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Abstract

In this paper we discuss the use of quantum mechanics to model psychological
experiments, starting by sharply contrasting the need of these models to use
quantum mechanical nonlocality instead of contextuality. We argue that con-
textuality, in the form of quantum interference, is the only relevant quantum
feature used. Nonlocality does not play a role in those models. Since contex-
tuality is also present in classical models, we propose that classical systems be
used to reproduce the quantum models used. We also discuss how classical
interference in the brain may lead to contextual processes, and what neural
mechanisms may account for it.
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1. Introduction

The human brain is arguably the most powerful computational device known.
The underlying mechanisms behind it are not yet revealed, though progress has
been made in recent years toward their understanding. One of the mysteries is
how fast the brain processes information, given that neurons are relatively slow.
In recent years, there has been an increasing number of researchers speculating
that the high processing speed of the brain and the emergence of consciousness
are due to quantum processes, perhaps even quantum computations (Ricciardi
and Umezawa, 1967; Eccles, 1986; Jahn and Dunne, 1986; Eccles, 1990; Beck
and Eccles, 1992; Vitiello, 1995; Hameroff, 1998; Thaheld, 2003; Kurita, 2005;
Schwartz et al., 2005; Khrennikov, 2006; Freeman and Vitiello, 2006).

Richard Feynman was one of the first persons to discuss quantum computers.
In Feynman (1996), he asked whether there were any advantages if the bits of
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information were treated as quantum mechanical superpositions. Some years
after Feynman’s remarks, Shor (1999) found a quantum algorithm that could
factor a prime number in polynomial time. Since no known classical algorithms
factors prime numbers that quickly, Shor’s work brought quantum computers
to the fore.

Quantum algorithms differ from classical ones because a single quantum
system can be represented by the linear superposition of possible orthogonal
states. If a particular state is not realized by the system, i.e., the system does
not collapse onto it, this state can interfere with other possible states. This
interference allows for multiple computations via different paths without the
system actually collapsing through those paths. In other words, a quantum
computer can work on potential realizations of computations. This should be
contrasted with a classical computer, which needs to step through each indi-
vidual computational path. The consequence is that quantum computers can
perform massively parallel “virtual” computations (Steane, 1998).

If the brain uses quantum computations, this could explain why it is so
fast. However, quantum computation has a difficulty. Despite a strong push to
build complex quantum computers, up to now none have been built. This is
due to a phenomenon called environmental decoherence (Omnes, 1994). When
a quantum system interacts with the environment, the phase of the state vec-
tor changes stochastically. Since interference between different states depends
on phase relations, the more environmentally induced phase changes, the less
visible interference will be. At some point, if decoherence is too strong, interfer-
ence disappears (Omnes, 1994). For quantum computers, the loss of coherence
increases exponentially with the number of digits. Consequently, experimental
realizations of quantum computers have, thus far, involved only a very small
number of bits.

Notwithstanding, the perspective of quantum computation in the brain, a
device that operates at relatively high temperatures, is tantalizing. For in-
stance, Penrose and Hameroff (Hameroff, 1998; Penrose, 1994, 1989) proposed
that quantum computations might be feasible in protected environments of mi-
crotubules in the neurons. In a detailed analysis of different environmental
sources of decoherence in the brain, Tegmark (2000) pointed out that the time
scale for decoherence is orders of magnitude faster than those calculated by Pen-
rose and Hameroff. Hagan et al. (2002) claimed that Tegmark’s work did not
address correctly the model proposed by Penrose and Hameroff, and if you took
into account the correct dimensions at play, the decoherence time computed by
Tegmark could be order of magnitude bigger. However, Rosa and Faber (2004)
showed that Hagan et al. (2002) did not use Tegmark’s equations under the
correct assumptions, and thus the decoherence time would indeed be smaller
than estimated by Hameroff (1998). In any case, as Davies (2004) points out,
there seems to be lots of wishful thinking on both sides of this discussion, and
quantum processing in the brain won’t be widely accepted until quantum su-
perpositions are shown to exist in some special cases in the brain. As it stands,
it seems that even for microtubules, environmental decoherence would happen
so quickly as to render it improbable, though not impossible, that the brain
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uses any quantum computations. It is hard to imagine any protected region
of the brain where quantum interference could occur without fast decoherence.
Despite this, there is a large volume of research on quantum aspects of the brain.

In this paper we show that quantum-like effects can be present in the brain
without an underlying quantum process. Our argument will be presented in the
following way. In Section 2 we briefly describe the characteristics of quantum
mechanics that are considered non-classical. In Section 2.4, we discuss the main
empirical arguments in favor of quantum effects in the brain, and we stress
that their main characteristic is the contextuality of observables. In Section 3,
we argue that the contextual outcomes of experiments of Section 2.4 can be
modeled by classical interference. We end with some remarks on what might be
the origin of interference in the brain.

