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Abstract: In this paper we analyze the existence of joint probabilities
for the Bell-type and GHZ entangled states. We then propose the usage of
nonmonotonic upper probabilities as a tool to derive consistent joint upper
probabilities for the contextual hidden variables. Finally, we show that for
the extreme example of no error, the GHZ state allows for the definition of
a joint upper probability that is consistent with the strong correlations.
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DESIGUALDADES PROBABILÍSTICAS E PROBABILIDADES
SUPERIORES ENVOLVENDO SUPERPOSIÇÕES QUÂNTICAS

Resumo: Neste artigo analisamos a existência de probabilidades conjun-
tas para estados emaranhados dos tipos Bell e GHZ. Propomos então o uso
de probabilidades superiores não-monotônicas como uma ferramenta para
derivar probabilidades superiores conjuntas consistentes para as variáveis
ocultas contextuais. Finalmente, mostramos que para um exemplo extremo
de não haver erro, o estado GHZ permite a definição de uma probabilidade
superior conjunta que é consistente com as correlações fortes.

Palavras chave: Probabilidade superior. Estados emaranhados tipo Bell e
GHZ. Variáveis ocultas contextuais
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1 Introduction
The issue of the completeness of quantum mechanics has been a subject of
intense research for almost a century. One of the most influential papers
is undoubtedly that of Einstein, Podolski and Rosen (1935), where, after
analyzing entangled two-particle states, concluded that quantum mechanics
could not be considered a complete theory. In 1963 John Bell showed that
not only was quantum mechanics incomplete but, if one wanted a complete
description of local reality, one would obtain correlations that are incompat-
ible with the ones predicted by quantum mechanics. This happens because
some quantum mechanical states do not allow for the existence of joint prob-
ability distributions of all the possible outcomes of experiments. If a joint
distribution were to exist, then one could consistently create a local hidden
variable that would factor this distribution. The nonexistence of local hidden
variables that would “complete” quantum mechanics, and hence the nonex-
istence of joint probability distributions, was confirmed experimentally by
Aspect, Dalibard, and Roger (1982). They showed, in a series of beautifully
designed experiments, that an entangled photon state of the form

| i =
1p
2
(| +�i � |�+i),

(where |+�i ⌘ |+i
A

⌦ |�i
B

represents, for example, two photons A and B

with helicity +1 and �1, respectively) violates the Clauser-Horne-Shimony-
Holt form of Bell’s inequalities, as predicted by quantum mechanical com-
putations.

The nonexistence of joint probability distributions also comes into play in
the consistent-history interpretation of quantum mechanics. In this interpre-
tation, each sequence of properties for a given quantum mechanical system
represents a possible history for this system, and a set of such histories is
called a family of histories. A family of consistent histories is one that has
a joint probability distribution for all possible histories in this family. One
can easily show that quantum mechanics implies the nonexistence of such
probability functions for some families of histories. Families of histories that
do not have a joint probability distribution are called inconsistent histories.

Another important example, also related to the nonexistence of a joint
probability distribution, is the famous Kochen-Specker theorem, which shows
that a given hidden-variable theory that is consistent with the quantum
mechanical results has to be contextual, i.e., the hidden variable has to
depend on the values of the actual experimental settings, regardless of how
far apart the actual components of the experiment are located.

Manuscrito — Rev. Int. Fil., Campinas, v. 33, n. 1, pp. 55-71, jan.-jun. 2010.



57

More recently, a marriage between Bell’s inequalities and the Kochen-
Specker theorem led to the Greenberger-Horne-Zeilinger (GHZ) theorem.
The GHZ theorem shows that if one assumes that one can consistently assign
values to the outcomes of a measurement before the measure is performed,
a contradiction arises. Once again, having a complete data table would
allow us to compute the joint probability distribution, and therefore no joint
distribution exists that is consistent with quantum mechanical results.

Although it is sometimes remarked that all the above contradictions hold
only for noncontextual hidden variable theories, a general proof of this is
not available. In this paper, we propose the usage of nonmonotonic upper
probabilities as a tool to derive consistent joint upper probabilities for the
contextual hidden variables.

