y σ̂2yσ̂3x, D̂ = σ̂1xσ̂2xσ̂3x. (4)

If we 
ompute the expe
ted values for the 
orrelations above, we obtain at on
e

that E(Â) = E(B̂) = E(Ĉ) = 1 and E(D̂) = −1. Let us now suppose that the

value of the spin for ea
h parti
le is di
tated by a hidden variable λ, and let us


all this value sij(λ), where i = 1...3 and j = x, y. Then, we have that

E(ÂB̂Ĉ) = (s1xs2ys3y)(s1ys2xs3y)(s1ys2ys3x) (5)

= s1xs2xs3x(s
2

1ys
2

2ys
2

3y). (6)

Sin
e the sij(λ) 
an only be 1 or −1, we obtain

E(ÂB̂Ĉ) = s1xs2xs3x = E(D̂). (7)

But (5) implies that E(ÂB̂Ĉ) = 1 whereas (7) implies E(ÂB̂Ĉ) = E(D̂) = −1,
a 
lear 
ontradi
tion. It is 
lear from the above derivation that one 
ould avoid


ontradi
tions if we allowed the value of λ to depend on the experimental setup,

i.e., if we allowed λ to be a 
ontextual hidden variable. In other words, what the

GHZ theorem proves is that non
ontextual hidden variables 
annot reprodu
e

quantum me
hani
al predi
tions.

This striking 
hara
teristi
 of GHZ's predi
tions, however, has a major prob-

lem. How 
an one verify experimentally predi
tions based on 
orrelation-one

statements, sin
e experimentally one 
annot obtain events perfe
tly 
orrelated?

This problem was also present on Bell's original paper, where he 
onsidered


ases where the 
orrelations were one. To �avoid Bell's experimentally unrealis-

ti
 restri
tions�, Clauser, Horne, Shimony and Holt [Clauser et al. 1969℄ derived

a new set of inequalities that would take into a

ount imperfe
tions in the mea-

surement pro
ess. However, Bell's inequalities are quite di�erent from the GHZ


ase, where it is ne
essary to have experimentally unrealisti
 perfe
t 
orrela-

tions. This 
an be seen from the following theorem (a version for a 4 parti
le

entangled system is found in [Suppes et al. 1998℄).

Theorem 1 Let A, B, and C be three ±1 random variables and let

(i) E(A) = E(B) = E(C) = 1,
(ii) E(ABC) = −1,
then (i) and (ii) imply a 
ontradi
tion.
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Proof: By de�nition

E(A) = P (a)− P (a), (8)

where we use a notation where a is A = 1, a is A = −1, and so on. Sin
e

0 ≤ P (a), P (a) ≤ 1, it follows at on
e from (i) that

P (a) = 1 (9)

and similarly

P (b) = P (c) = 1. (10)

Using again the de�nition of expe
tation and the inequalities P (abc) ≤ P (a) =
0, et
., we have

E(ABC) = P (abc) + P (abc) + P (abc) + P (abc)

= P (abc)− [P (abc) + P (abc) + P (abc) + P (abc)]
= 1,

(11)

from (9) and (10), sin
e all but the �rst term on the right is 0, and thus by


onservation of probability P (ABC) = 1. But (11) 
ontradi
ts (ii).
It is important to note that if we 
ould measure all the random variables

simultaneously, we would have a joint distribution. The existen
e of a joint

probability distribution is a ne
essary and su�
ient 
ondition for the existen
e

of a non
ontextual hidden variable [Suppes and Zanotti 1981℄. Hen
e, if the

quantum me
hani
al GHZ 
orrelations are obtained, then no non
ontextual

hidden variable exists. However, this abstra
t version of the GHZ theorem

still involves probability-one statements. On the other hand, the 
orrelations

present in the GHZ state are so strong that even if we allow for experimental

errors, the non-existen
e of a joint distribution 
an still be veri�ed, as we show

in the following theorem [Barros and Suppes 2000℄.

Theorem 2 If A, B, and C are three ±1 random variables, a joint probability

distribution exists for the given expe
tations E(A), E(B), E(C), and
E(ABC) if and only if the following inequalities are satis�ed:

− 2 ≤ E(A) + E(B) + E(C)− E(ABC) ≤ 2, (12)

− 2 ≤ −E(A) + E(B) + E(C) + E(ABC) ≤ 2, (13)

− 2 ≤ E(A) − E(B) + E(C) + E(ABC) ≤ 2, (14)

− 2 ≤ E(A) + E(B)− E(C) + E(ABC) ≤ 2. (15)

Proof: First we prove ne
essity. Let us assume that there is a joint probability

distribution 
onsisting of the eight atoms abc, abc, abc, ...abc. Then,

E(A) = P (a)− P (a),

where

P (a) = P (abc) + P (abc) + P (abc) + P (abc),



5

and

P (a) = P (abc) + P (abc) + P (abc) + P (abc).