2. Quantum mechanics and the nature of reality

Quantum mechanics is extremely successful in describing nature. But, more
than a century after its initial formulation, the meaning of this description is
still a matter of intense debate. The main points of discussion are the follow-
ing. (i) Nondeterminism; (ii) contextuality; (iii) Nonlocality. In this section we
will analyze each point, and bring out the features that we deem relevant to
quantum-mechanical models of the brain.

2.1. Nondeterminism

The nondeterministic nature of the atomic world was first pointed out by
Rutherford (Pais, 1986). Because the radioactive decay is exponential, Ruther-
ford recognized that it followed from a memoryless process, where the instan-
taneous rate of decay is proportional to the number of radioactive atoms left
at the time. Since a decay does not depend on the state of the system on ear-
lier times, the underlying theory of it should be nondeterministic. Bohr used
a similar argument to explain the spectral lines of the hydrogen atom, and
when Schrödinger used his wave equation to explain those very same spectral
lines, Born interpreted the complex quantum wave as a probability density when
squared.

When the founders of QM were trying to make sense of it, they were unaware
of the subtle but profound differences between determinism and predictability.
The experimental data in QM shows that it is not possible to use the current
state of the system to predict the outcomes of future experiments. However,
the data do not tell us that the underlying dynamics generating the outcomes
of the experiments is not deterministic. To make this point clearer, we examine
an example (Sinai, 1959, 1970). Let us say we have a billiard table, and on this
table a single billiard ball, modeled by a point particle. Let us also assume that
the dynamics underlying the movement of the ball is completely deterministic,
and given by the Newtonian law that the angle of reflection is equal to the angle
of incidence. Sinai proved that if we insert a convex object in the middle of
the billiard table, the movement of the ball changes from non-ergodic to ergodic
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(Sinai, 1970). Later on, Ornstein (Ornstein and Weiss, 1991) showed that if
we allowed for a small error α in the measurement of the phase space, a Sinai
billiard with deterministic dynamics would be indistinguishable from one with
nondeterministic dynamics. In other words, Sinai’s billiard is so unpredictable
and chaotic that we cannot tell whether the underlying dynamics generating the
trajectories is deterministic or not 1.

Thus, what the founders of quantum mechanics thought to be a major differ-
ence between quantum and classical physics is not necessarily so. The observed
unpredictable behavior of quantum phenomena is present in some classical sys-
tems. In some sense, the claim that quantum physics was different from clas-
sical physics might have originated from confusion between determinism and
predictability (Suppes, 1984, 2002). It is possible that the underlying dynamics
of quantum phenomena is deterministic, and that it is impossible to distinguish
it from a nondeterministic model. In fact, a deterministic model that yields
all the same observable predictions of non-relativistic quantum mechanics was
proposed by Bohm (1952a,b).

2.2. Contextuality
Early in the 20th Century, it became clear that microscopic particles could

sometimes behave like a particle and sometimes like a wave. To describe the
dual dynamics of a particle, a wave propagating in space and time was used
to represent the wave-like characteristics of the particle. This wave was repre-
sented by a complex-valued function ψ(r, t), and experimental data indicated a
wavelength proportional to the particle’s momentum. The meaning of the ψ-
function was unclear until Max Born proposed that its absolute value, |ψ(r, t)|2,
was the probability density of finding the particle at position r and time t if a
measurement was made. Because momentum is associated with wavelength and
position with |ψ|2, it follows that the values of momentum and position for a
particle are not simultaneously well defined (von Neumann, 1932/1996). This is
reflected in the canonical quantization rule that replaces the classical dynamics
generated by the Poisson brackets with the commutator of the corresponding
operators (Dirac, 1982, 2001). Let us consider a classical system satisfying the
equations with Hamiltonian H:

dp

dt
= {p,H} , (1)

dq

dt
= {q,H} , (2)

where H = H (q, p) is the Hamiltonian, q the generalized coordinate, and p the
canonically conjugated momentum to q, i.e. {q, p} = 1. To find the dynamics of
the corresponding quantum system, we apply the canonical quantization rule.

1Sinai’s billiard can be used to show a stochastic behavior of photon trajectories in a
realistic model of quantum mechanics. See, for example, Suppes and de Barros (1994a,b,
1996).
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Figure 1: Context-dependent light detection.