2 Upper Probabilities and Bell-type entangle-
ment

We saw in the previous section that, for some cases, quantum mechanics
does not allow the existence of a joint probability distribution for all the
observables. However, if the probability axioms are weakened, Suppes and
Zanotti (1991) proved that a consistent set of upper probabilities for the
events can be found. Upper probabilities are defined in the following way.
Let ⌦ be a nonempty set, F a boolean algebra on ⌦, and P

⇤ a real valued
function on F. Then the triple (⌦, F, P

⇤) is an upper probability if for all ⇠1
and ⇠2 in F we have that

(i) 0  P

⇤(⇠1)  1,

(ii) P

⇤(;) = 0,

(iii) P

⇤(⌦) = 1,

and if ⇠1 and ⇠2 are disjoint, i.e. ⇠1 \ ⇠2 = ;, then

(iv) P

⇤(⇠1 [ ⇠2)  P

⇤(⇠1) + P

⇤(⇠2).

As we see, property (iv) weakens the standard additivity axiom for probabil-
ity. Since monotonicity is one of the consequences of the standard probability
axioms, it may be true for an upper probability that

⇠1 ✓ ⇠2 and P

⇤(⇠1) > P

⇤(⇠2).
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Let us see how upper probabilities can be used to obtain joint upper-
probability distributions. We start with Bell’s observables, represented by
the random variables X, Y and Z. Each random variable corresponds to
a different angle of measurement for the Stern-Gerlach apparatus (we fol-
low the example in Suppes and Zanotti (1981)). Bell’s thought experiment
consisted of a two-particle system with an entangled spin state. Since each
random variable corresponds to different spin orientations, we can only mea-
sure two of them at the same time. Additionally, Bell’s states are such that
the expected values of X, Y, and Z are zero, and we have the constraint

P (X = 1) = P (Y = 1) = P (Z = 1) =
1
2
. (1)

The question that Bell posed is whether we can fill the missing values
of the data table in a way that is consistent with the marginal distributions
given by quantum mechanics for the pairs of variables, that is, E(XY),
E(XZ), E(YZ). It is well known that for some sets of angles the joint prob-
ability exists, while for other sets of angles it does not. We can prove that
the joint probability doesn’t exist in the following way. We start with the
values for the expectations given by Bell:

E(XY) = �
p

3
2

, (2)

E(XZ) = �
p

3
2

, (3)

E(YZ) = �1
2
. (4)

The above expectations correspond to the angles between detectors set as
d
XY = 30o

,

d
Y Z = 30o, and d

XZ = 60o. It follows from Suppes and Zanotti
(1981) that a joint probability distribution for X, Y, and Z as above defined
exist if and only if

�1  E(XY) + E(YZ) + E(XZ)
 1 + 2 min {E(XY), E(YZ), E(XZ)} . (5)

Clearly, inequalities (5) are violated for expectations given by (2)–(4), and
no joint probability distribution exists.

What changes with upper probabilities? The system of linear equations
necessary for the existence of a joint distribution becomes a system of in-
equalities. This change makes it possible to obtain solutions to the system,
and then upper probabilities that are consistent with the observed expecta-
tions (Suppes and Zanotti, 1991).
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3 Bell-type inequalities for the GHZ state
As we saw in Section 2, the two-particle entangled state used by Einstein,
Podolski, and Rosen has observables whose correlations cannot be explained
by a joint probability distribution. In 1989, Greenberger, Horne and Zeilinger
(GHZ) concocted a four-system entangled state that had two new features:
the correlations were connected to path interference and the values of the
observables seemed to lead to mathematical contradictions. The seemingly
mathematical contradiction arose from an assumption of existence of a local
hidden-variables theory that could explain the experimental outcomes pre-
dicted by quantum mechanics. Thus, GHZ proved that quantum mechanics
is incompatible with hidden variables without using inequalities, but instead
using perfect correlations. Their result is known as the GHZ theorem.