Similar equations hold for E(B) and E(C). For E(ABC) we obtain

E(ABC) = P (ABC = 1)− P (ABC = −1)

= P (abc) + P (abc) + +P (abc) + P (abc)

−[P (abc) + P (abc) + P (abc) + P (abc)].

Corresponding to the �rst inequality above, we now sum over the probability

expressions for the expe
tations

F = E(A) + E(B) + E(C)− E(ABC),

and obtain the expression

F = 2[P (abc) + P (abc) + P (abc) + P (abc)]

−2[P (abc) + P (abc) + P (abc) + P (abc)],

and sin
e all the probabilities are nonnegative and sum to ≤ 1, we infer at on
e
inequality (12). The derivation of the other three inequalities is very similar.

To prove the 
onverse, i.e., that these inequalities imply the existen
e of a

joint probability distribution, is slightly more 
ompli
ated. We restri
t ourselves

to the symmetri
 
ase

P (a) = P (b) = P (c) = p,

P (ABC = 1) = q

and thus

E(A) = E(B) = E(C) = 2p− 1,

E(ABC) = 2q − 1.

In this 
ase, (12) 
an be written as

0 ≤ 3p− q ≤ 2,

while the other three inequalities yield just 0 ≤ p+ q ≤ 2. Let

x = P (abc) = P (abc) = P (abc),

y = P (abc) = P (abc) = P (abc),

z = P (abc),
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and

w = P (abc).

It is easy to show that on the boundary 3p = q de�ned by the inequalities the

values x = 0, y = q/3, z = 0, w = 1 − q de�ne a possible joint probability

distribution, sin
e 3x + 3y + z + w = 1. On the other boundary, 3p = q + 2 a

possible joint distribution is x = (1 − q)/3, y = 0, z = q, w = 0. Then, for any
values of q and p within the boundaries of the inequality we 
an take a linear


ombination of these distributions with weights (3p− q)/2 and 1 − (3p− q)/2,

hosen su
h that the weighed probabilities add to one, and obtain the joint

probability distribution:

x =

(
1− 3p− q

2

)
1− q

3
,

y =

(
3p− q

2

)
q

3
,

z =

(
1− 3p− q

2

)
q,

w =
3p− q

2
(1− q) ,

whi
h proves that if the inequalities are satis�ed a joint probability distribution

exists, and therefore a non
ontextual hidden variable as well, thus 
ompleting

the proof. The generalization to the asymmetri
 
ase is tedious but straightfor-

ward.

As a 
onsequen
e of the inequalities above, one 
an show that the 
orre-

lations present in the GHZ state are so strong that even if we allow for ex-

perimental errors, the non-existen
e of a joint distribution 
an still be veri�ed

[Barros and Suppes 2000℄.

Corollary Let A, B, and C be three ±1 random variables su
h that

(i) E(A) = E(B) = E(C) ≥ 1− ǫ,
(ii) E(ABC) ≤ −1 + ǫ,
where ǫ represents a de
rease of the observed GHZ 
orrelations due to ex-

perimental errors. Then, there 
annot exist a joint probability distribution

of A, B, and C if

ǫ <
1

2
. (16)

Proof: To see this, let us 
ompute the value of F de�ne above. We obtain at

on
e that

F = 3(1− ǫ)− (−1 + ǫ).

But the observed 
orrelations are only 
ompatible with a non
ontextual hid-

den variable theory if F ≤ 2, hen
e ǫ < 1

2
. Then, there 
annot exist a joint

probability distribution of A, B, and C satisfying (i) and (ii) if

ǫ <
1

2
. (17)
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From the inequality obtained above, it is 
lear that any experiment that

obtains GHZ-type 
orrelations stronger than 0.5 
annot have a joint proba-

bility distribution. For example, the re
ent experiment made at Innsbru
k

[Bouwemeester et al. 1999℄ with three-photon entangled states supports the quan-

tum me
hani
al result that no non
ontextual hidden variable exists that explain

their 
orrelations [Barros and Suppes 2000℄. Thus, with this reformulation of

the GHZ theorem it is possible to use strong, yet imperfe
t, experimental 
or-

relations to prove that a non
ontextual hidden-variable theory is in
ompatible

with the experimental results.