First, we substitute for each dynamical variable a quantum observable corre-
sponding to it, i.e., q → Q̂, p → P̂ , and H → H(Q̂, P̂ ). Then we replace the
Poisson brackets in (1) and (2) for the commutator times i~. Equations (1) and
(2) become

dP̂

dt
= i~

[
P̂ , Ĥ

]
,

dQ̂

dt
= i~

[
Q̂, Ĥ

]
.

Finally, to preserve the symplectic algebra of the Poisson brackets, we also
need to impose that [Q̂, P̂ ] = i~. Since in an experiment we can only obtain
eigenvalues of the observable, when a measurement is performed the wave vector
collapses to one of its eigenvectors (von Neumann, 1932/1996). It follows from
the noncommutativity of Q̂ and P̂ that there are eigenvectors of Q̂ that cannot
be eigenvectors of P̂ . Thus, if we measure Q̂, and then P̂ , and then Q̂ again,
we may obtain a different result for the second measurement of Q̂. The act of
measuring P̂ “destroys” the properties associated with Q̂.

Though the noncommutativity of observables is a surprising characteristic
of quantum mechanics, we want to make a point that there is nothing “spooky”
about it. In fact, there are many cases of observables that change their values
depending on the order in which we measure them, both inside and outside of
physics. For instance, asking the same questions in different orders sometimes
yield different response distributions (Weinberger et al., 2006). But, more im-
portantly, the contextuality of measurements exist in classical physics. To see
this, let us spell out an example using classical coherent light. The apparatus
we will be using is sketched in Figure 1 A monochromatic electromagnetic field
generated by a laser can be thought of as a classical field. If we disregard po-
larization, we can represent this field propagating in the vacuum and in the x̂
direction as

E(r, t) = A sin(ωt+ k · r). (3)

In (3), ω/2π is the frequency, and k = kx̂ is the wave vector, with k = ω/c.
From (3), we see that the electric field arriving from the laser at the beam
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splitter BS1 is E(r1, t) = A sin(ωt + θ), where θ = k · r1 is a fixed phase. The
50–50 beam splitter BS1 then splits the light into two beams of equal intensity.
When reflected, light acquires an additional phase of π/2, and after BS1 we
have

E(r, t) =
A

2
sin(ωt+ k · r + θ) +

A

2
sin(ωt− k′ · r + θ +

π

2
),

where k′ = kŷ. Upon reflection on the mirrors M , and passing through the
phase shifters α1 and α2 and thereafter the second beam splitter BS2, the fields
at D1 and D2 become

E(rD1 , t) =
A

4
sin(ωt+ θ′ + α1 + π) +

A

4
sin(ωt+ θ′ + α2 + π), (4)

and

E(rD2 , t) =
A

4
sin(ωt+ θ′ + α1 +

π

2
) +

A

4
sin(ωt+ θ′ + α2 +

3π
2

). (5)

In the above equations, we assumed that the interferometer in Figure 1 has
arms of equal length, and therefore the distance dependent phase factor coming
from the term k · r is the same for all beams reaching D1 and D2. To compute
the light intensity reaching D1 and D2, it is easier if we rewrite (4) and (5) in
complex notation, and they become

E(rD1 , t) =
A

4

(
ei(ωt+α1+π) + ei(ωt+α2+π)

)
,

and
E(rD2 , t) =

A

4

(
ei(ωt+α1+π/2) + ei(ωt+α2+3π/2)

)
.

If we now compute the intensities of the fields I1 and I2 at D1 and D2, we obtain
at once

I1 = |E(rD1 , t)|
2

=
A2

8

(
2 + ei(α1−α2) + e−i(α1−α2)

)
=

A2

4
(1 + cos(α1 − α2)) ,

and

I2 =
A2

4
(1− cos(α1 − α2)) .

That this result shows contextuality follows from Bell’s inequalities, as it is
straightforward to show that the correlations between I1 and I2 violate them.

Bell’s inequalities were proposed in the context of quantum mechanical non-
locality (Einstein et al., 1935; Bell, 1966; Clauser and Shimony, 1978). However,
Bell’s inequalities have a meaning that is independent of Physical models. To
understand its meaning, let us start with three ±1-valued random variables, A,
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Run A B C
1 −1 · −1
2 1 · −1
3 · · 1
4 · −1 ·
5 1 1 ·
6 · · 1

7
...

...
...

Table 1: Hypothetical experiment showing the outcomes of A, B, and C. The outcome of
each measurement is either +1 or −1. If a variable is not measured, this is represented by a
“ ·”.