GHZ’s argument, as stated by Mermin (1990a), goes as follows. We start
with a three-particle entangled state

| i =
1p
2
(|+i1|+i2|�i3 + |�i1|�i2|+i3), (6)

where �̂
iz

|±i
i

= ±|±i, and �̂
iz

is the spin operator in the ẑ direction on the
Hilbert space of the i-th particle. This state is an eigenstate of the following
spin operators:

Â = �̂1x

�̂2y

�̂3y

, B̂ = �̂1y

�̂2x

�̂3y

, (7)
Ĉ = �̂1y

�̂2y

�̂3x

, D̂ = �̂1x

�̂2x

�̂3x

. (8)

If we compute the expected values for the above correlations, we obtain
at once that E(Â) = E(B̂) = E(Ĉ) = 1 and E(D̂) = �1. That these
correlations present a problem can be seen from the following theorem (a
simplified version of the theorem may be found in Suppes, de Barros, and
Oas (1998)).

Theorem 1 Let A, B, and C be three ±1 random variables and let
(i) E(A) = E(B) = E(C) = 1,
(ii) E(ABC) = �1.

Then (i) and (ii) imply a contradiction.

Proof: By definition
E(A) = P (a)� P (a), (9)

where we use the notation P (a) = P (A = 1) and P (a) = P (A = �1). Since
0  P (a), P (a)  1, it follows at once from (i) that

P (a) = 1, (10)
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and
P (a) = 0. (11)

Similarly, from (i),
P (b) = P (c) = 1. (12)

P (b) = P (c) = 0. (13)

Using again the definition of expectation and the inequalities P (abc) 
P (a) = 0, etc., we have

E(ABC) = P (abc) + P (abc) + P (abc) + P (abc)
�[P (abc) + P (abc) + P (abc) + P (abc)]

= 1,

(14)

from (11) and (13), since all but the first term on the right are 0. Thus, by
conservation of probability, P (abc) = 1 and the last line follows. But (14)
contradicts (ii). }

Of course, the above theorem assumes the existence of an underlying
joint probability distribution. This can be illustrated by the following. Let
us now suppose that the value of the spin for each particle is dictated by
a hidden variable �, and let us call this value s

ij

(�), where i = 1...3 and
j = x, y. Because spin measurements on each particle can be separated by a
space-like interval, we have that

E(ÂB̂Ĉ) = (s1x

s2y

s3y

)(s1y

s2x

s3y

)(s1y

s2y

s3x

) (15)
= s1x

s2x

s3x

(s2
1y

s

2
2y

s

2
3y

). (16)

Since the s

ij

(�) can only be 1 or �1, we obtain

E(ÂB̂Ĉ) = s1x

s2x

s3x

= E(D̂). (17)

But (15) implies that E(ÂB̂Ĉ) = 1, whereas (17) implies E(ÂB̂Ĉ) =
E(D̂) = �1. It should be evident from the above derivation that we could
avoid contradictions if we allow the value of � to depend on the experimental
setup, i.e., if we allow � to be a contextual hidden variable. In other words,
what the GHZ theorem proves is that non-contextual hidden variables can-
not reproduce quantum mechanical predictions.

One of the striking characteristics of GHZ’s example is that a contradic-
tion between quantum mechanics and a hidden-variable theory comes from
probability one (or zero) events. This, however, leads to a problem. How can
we experimentally verify predictions based on correlation-one events given
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that experimentally we cannot obtain perfectly correlated events? This prob-
lem was also present in Bell’s original paper, where he didn’t consider ex-
perimental errors. To “avoid Bell’s experimentally unrealistic restrictions”,
Clauser, Horne, Shimony and Holt (1969) derived a new set of inequali-
ties that would take into account imperfections in the measurement process.
However, Bell’s inequalities are quite different from the GHZ case, where it
is necessary to have experimentally unrealistic perfect correlations.