3 Upper and Lower Probabilities and the GHZ

theorem

We saw at the previous se
tion that quantum me
hani
s does not allow, for

some 
ases, the de�nition of a joint probability distribution for all the ob-

servables. However, if we weaken the probability axioms, it is possible to

prove that one 
an �nd a 
onsistent set of upper probabilities for the events

[Suppes and Zanotti 1991℄. Upper probabilities are de�ned in the following way.

Let Ω be a nonempty set, F a boolean algebra on Ω and P ∗
a real valued fun
-

tion on F. Then the triple (Ω, F, P ∗) is an upper probability if for all ξ1 and ξ2
in F we have that

(i) 0 ≤ P ∗(ξ1) ≤ 1,

(ii) P ∗(∅) = 0,

(iii) P ∗(Ω) = 1,

and if ξ1 and ξ2 are disjoint, i.e. ξ1 ∩ ξ2 = ∅, then

(iv) P ∗(ξ1 ∪ ξ2) ≤ P ∗(ξ1) + P ∗(ξ2).

As we 
an see, this last property weakens the standard axioms for probability,

as one of the 
onsequen
es of these axioms is that it may be true, for an upper

probability, that

ξ1 ⊆ ξ2 and P ∗(ξ1) > P ∗(ξ2),

a quite nonstandard property. In a similar way, lower probabilities are de�ned

as satisfying the triple (Ω, F, P∗) su
h that for all ξ1 and ξ2 in F we have that

(i) 0 ≤ P∗(ξ1) ≤ 1,

(ii) P∗(∅) = 0,

(iii) P∗(Ω) = 1,

and if ξ1 and ξ2 are disjoint, i.e. ξ1 ∩ ξ2 = ∅, then
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(iv) P∗(ξ1 ∪ ξ2) ≥ P∗(ξ1) + P∗(ξ2).

Let us see how upper and lower probabilities 
an be used to obtain joint upper

and lower probability distributions. We 
an start with the standard Bell's vari-

ables X, Y and Z, where ea
h random variable represents a di�erent angles for

the Stern-Gerla
h apparatus (we follow the example in [Suppes and Zanotti 1991℄).

In the experimental setup used by Bell, a two-parti
le system with entangled

spin state was used, and for that reason we 
an only measure two variables

at the same time. However, sin
e they are spin measurements, we have the


onstraint

P (X = 1) = P (Y = 1) = P (Z = 1) =
1

2
.

The question that Bell posed is whether we 
an �ll the missing values of the

data table in a way that is 
onsistent with the 
orrelations given by quantum

me
hani
s for the pairs of variables, that is, E(XY), E(XZ), E(YZ). It is well
known that for some sets of angles, the joint probability distribution of X, Y,
and Z exists, while for other set of angles it does not exist. We 
an prove that

the joint doesn't exist in the following way. We start with the values for the


orrelations used by Bell:

E(XY) = −
√
3

2
, (18)

E(XZ) = −
√
3

2
, (19)

E(YZ) = −1

2
. (20)

The 
orrelations above 
orrespond to the angles X̂Y = 30o, ŶZ = 30o and

X̂Z = 60o for the dete
tors, and require that

E(XY) = E(XY|Z = 1)P (Z = 1) + E(XY|Z = −1)P (Z = −1),

E(XZ) = E(XZ|Y = 1)P (Y = 1) + E(XZ|Y = −1)P (Y = −1),

E(YZ) = E(YZ|X = 1)P (X = 1) + E(YZ|X = −1)P (X = −1),

whi
h 
an be written as

2E(XY) = E(XY|Z = 1) + E(XY|Z = −1), (21)

2E(XZ) = E(XZ|Y = 1) + E(XZ|Y = −1), (22)

2E(YZ) = E(YZ|X = 1) + E(YZ|X = −1), (23)

be
ause P (Z = 1) = P (Z = −1), et
. Symmetry requires that

E(XY|Z = 1) = E(YZ|X = 1), (24)

E(XY|Z = −1) = E(YZ|X = −1) (25)

and if we use the requirement that all probabilities must sum to one we have

six equations and six unknown 
onditional expe
tations. It is easy to see that
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the system of linear equations (21)�(25) does not have a solution for the 
or-

relations shown in (18), hen
e no joint probability distribution exists. What

happened? The 
orrelations are too strong for us to �ll up a table with all the

experimental results, in
luding the ones that did not o

ur. One extreme exam-

ple 
an be obtained if we use the extreme 
ase of 
orrelation one expe
tations,

given by

E(XY) = −1,

E(YZ) = −1,

E(XZ) = −1,

where on
e again no joint probability distribution exists.