B, and C, each with expectations equal to zero (e.g., E(A) = 0). Let us further
assume that the experimental setup is such that we cannot measure the three
random variables simultaneously, but only in pairs. An example of how data
from such variables could look like is shown in Table 1. Clearly, the only directly
measurable correlations are E(AB), E(AC), and E(BC). So, it is reasonable
to ask, in some situations, whether we can infer the value of the triple moment
E(ABC). In other words, can we find values for the missing data on Table 1
that are consistent with the measurable correlations? The answer is yes, if the
inequalities

−1 ≤ E(AB) + E(AC) + E(BC) ≤ 1 + 2 min {E(AB), E(AC), E(BC)} (6)

are satisfied. If, for some reason, the experimental data violate the above in-
equalities, it is not possible to fill the data table with the missing values in a way
consistent with the observed correlations. In other words, the random variables
A, B, and C do not have a joint probability distribution (Suppes and Zanotti,
1981).

To clarify the meaning of the nonexistence of a joint probability distribution
and its relationship to contextuality, let us look at the Theorem of Common
Causes, proved by Suppes and Zanotti (1981). This theorem states that, for a
set of two-valued random variables, it is always possible to find a common cause
λ that factorizes their probabilities if and only if there exists a joint probability
distribution. In other words, we can find a λ such that

P (A = 1,B = 1,C = 1) = P (A = 1|λ = λ)P (B = 1|λ = λ)P (C = 1|λ = λ)

if A, B, and C have a joint probability distribution. Now, if a joint probability
does not exist, a common cause λ that can explain the correlations cannot exist
either. However, pairwise joints exist, as we measure the correlations between
A, B, and C. Thus, for each pair, we can construct a λ, say λAB, λBC, and
λAC. We can think of each of those pairwise common causes as related to the
context of the measurement (Svozil, 2005). Thus, the nonexistence of a common
cause for all measurements implies the nonexistence of a common context for



2.3 Non-locality 8

all correlations, and we can say that if there is no joint probability distribution
we have contextuality.

So, the fact that I1 and I2, as above constructed, violate Bell’s inequalities
means that they do not allow for the existence of a joint probability distribution.
A reader familiar with Bell’s inequalities might argue that I1 and I2 are contin-
uous variables, and that (6) was derived for ±1-valued random variables . This
is not in itself a problem, since there can then be no hidden variable that factors
out the correlations conditionally because the correlation matrix for I1 and I2 is
not nonnegative definite (Suppes and Zanotti, 1981; Holland and Rosenbaum,
1986). But if we wish to obtain correlations that are discrete, all we need is to
associate to each intensity a random variable corresponding to the detection of
a single particle (in this case a photon), and to conditionalize the measurement
to two-photon detections (Suppes et al., 1996a). Since a violation of Bell’s in-
equalities imply the nonexistence of a joint probability distribution Suppes and
Zanotti (1981), this classical field example shows a contextual measurement.
The context in this case comes from choosing two sets of angles, α1, α′1, α2, and
α′2. Since we can’t measure the field with the settings α1 and α′1 simultaneously,
we need to choose which one to measure, and its value is affected by those of
α2 and α′2 (the context).

An alert reader may object to the choice of excluding events that produced
two particle detections, as this could require superluminal communication for
spacelike separated events. We emphasize that given the dimensions of the
brain and the characteristic times involved in cognitive computations, we are
very skeptical that superluminal correlations of spacelike separated events are
relevant in the brain. So, for our purposes no superluminal signaling would
be required. However, even without superluminal signaling, a local model of
photons that violate Bells inequalities can be constructed using ideas similar
to those shown above (see Suppes, de Barros, and Sant’Anna (1996b) for an
example).

2.3. Non-locality

The main question regarding the interpretation of quantum mechanics re-
volves around the meaning of a state vector or wave function. One way to
approach this problem is to say that this vector, whose projected absolute value
gives the probability of an observable, is a representation of hidden states that,
when averaged, form the “stuff” that we measure. A theory that uses underlying
physical objects that would yield the outcomes of measurement with the same
probabilities predicted by quantum mechanics is known as a hidden-variable
theory. The contextuality of some quantum mechanical measurements implies,
as we discussed above, that there are no hidden variables that can explain the
outcomes of those experiments2.

2There are many examples of hidden-variable theories that reproduce the outcomes of
quantum mechanics. A historically important one, as it was the first hidden-variable theory
to predict the same outcomes as quantum mechanics, is Bohm’s interpretation of quantum
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But to physicists, the main problem with quantum mechanics is that it is
not possible to find a set of common hidden variables that factor the outcomes
of experiments that are separated by a spacelike interval. This nonlocality is un-
acceptable, since it seems to conflict with special relativity. In fact, nonlocality
was the reason behind the rejection by many physicists, including Einstein, of
Bohm’s theory, andfor many years physicists tried to construct a local hidden-
variable theory. However, in his seminal paper, John Bell (1966) showed that
such a theory was not compatible with the predictions of quantum mechanics.
Experiments conducted by Aspect and collaborators (Aspect et al., 1982a,b)
showed that quantum mechanics was indeed correct, burying for many the pos-
sibility of a local hidden-variable theory3.