It is important to note that if we could measure all the random vari-
ables simultaneously, we would have a joint distribution. The existence of a
joint probability distribution is a necessary and sufficient condition for the
existence of a hidden variable (Suppes and Zanotti (1991)). Hence, if the
quantum mechanical GHZ correlations are obtained, then no hidden vari-
able exists. However, this abstract version of the GHZ theorem still involves
probability-one statements. On the other hand, the correlations present in
the GHZ state are so strong that even if we allow for experimental errors,
the non-existence of a joint distribution, or, equivalently (as shown by Sup-
pes and Zanotti (1991)) the non-existence of a hidden variable, can still
be verified, as we now proceed to show. We follow de Barros and Suppes
(2001). We start by defining the ±1-valued random variables X1, X2, X3,
Y1, Y2 and Y3 corresponding to the outcomes of spin measurements. The
random variable representing the outcomes of �̂1x

is X1, �̂2x

is X2, �̂1y

is
Y1, and so on. Before we derive the inequalities, we note that if we could
measure all the random variables X1, X2, X3, Y1, Y2 and Y3 simultane-
ously, we would have a joint probability distribution. The existence of a
joint probability distribution is a necessary and sufficient condition for the
existence of a noncontextual hidden variable (Suppes and Zanotti, 1991).
Hence, if the quantum mechanical GHZ correlations are obtained, then no
such hidden variable exists. However, Theorem 1 still involves probability-
one statements. On the other hand, the quantum mechanical correlations
present in the GHZ state are so strong that even if we allow for experimental
errors, the non existence of a joint distribution can still be verified, as we
show in the following theorem, which, as we said above, extends the results
in de Barros and Suppes (2000).

Theorem 2 Let X
i

and Y
i

, 1  i  3, be six ±1 random variables. Then,
there exists a joint probability distribution for all six random variables
if and only if the following inequalities are satisfied:

�2  E(X1Y2Y3) + E(Y1X2Y3)
+E(Y1Y2X3)� E(X1X2X3)  2,
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�2  �E(X1Y2Y3) + E(Y1X2Y3)
+E(Y1Y2X3) + E(X1X2X3)  2,

�2  E(X1Y2Y3)� E(Y1X2Y3)
+E(Y1Y2X3) + E(X1X2X3)  2,

�2  E(X1Y2Y3) + E(Y1X2Y3)
�E(Y1Y2X3) + E(X1X2X3)  2,

Proof: The argument is similar to the one found in de Barros and Suppes
(2000). To simplify, we use a notation where x1y2y3 means X1Y2Y3 = 1,
x1y2y3 means X1Y2Y3 = �1. We prove first that the existence of a joint
probability distribution implies the four inequalities. Then, we have by an
elementary probability computation that

P (x1y2y3) = P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)

and

P (x1y2y3) = P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3),

with similar equations for Y1X2Y3 and Y1Y2X3. But

X1X2X3 = (X1Y2Y3)(Y1X2Y3)(Y1Y2X3),

and so we have that

P (x1x2x3) = P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)

and

P (x1x2x3) = P (x1y2y3, y1x2y3, y1y2x3)
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+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3).

A straightforward computation shows that

F = 2[P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)]
�2[P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)
+P (x1y2y3, y1x2y3, y1y2x3)],

where F is defined by

F = E(X1Y2Y3) + E(Y1X2Y3) + E(Y1Y2X3)� E(X1X2X3).

Since all probabilities are non-negative and sum to  1, we infer the first
inequality at once. The derivation of the other inequalities is similar.

Now for the sufficiency part. First, we assume the symmetric case where

E(X1Y2Y3) = E(Y1X2Y3) = E(Y1Y2X3) = 2p� 1, (18)

and
E(X1X2X3) = �(2p� 1). (19)

Then, the first inequality yields

1
4
 p  3

4
, (20)

while the other ones yield
0  p  1. (21)

Since X
i

and Y
i

are ±1 random variables, p has to belong to the interval
[0, 1], and inequality (21) doesn’t add anything new. We will prove the exis-
tence of a joint probability distribution for this symmetric case by showing
that, given any p,