What 
hanges with upper probabilities? The system of linear equations (21)

be
omes a system of inequalities:

2E∗(XY) ≥ E∗(XY|Z = 1) + E∗(XY|Z = −1), (26)

2E∗(XZ) ≥ E∗(XZ|Y = 1) + E∗(XZ|Y = −1), (27)

2E∗(YZ) ≥ E∗(YZ|X = 1) + E∗(YZ|X = −1), (28)

plus the symmetry

E∗(XY|Z = 1) = E∗(YZ|X = 1), (29)

E∗(XY|Z = −1) = E∗(YZ|X = −1), (30)

and the fa
t that the sum of all upper probabilities must be greater or equal

than one. It is straightforward to obtain solutions to (26)�(30), and then we 
an

�nd upper probabilities that are 
onsistent with the 
onditional expe
tations.

The following theorem shows that the GHZ theorem fail if we allow lower

probabilities.

Theorem 3 Let A, B, and C be three ±1 random variables and let

(i) E∗(A) = E(A) = 1,
(ii) E∗(B) = E(B) = 1,
(iii) E∗(C) = E(C) = 1,
(iv) E∗(ABC) = E(ABC) = −1.
Then, there exist a lower joint probability distribution that is 
ompatible

with (i)�(iv).

Proof: We will prove this theorem by expli
itly 
onstru
ting a lower joint prob-

ability distribution. First, we note that

E∗(A) = P∗(a)− P∗(a) = 1,

E∗(B) = P∗(b)− P∗(b) = 1,

E∗(C) = P∗(c)− P∗(c) = 1,
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and hen
e

P∗(a) = 1, P∗(a) = 0, (31)

P∗(b) = 1, P∗(b) = 0, (32)

P∗(c) = 1 P∗(c) = 0. (33)

From the de�nition of lowers and from (31)�(33) we have

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) ≤ 1, (34)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) ≤ 1, (35)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) ≤ 1, (36)

and from (iv)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc)+ (37)

−P∗(abc)− P∗(abc)− P∗(abc)− P∗(abc) = −1. (38)

The lowers must also be superadditive in the whole probability spa
e, and we

have

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc)+ (39)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) ≤ 1. (40)

From (38) and (40) we have

P∗(abc) = P∗(abc) = P∗(abc) = P∗(abc) = 0

and the system redu
es to

P∗(abc) + P∗(abc) ≤ 1, (41)

P∗(abc) + P∗(abc) ≤ 1, (42)

P∗(abc) + P∗(abc) ≤ 1, (43)

P∗(abc) + P∗(abc) + P∗(abc) + P∗(abc) = 1. (44)

A possible solution for the system (41)�(44) is

P∗(abc) = P∗(abc) = P∗(abc) =
1

3

P∗(abc) = 0,

as we wanted to prove. In a similar way, we have the following:

Theorem 4 Let A, B, and C be three ±1 random variables and let

(i) E∗(A) = E(A) = 1,
(ii) E∗(B) = E(B) = 1,
(iii) E∗(C) = E(C) = 1,
(iv) E∗(ABC) = E(ABC) = −1.
Then, there exist an upper probability distribution that is 
ompatible with

(i)�(iv).
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Proof: Similar to the proof for the lower.

We note that the nonmonotoni
 upper and lower probabilities shown to exist

in Theorems 3 and 4 do not, be
ause of their nonmonotoni
ity, satisfy the usual

de�nitional relation between upper and lower probabilities, for any event A:

P ∗(A) = 1− P∗(A).

4 Final Remarks

To apply the upper probabilities to the GHZ theorem, we gave a probabilisti


random variable version of it. We then showed that, if we use upper probabil-

ities, the GHZ theorem does not hold anymore, and hen
e the in
onsisten
ies


annot be proved to exist for the upper probabilities. Su
h upper probabilities

are a natural way to deal with 
ontextual problems in statisti
s. Whether they

lead to fruitful theoreti
al developments in a new dire
tion is, however, an open

question.
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