2.4. Quantum Mechanics and the Brain

As we mentioned in Section 2, the nondeterministic aspect of quantum me-
chanics was considered by many physicists to be a major rupture with classical
Newtonian physics and a unavoidable characteristic of the microscopic world.
Before we talk about the relationship between quantummechanics and the brain,
it is important to discuss how nondeterminism appears in the theory. Quan-
tum mechanical systems are described by a state vector belonging to a Hilbert
space. In the simple case of a single particle, this vector is often represented
by a complex wave in three-dimensional space. Under “normal” conditions, the
evolution of a quantum system is described by Schrödinger’s equation

i~
d

dt
|ψ〉 = Ĥ|ψ〉,

where Ĥ is the Hamiltonian operator. Schrödinger’s equation is a first-order dif-
ferential equation, and the state of the system at time t0 completely determines
the state at time t > t0. So, where is quantum mechanics nondeterministic?
The answer to this question, according to Bohr, lies in the measurement pro-
cess. When we measure an observable Â, the original state vector collapses to
one of the eigenvectors of the observable operator. This collapse happens in
a nondeterministic way, with the probabilities for each collapse given by the

mechanics. In it, the quantum behavior of a particle is explained by the effects of a pilot
wave (Bohm, 1952a,b). A reader familiar with this theory may be confused by our claim of
non-existence of hidden variables. We point out that in the single-particle version of Bohm’s
theory the hidden variable itself is contextual, as the pilot wave must satisfy the different
boundary conditions imposed by different measuring apparatus. Furthermore, for more than
one particle, the theory is not only contextual, but highly nonlocal.

3Many other theories or interpretations of quantum mechanics exist, like the many
worlds(Everett III, 1957), Nelson’s stochastic mechanics (Nelson, 1985), the prism models
(Fine, 1982a,b; Szabo and Fine, 2002; Everett III, 1957), or t’Hooft’s theory (‘T Hooft, 2001).
But, eventually, those theories need to address the issue of non-locality. Often they do so
by either postulating some unmeasurable observables, like prism models, and thus relying on
measurement inefficiency, or simply by having underlying non-local interactions, like Nelson’s
mechanics.
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square of the absolute value of the coefficients of the decomposition of the vec-
tor into the eigenstates of Â (von Neumann, 1932/1996). In other words, the
evolution of a quantum system is deterministic most of the time, except when a
measurement is made.

A measurement, though, is the interaction of a measuring apparatus with
the system being measured. This interaction happens in such a way that the
final state of the measuring apparatus correlates to the value of the measured
property of the system. Of course, the state of the system composed of the
measurement apparatus and the measured object should itself be described by
a state vector, and its evolution should follow Schrödinger’s equation. This
presents a problem; nowhere in this description is there room for a probabilistic
collapse of the state, since the evolution is dictated by a deterministic equation.
To introduce this nondeterminism, we have to introduced another measurement
apparatus that measures our original measurement apparatus, and hence we
fall into an infinite regression. This need of a measurement of the measurement
apparatus is what is historically known as the measurement problem.

To tackle the measurement problem, some physicists started asking when the
infinite regression of measurements would end. To some, there was a natural
final measuring device: the human mind. This lead some prominent physicists
to seek a connection between the brain and quantum physics. The early focus for
this connection was, and still often continues to be, on the measuring process.
Niels Bohr was one of the first to point out the apparently dual nature of a
macroscopic observer measuring and thereby disturbing in some sense, by the
very physical nature of the measurement process, the quantum system being
observed (Pais, 1986). Some physicists, like Erwin Schroedinger (1996) and
Bohm (1990), even proposed a dualistic view of mind and brain to address the
measurement problem. But one of the most prominent current proponents of
brain and quantum mechanical connection, Roger Penrose, is not sympathetic
to “dualistic mind” views:“In my own opinion, it is not very helpful, from the
scientific point of view, to think of a dualistic ‘mind’ that is (logically) external
to the body, somehow influencing the choices that seem to arise in the action of
R [state vector reduction]. If the ‘will’ could somehow influence Nature’s choice
of alternative that occurs with R, then why is an experimenter not able, by the
action of ‘will power’, to influence the result of a quantum experiment? If this
were possible, then violations of the quantum probabilities would surely be rife!
For myself, I cannot believe that such a picture can be close to the truth. To
have an external ‘mind-stuff’ that is not itself subject to physical laws is taking
us outside anything that could be reasonably called a scientific explanation”
(Penrose, 1994, p. 350). We agree with Penrose on the issue of dualism.