1
4  p  3

4 , we can assign values to the atoms that have
the proper marginal distributions.
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The probability space for X
i

and Y
i

has 64 atoms. It is difficult to
handle a problem of this size, so we will assume some further symmetries to
reduce the problem. First, we introduce the following notation: if a group
of symbols is between square brackets, all the possible permutations of the
bar symbol is considered. For example, a5 = P ([x̄1x2x3]y1y2y3) means that
P (x̄1x2x3y1y2y3) = a5, P (x1x̄2x3y1y2y3) = a5, and P (x1x2x̄3y1y2y3) = a5.
Then, the number of independent values for the probabilities of atoms in the
problem is reduced to the following 16:

a1 = P (x1x2x3y1y2y3), a2 = P (x1x2x3ȳ1ȳ2ȳ3),
a3 = P (x1x2x3[ȳ1y2y3]), a4 = P (x1x2x3[ȳ1ȳ2y3]),
a5 = P ([x̄1x2x3]y1y2y3), a6 = P ([x̄1x2x3]ȳ1ȳ2ȳ3),
a7 = P ([x̄1x2x3][ȳ1y2y3]), a8 = P ([x̄1x2x3][ȳ1ȳ2y3]),
a9 = P ([x̄1x̄2x3][ȳ1y2y3]), a10 = P ([x̄1x̄2x3][ȳ1ȳ2y3]),

a11 = P ([x̄1x̄2x3]y1y2y3), a12 = P ([x̄1x̄2x3]ȳ1ȳ2ȳ3),
a13 = P (x̄1x̄2x̄3[ȳ1y2y3]), a14 = P (x̄1x̄2x̄3[ȳ1ȳ2y3]),
a15 = P (x̄1x̄2x̄3y1y2y3), a16 = P (x̄1x̄2x̄3ȳ1ȳ2ȳ3).

These new added symmetries reduce the problem from 64 to 16 variables.
The atoms have to satisfy various sets of equations. The first set comes just
from the requirement that E(X

i

) = E(Y
i

) = 0, for i = 1, 2, 3, but two of
the six equations are redundant, and so we are left with the following four.

a1 + a2 + 3a3 + 3a4 + a5 + a6 + 3a7 + 3a8 � 3a9

�3a10 � a11 � a12 � 3a13 � 3a14 � a15 � a16 = 0, (22)

a1 � a2 + a3 � a4 + 3a5 � 3a6 + 3a7 � 3a8 + 3a9

�3a10 + 3a11 � 3a12 + a13 � a14 + a15 � a16 = 0, (23)

a1 � a2 + a3 � a4 + 3a5 � 3a6 + 3a7 � 3a8 + 3a9

�3a10 + 3a11 � 3a12 � a13 + a14 + a15 � a16 = 0, (24)

a1 + a2 + 3a3 + 3a4 � a5 � a6 � 3a7 � 3a8 + 3a9

+3a10 + a11 + a12 � 3a13 � 3a14 � a15 � a16 = 0, (25)
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where (22) comes from E(X1) = 0, (23) from E(X2) = 0, (24) from E(Y1) =
0, and (25) from E(Y2) = 0. The triple expectations also imply

a1 + a2 + 3a3 + 3a4 � 3a5

�3a6 � 9a7 � 9a8 + 9a9 + 9a10

+3a11 + 3a12 � 3a13 � 3a14 � a15 � a16 = �2p + 1, (26)

a1 + a2 � a4 � a4 + a5

+a6 � a7 � a8 + a9 + a10

�a11 � a12 + a13 + a14 � a15 � a16 = 2p� 1, (27)

and

a1 � a2 � 3a3 + 3a4 + 3a5

�3a6 � 9a7 + 9a8 � 9a9 + 9a10

+3a11 � 3a12 � 3a13 + 3a14 + a15 � a16 = 2p� 1. (28)

Finally, the probabilities of all atoms have to sum to one, yielding the last
equation

a1 + a2 + 3a3 + 3a4 + 3a5

+3a6 + 9a7 + 9a8 + 9a9 + 9a10

+3a11 + 3a12 + 3a13 + 3a14 + a15 + a16 = 1. (29)

Even with the symmetries reducing the problem to 16 variables, we still
have an infinite number of solutions that satisfy equations (22)–(29). Since
it is very hard to exhibit a general solution for (22)–(29) and the constraints
0  a

i

 1, i = 1 . . . 16, we will just show that particular solutions exist for
an arbitrary p satisfying the inequality (20). To do so, we will divide the
problem into two parts: one where we will exhibit an explicit solution for the
atoms a1, . . . , a16 that form a proper probability distribution for p 2 [ 14 ,

1
2 ],

and another explicit solution for p 2 [ 12 ,

3
4 ].