Though historically the connection between quantum mechanics and the
brain started with the measurement problem, nowadays lots of attention has
been focused on the brain as a quantum computer. The brain’s extraordinary
computational power led several scientists, Penrose included, to suggest that it
uses quantum computation, as we mentioned in Section 1. We will not examine
this topic in detail, but a good informal yet careful review of the reasons for
skepticism about this claim has been given recently by Koch and Hepp (2006).
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Some detailed negative arguments based on the rapid decoherence process of
entangled quantum particles in most environments are to be found in Tegmark
(2000). So we shall not explore here the issue of decoherence. Instead, we
approach the relation between quantum phenomena and the brain by asking
what kinds of quantum computations are often proposed, and to see if those
computations can be reproduced by classical processes. This is the main goal
of the next section.

3. Fields, oscillators, and the brain

Though quantum mechanics received lots of attention with Penrose’s pro-
posal that quantum computation is related to consciousness, other researchers
see quantum mechanics as a possible mechanism for other cognitive processes.
For example, Khrennikov and Haven (2007) claim that quantum probability in-
terference is present in social phenomena as well as in cognition . In a more
detailed and, in our opinion, interesting paper, Busemeyer et al. (2006) ana-
lyzed the dynamics of human decision-making, and showed that not only purely
Markov models didn’t fit the data well, but a better fit could be achieved by us-
ing quantum dynamics. Because of its better fit to the data and the straightfor-
ward distinction between quantum and classical dynamics made by Busemeyer
et al. (2006), we will discuss this work in some detail.

3.1. Interference
Our goal will be to show that indeed interference is an important factor

because of the contextuality of the observers. In resonance with our earlier
remarks, it is our claim that quantum mechanics is not necessary to reproduce
the kind of contextuality needed for brain processes. The reason is the lack
of a need to correlate contextual measurements made in spacelike separated
regions of spacetime. Such contextuality could then, in principle, be accounted
for by classical interference. So, in this section, we will construct a dynamic
model using classical interference that reproduces the quantum dynamics used
by Busemeyer et al. (2006).

3.2. The Quantum Mechanical model
We start with Busemeyer et al. (2006) analysis of quantum dynamics of

a state that undergoes successive transformations. Let us begin with |ψ〉 ∈ H,
whereH is the Hilbert space representing the system (von Neumann, 1932/1996;
Dirac, 1982; Cohen-Tannoudji et al., 1977). The process is represented by Figure
2. Since D1 and D2 are detectors that measure the system, we would like to
know how to determines the probabilities P (D1) and P (D2) of observing the
system at D1 and D2.

We note that a similar concept to this concept of interference in classical
optics has been used in psychological phenomena of learning since early in the
20th century, if not earlier. The basic idea is that past learning can interfere
with learning a new related concept or behavior that has serious overlap with
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D2

|+>A

|−>A

Bt

Bb

|ψ>

D1

A

Figure 2: Successive measurements of a state |ψ〉. The state |ψ〉 goes through a device A that
split it into two new orthogonal states, denoted |+〉A and |−〉A. The two states are then fed
into two identical devices, Bt and Bb, and each device split the beams into two new orthogonal
states, |+〉B and |−〉B , such that they are recombined, as shown, at detectors D1 and D2.
We assume that the observables associated to A do not commute with B.

the old. As an example studied experimentally in Suppes (1965), children at
about the age of five years old can learn rather easily when two finite sets are
identical. But this learning interferes with learning the concept of two sets being
equivalent, i.e., having the same number of members. A neural network that
models this result is given in Suppes and Liang (1998). In the psychological
literature, interference is often labeled negative transfer, with a corresponding
meaning attached to positive transfer, as in positive interference familiar in
physical optics.

Probabilities with interference. The vector state |ψ〉 that enters A comes out
of it as a superposition of the two states

eiθt
√
a+|+〉A + eiθb

√
1− a+ |−〉A.

Since the state vector |+〉A (|−〉A) goes into Bt (Bb), it also splits into the final
states going to the detectors, and we have

eiθt
√
a+|+〉A + eiθb

√
1− a+ |−〉A → a+e

iθt

(√
1− a+√
a+

|D1〉+ |D2〉
)

+

(1− a+) eiθb

( √
a+√

1− a+

|D1〉+ |D2〉

)
.

Rewriting the right hand term, we get(
eiθt + eiθb

)√
a+

√
1− a+ |D1〉+

(
eiθta+ + eiθb

(
1− a+

))
|D2〉.

The probability P (D1) is then given by

P (D1) =
∣∣(eiθt + eiθb

)√
a+

√
1− a+

∣∣2
= 2a+

(
1− a+

)
[1 + cos (θt − θb)] .

This expression clearly shows an interference term reflecting the phase differ-
ences in the superposition. In fact, without changing the probabilities of ob-
servations of Bb and Bt, we could change the final probabilities of D1 and D2

by introducing phase parameters θi that would change the interference patterns
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at the detectors. These interference effects are not present in the Markovian
models, but form the core of the quantum mechanical models discussed by
Busemeyer et al. (2006).

Probabilities with environmental decoherence. No system is truly isolated,
and the interaction of a quantum system with the surrounding environment
leads to a process called environmental decoherence (Omnes, 1994). The con-
sequence of decoherence for our quantum model described above is that the
phase relations quickly disappear. So, as before, immediately after A, the state
becomes

eiθt
√
a+|+〉A + eiθb

√
1− a+ |−〉A,

where θt and θb are phases that may be introduced by some physical process.
However, as the system interacts with the noisy environment, the above state
evolves into a proper mixture of |+〉A and |−〉A. The probabilities are given by
the absolute value of the coefficients, i.e. P (|+〉A||ψ〉) =

∣∣eiθt
√
a+

∣∣2 = a+ and
P (|−〉A||ψ〉) =

∣∣eiθb
√

1− a+

∣∣2 = 1 − a+. As we can see from the conditional
probabilities just computed, there is no dependence on the phases θb and θt.
Once the system reaches Bt or Bb, we have a new evolution of the states, until
they reach D1 and D2, and we also have those probabilities not depending on
phase due to decoherence. If we set P (D1||+〉A) = 1 − a+, P (D2||+〉A) = a+,
P (D1||−〉A) = a+, and P (D2||−〉A) = 1 − a+, the probability P (D1) follows
from a direct computation as

P (D1) = 2a+(1− a+). (7)

Similar computations can be carried out for D2.
It is interesting to note that the probability in (7) is similar to the Markovian

model presented by Busemeyer et al. (2006), as well as their quantum model
with measurement. This should not come as a surprise, since decoherence is
responsible for the classical behavior of quantum systems.

3.3. Classical Oscillator Model
Classical fields yield results that are similar to the quantum mechanical

ones when we have no decoherence. Since we are not interested in the field
propagation dynamics, we will focus only on its behavior in time at a fixed
point. Thus, in this model we replace the state |ψ〉 with a field oscillating in
time, represented by the oscillator ψ(t) = eiωt. The intensity of oscillation is
normalized, i.e. I = ψ∗(t) · ψ(t) = 1. We can model each measurement as a
beam splitter, such that the beam going to Bt is represented by the oscillators
ψ+(t) = √a+e

i(ωt+θt) and to Bb is ψ−(t) =
√

1− a+e
i(ωt+θb), where θt and

θb are adjustable phases added to the field. If we measure the field at each
branch, Bt and Bb, we obtain a+ and 1 − a+. We can, if we wish, define
±1-valued random variables representing a detection at Bt and Bb, and have
them proportional to a+ and 1 − a+, thus reproducing the same behavior as
the Markov process. Finally, at each node Bt and Bb, the field splits again, and
new phases are added. If we look at D1, we would observe the following.

FD1 =
√
a+

√
1− a+e

i(ωt+θt) +
√

1− a+
√
a+e

i(ωt+θb).
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The intensity is

ID1 = |FD1 |
= 2a+ (1− a+) [1 + cos(θt − θb)] . (8)

The cos(θt − θb) is the typical interference term, similar to the quantum me-
chanical one. Once again, we could associate to detectors D1 and D2 ±1-valued
random variables and reproduce the quantum-mechanical measurements.

To model with oscillators a Markovian process, we would need to remove
all interference effects. With oscillators, this can be done by adding to each
step that corresponds to a quantum measurement, say Bt, a stochastic phase
represented by a random variable θ uniformly distributed on the interval [0, 2π].
Because at each run the phase relations change, the mean of the cos term in
Equation 8 is zero, and the probability P (D1) ∝ 2a+ (1− a+) would reduce to
the Markovian one, with no interference term.