It is easy to verify that, given an arbitrary p in [ 14 ,

1
2 ], the following set

of values constitute a solution of equations (22)–(29): a1 = 0, a2 = � 1
2 +2p,

a3 = 1
4 �

1
2p, a4 = 0, a5 = 0, a6 = 0, a7 = 0, a8 = 0, a9 = 0, a10 = 0,

a11 = 0, a12 = 1
4 �

1
2p, a13 = 0, a14 = 0, a15 = p, a16 = 0. For p in

[ 12 ,

3
4 ] the following set of values constitute a solution of equations (22)–(29):

a1 = � 1
8 + 1

2p, a2 = 0, a3 = 3
8 �

1
2p, a4 = 0, a5 = � 5

24 + 1
3p, a6 = � 1

24 + 1
6p,
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a7 = 0, a8 = 0, a9 = 0, a10 = 0, a11 = 0, a12 = 0, a13 = 0, a14 = 1
8 ,

a15 = 3
8 �

1
2p, a16 = 0. So, for p satisfying the inequality 1

4  p  3
4 we can

always construct a probability distribution for the atoms consistent with the
marginals, and this concludes the proof. }

We note that the form of the inequalities of Theorem 2 is actually that of
the Clauser et al. (1969) for the Bell case, when the Bell binary correlations
are replaced by the GHZ triple correlations. The inequalities from Theorem
2 immediately yield the following.

Corollary Let X
i

and Y
i

, 1  i  3, be six ±1 random variables, and let

(i) E(X1Y2Y3) = E(Y1X2Y3) = E(Y1Y2X3) = 1� ",

(ii) E(X1X2X3) = �1 + ",

" 2 [0, 1]. Then there cannot exist a joint probability distribution of
X

i

and Y
i

, 1  i  3, satisfying (i) and (ii) if " <

1
2 .

Proof. If a joint probability exists, then

�2  E(X1Y2Y3) + E(Y1X2Y3)
+E(Y1Y2X3)� E(X1X2X3)  2.

But

E(X1Y2Y3) + E(Y1X2Y3)
+E(Y1Y2X3)� E(X1X2X3) = 4� 4",

and the inequality is satisfied only if " � 1
2 . Hence, if " <

1
2 no joint

probability exists. }
In the Corollary, " may represent, for instance, a deviation from the

predicted quantum mechanical correlations due to experimental errors. So,
we see that to prove the nonexistence of a joint probability distribution for
the GHZ experiment, we do not need to have perfect measurements and 1
or �1 correlations. In fact, from the above inequalities, it should be clear
that any experiment that satisfies the strong symmetry of the Corollary and
obtains a correlation for the triples stronger than 0.5 (and �0.5 for one of
them) cannot have a joint probability distribution.

It is worth mentioning at this point that the inequalities derived in The-
orem 2 have a completely different origin than do Bell’s inequalities. The
inequalities of Theorem 2 are not satisfied by a particular model, but they
just accommodate the theoretical conditions in GHZ to possible experimental
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deviations. Also, Theorem 2 does not rely on any “enhancement” hypothesis
to reach its conclusion. Thus, with this reformulation of the GHZ theorem
it is possible to use strong, yet imperfect, experimental correlations to prove
that a hidden-variable theory is incompatible with the experimental results.

4 Upper probabilities and the GHZ state

We now analyze the existence of upper probabilities for the GHZ state. The
following theorem states our main result.

Theorem 3 Let A, B, and C be three ±1 random variables and let
(i) E

⇤(A) = E(A) = 1,

(ii) E

⇤(B) = E(B) = 1,

(iii) E

⇤(C) = E(C) = 1,
(iv) E

⇤(ABC) = E(ABC) = �1.

Then, there exists an upper joint probability distribution that is com-
patible with expectations (i)–(iv).

Proof: We prove the theorem by explicitly providing an upper joint proba-
bility distribution. Let

p

⇤ (abc) = p

⇤ �
abc

�
= 1 (30)

and

p

⇤ (abc) = p

⇤ �
abc

�
= p

⇤ (abc)

= p

⇤ �
abc

�
= p

⇤ (abc) = p

⇤ �
abc

�
= 0. (31)

Since E

⇤ (A) = E

⇤ (B) = E

⇤ (C) = 1, it follows that

p

⇤ (a) = p

⇤ (b) = p

⇤ (c) = 1 (32)

and
p

⇤ (a) = p

⇤ �
b

�
= p

⇤ (c) = 0. (33)

Next, let us consider the events

a = abc [ abc [ abc [ abc, (34)

a = abc [ abc [ abc [ abc, (35)
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and similarly for b, b, c, and c. From (34) and the subadditive properties of
the upper distributions must hold, and we have

p

⇤ (a)  p

⇤ (abc) + p

⇤ �
abc

�
+ p

⇤ (abc) + p

⇤ �
abc

�
.

Using (30), (31), and (32), the above inequality becomes

1  1 + 0 + 0 + 0,

consistent with the joint. For (35), the subadditive properties requires

p

⇤ (a)  p

⇤ (abc) + p

⇤ �
abc

�
+ p

⇤ (abc) + p

⇤ �
abc

�
.

Using (30), (31), and (33), the above inequality becomes

0  0 + 0 + 0 + 1,

also consistent. Similar computations follow for b, b, c, and c.
Going back to the expectation, we are given

E (ABC) = �1,

or

E

⇤ (ABC) = 1 · p⇤
�
abc [ abc [ abc [ abc

�

+ (�1) · p⇤
�
abc [ abc [ abc [ abc

�
. (36)

From (36)
p

⇤ �
abc [ abc [ abc [ abc

�
= 0, (37)

and from (30), (31), (37), and the subadditive properties,

p

⇤ �
abc [ abc [ abc [ abc

�
 p

⇤ (abc) + p

⇤ �
abc

�
+ p

⇤ (abc) + p

⇤ �
abc

�

0 = 1 + 0 + 0 + 0.

Also, from (36),
p

⇤ �
abc [ abc [ abc [ abc

�
= 1, (38)

and from (30), (31), (38), and the subadditive properties,

p

⇤ �
abc [ abc [ abc [ abc

�
 p

⇤ (abc) + p

⇤ �
abc

�
+ p

⇤ (abc) + p

⇤ �
abc

�

1 = 0 + 0 + 0 + 1.

Thus, we complete the check of all probabilities necessary for consistency.
The remaining events can easily be assigned upper probabilities that satisfy
the axioms of upper probabilities. }
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5 Final Remarks

The nonexistence of a joint probability distribution is related to the nonex-
istence of hidden variables, and therefore to contextuallity. We argued else-
where that the most puzzling aspect of quantum mechanics is not the im-
possibility of a joint probability distribution, but the nonexistence of a joint
probability for events that are separated by a space-like interval (de Barros
and Suppes 2009). Examples that are highly contextual should not be seen
as a puzzling aspect of quantum mechanics, if they do not involve space-
like separated measurements. In fact, such contextuallity is part of classical
physics, in the case of wave phenomena or electromagnetic fields (de Barros
and Suppes 2009). In a recent paper, Hartmann and Suppes (2009) showed
that environmental decoherence leads to the decay of upper joint probabili-
ties into proper joint probability distributions, thus eliminating contextual-
lity effects due to entangled states.

Upper probabilities are a natural way to deal with contextual problems
in statistics. For example, in polls in social sciences upper probabilities can
be applied, as the results of the responses depend on the context of the
questions. Upper probabilities are also natural in expressing probabilities
of beliefs when the person does not want to commit to a particular value.
For example, a person making a prediction about whether it will rain or not
tomorrow may want to give a probability of raining between 50% and 70%
(see P. Walley (1999) or Hartmann and Suppes (2010) and references therein
contained). In this paper, we we gave a probabilistic random variable version
of the GHZ setup, and applied upper probabilities to it. We showed that, if
we use upper probabilities, some of the lemmas used to derive GHZ do not
hold anymore, and hence no inconsistencies can be proved to exist from the
upper probabilities. This should be contrasted with the standard comments
on GHZ, and how it shows that quantum mechanics plus local realism leads
to mathematical inconsistencies.
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