Other purely probabilistic models using oscillators can be constructed. For
example, in Suppes and de Barros (1994b,a), a random-walk model was used
to produce interference patterns with particles with well-defined trajectories.
Even though the particles used in the above articles are far from what one
would consider classical, they only interacted locally and probabilistically. An-
other possible approach could be that of Khrennikov (2005); Conte et al. (2007),
where each context would require the definition of a set of classical-like variables.
Nevertheless, these approaches are meant to reproduce quantum mechanical re-
sults, and are significantly richer than the simple model presented above. In
fact, we should point out that, contrary to Suppes and de Barros (1994b,a);
Khrennikov (2005); Conte et al. (2007), the oscillator approach shown above is
purely classical. A classical approach is possible because we can choose frequen-
cies ω that are very small compared to frequencies that would be associated to
superluminal (and therefore nonlocal) processes. In other words, to have non-
locality, the brain would have to operate with frequencies of the order of GHz,
which we believe is an unreasonable assumption.

4. Final Remarks

In a previous paper (Suppes and de Barros, 2007), we analyzed quantum
effects in the brain from a different perspective, as a consequence of an eye
photodetector being able to measure single photon states. In this paper we
continued the analysis by making a distinction between nonlocality and con-
textuality, and asking if quantum effects are really necessary beyond the ones
presented in (Suppes and de Barros, 2007). In some sense, nonlocality and con-
textuality are intimately related, since the former requires the latter to happen
with contexts that are changed in a spacelike way. However, when taken by
itself, contextuality is not a surprising phenomena, but a rather common one,
whereas nonlocality is still a disturbing characteristic of quantum mechanics.

In our opinion, what is interesting about works like Busemeyer et al. (2006)
and Khrennikov and Haven (2007) is not their use of quantum dynamics, but the
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implied contextuality of observables that is a consequence of quantum interfer-
ence. Our claim is that they seem to show compelling evidence that interference
may play an important role in cognitive processes, but that this interference need
not be of quantum origin.

If we have interference, then what is its origin? We believe there is a natural
mechanics in the brain for this type of interference: neural oscillators. There is
evidence that neuron synchronization plays an important role in higher cogni-
tive processes. Neural oscillators, made up of collections of synchronized neurons
are apparently ubiquitous in the brain, and their oscillations are macroscopi-
cally observable in electroencephalograms (Gerstner and Kistler, 2002; Freeman,
1979; Wright and Liley, 1995). These neural synchronizations happen because
of oscillations around equilibrium points in the phase space of neural networks
(Izhikevich, 1999, 2007). Detailed theoretical analysis of weakly interacting neu-
rons close to a bifurcation show oscillations (Gerstner and Kistler, 2002; Hop-
pensteadt and Izhikevich, 1996a,b; Izhikevich, 2007). Cortical oscillations may
propagate in the cortex as if they were waves (Nunez and Srinivasan, 2006). Fur-
thermore, synchronized cortical oscillations in different regions of the cortex are
related to some cognitive processes and perhaps even consciousness (Bush and
Sejnowski, 1996; Massimini et al., 2005; Ritz and Sejnowski, 1997; Izhikevich,
1999; Kazanovich and Borisyuk, 2002; Srinivasan et al., 1999; Tallon-Baudry
et al., 2001; Tonnelier et al., 1999; Tononi and Edelman, 1998; Ward, 2003).
Many experiments not only show the presence of oscillators in the brain (Eck-
horn et al., 1988; Friedrich et al., 2004; Kazantsev et al., 2004; Lutz et al., 2002;
Murthy and Fetz, 1992; Rees et al., 2002; Rodriguez et al., 1999; Sompolin-
sky et al., 1990; Tallon-Baudry et al., 2001; Steinmetz et al., 2000; Wang, 1995),
but also that their synchronization is related to perceptual processing (Friedrich
et al., 2004; Kazantsev et al., 2004; Leznik et al., 2002; Murthy and Fetz, 1992;
Sompolinsky et al., 1990) and may play a role in solving the binding problem
(Eckhorn et al., 1988). Neural oscillators have already been used to model a
wide range of brain functions, such as pyramidal cells (Lytton and Sejnowski,
1991), effects of electric fields in epilepsy (Park et al., 2003), activities in the cat
visual cortex (Sompolinsky et al., 1990), learning of songs by birds (Trevisan
et al., 2005), and coordinated finger tapping (Yamanishi et al., 1980). Suppes
and Han (2000) showed that a small number of frequencies can be used to recog-
nize a verbal stimulus from EEG data, consistent with the brain representation
of language being neural oscillators. Our claim is that the neural oscillations
may play the role of a wave source, with a wave propagating to another cortical
region and interfering with other sources. This type of interference would be
contextual, in the sense described above, and would be an important process in
cognitive computations by the brain.
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